• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder *

    2017-11-02 09:09:15ZhihuaXieLinLu呂林ThorstenStoesserJianguoLin林建國(guó)DimitriosPavlidis
    關(guān)鍵詞:建國(guó)

    Zhihua Xie, Lin Lu (呂林), Thorsten Stoesser, Jian-guo Lin (林建國(guó)), Dimitrios Pavlidis,

    Pablo Salinas3, Christopher C. Pain3, Omar K. Matar4

    1. School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK, E-mail: zxie@cardiff.ac.uk

    2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology,Dalian 116023, China

    3. Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK

    4. Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK

    5. College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China

    Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder*

    Zhihua Xie1,2,3,4, Lin Lu (呂林)2, Thorsten Stoesser1, Jian-guo Lin (林建國(guó))5, Dimitrios Pavlidis3,

    Pablo Salinas3, Christopher C. Pain3, Omar K. Matar4

    1. School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK, E-mail: zxie@cardiff.ac.uk

    2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology,Dalian 116023, China

    3. Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK

    4. Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK

    5. College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China

    Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a “volume of fluid” type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.

    Breaking waves, volume of fluid method, 3-D simulation, Navier-Stokes equation, adaptive unstructured mesh

    Introduction

    Wave breaking plays an important role in marine hydrodynamics,wave-structureinteraction,air-sea interaction, surf zone dynamics, and nearshore sediment transport.Severalcomprehensivereviewsof breaking waves and wave mechanics can be found in Refs.[1-3].

    Wave-structure interaction is a key aspect in the safe and cost-effective design of coastal and offshore structures, and marine renewable devices. In order to roughly predict the hydrodynamic loads on structures,the Morison equation and potential flow theory have been widely used in the literatures.However,it is challenge toconsider breaking wave impact on the structures by using these two approaches, especially when there are splash-up and air entrainment[4].

    With developments of computational fluid dynamics (CFD) and increases in computer power, recent modelsfor studying free surfaceflows,including breaking waves,solve the Navier-Stokesequations coupled with a free surface calculation (see Lin[5]for comprehensivemodelling applicationsand methodologies for water waves and McSherry et al.[6]for large-eddy simulation of free surface flows). There are several numerical studies on breaking wavesin the literature based on one-phase flow model in 2-D[7-10]and 3-D[11,12], in which only the flow in the water is considered in the computations. The pressure in the air is taken as a constant, and the boundary conditions are approximately specified at the free surface. In order to take theeffect of air phaseintoaccount for wave breaking, several 2-D two-phase flow model, in which both flows in the air and water are solved, have been developed to study the details of breaking waves in thesurf zone[13,14],overturning jet during wave breaking[15]and the effect of wind on breaking waves[16,17]. Several 3-D two-phase flow models have alsobeen developed tounderstand 3-Dbreaking wavesin a periodicspacedomain[18],over a planebeach[19]and over a complex topography[20],which have provided much insight into the kinematics and dynamicsof breaking waves,including theoverturning jet and thesubsequent splash-upprocess.Previousinvestigationshavegreatly improved our knowledge of breaking waves, however, little attention has been given for the numerical study on the 3-D waveaction on a vertical circular cylinder over a slope.

    In this study, a 3-D two-phase flow model with adaptive unstructured meshes is developed to investigate3-Dbreaking waveinteraction with a vertical circular cylinder along a constant sloping beach,which can provide detailed information on the impact forceduring wave breaking. The usageof adaptive unstructured meshes is helpful to reduce the computational efforts in CFD simulations and is also easy to deal with the problems with irregular boundaries. The description of the mathematicalmodel for the twophase flow is described in next section. The numerical method is presented after that. Both 2-D overturning waves and 3-D breaking wave impacting on a cylinder aresimulated in the resultsand discussion section.Detailed computationalresultsof thewater surface profilesassociated with theadaptiveunstructured meshes are shown and discussed. Finally, conclusions are drawn.

    1. Mathmatical model

    A multi-fluid modelling framework hasbeen developed based on the multi-component modelling approach with information on interfacesembedded into the continuity equations. In two-phase flows, let iα be the mass fraction of phase i, where=1,2i,the density and dynamic viscosity of phaseiareiρ andiμ, respectively. A constraint on the system is

    For each fluid component i, the conservation of mass may be denoted as

    and the equations of motion of an incompressible fluid can be written as

    wheretis the time,uis velocity vector,pis the pressure,thebulk density isρ = ρ1α1+ ρ2α2,the bulk dynamicviscosity is μ = μ1α1+ μ2α2, is thegravitational acceleration vector,isthe surfacetension coefficient,κ=▽·n isthe interfacial curvature,nis the interface unit normal,and δis the Dirac delta function.

    2. Numerical method

    In the present study, a transient, mixed, controlvolume and finite-element formulation isused to discretise the governing equations (Eq.(2) and Eq.(3)).A finitevolumediscretisation of thecontinuity equations and a linear discontinuous Galerkin (DG)[21]discretisation of the momentum equationsare employed with backward Euler time stepping. Within each time-step, the equations are iterated upon using a projection-based pressure determination method until all equations are simultaneously balanced. The main numerical framework includesa finite element type P1DG-P2(linear discontinuousvelocity between elements and quadratic continuous pressure between elements)for multi-fluid flow problems,which ensuresexact balancebetween buoyancy forceand pressure gradient.Theframework alsofeaturesa novel interfacecapturingscheme based on compressive control volume advection method[21], involving a high-order accuratefinite element method toobtain fluxes on the control volume boundaries, where these fluxes are subject to flux-limiting using a normalised variablediagram approach toobtain bounded and compressive solutionsfor theinterface.The implementation of capillary/surfacetension forcein the framework using an unstructured mesh minimises spurious velocities often found in interfacial flows[22].Finally,useof anisotropicunstructured mesh adaptivity[23]allowsthe grid resolution tobe concentrated in relatively important regions, such as the vicinity of interfaces, while lower resolution can be used in other regions; this leads to a significant gain in computationalefficiency without sacrificing accuracy.

    The numerical framework has been validated and employed tostudy variousmultiphaseflow problems[24-27].Thedetailed modelling of three-dimensional bubbles, droplet and liquid films can be found in Xie et al.[22,28].

    3. Results and discussion

    3.1 2-D breaking wave over a sloping beach

    In thissection,wesimulatea 2-Doverturning solitary wave and compare quantitatively with the experiment[29]for a breaking solitary wave splash-up on a 1:15sloping beach.Wefollowed thesame computational setupin our previousstudieswith a two-phase flow solver based on the finite volume method on a fixed grid[15,20]. At the inlet, the solitary wave is generated by giving the water surface profile and the water particle velocities[15], whereas the noslip wall boundary condition is applied at the sloping beach and zero-gradient boundary conditionsare applied at thetopand outlet of the computational domain.

    Figure 1 shows the evolution of zoom in region for the solitary wave before and after wave breaking.It can be seen that the development of plunging jet, jet impingement and generation of splash-up are reproduced in the simulation. Sharp air-water interface is captured by the adaptive unstructured mesh, with fine mesh in the vicinity of the interface and coarse mesh away from the interface. A detailed comparison of the plunging jet, at the time of wave overturning, between the simulation and experimental results isshown in Fig.2. Good agreement is obtained in the present study in terms of wave shape and breaking location, demonstrating the capability of the present method in simulation wave breaking problems.

    Fig.1 (Color online) Evolution of a solitary breaking wave with H / D = 0 .45along a 1: 1 5 sloping bea ch. W ater and air andtheirassociatedfullyunstructuredmeshareshown in red and blue colors

    Fig.2 (Color online) Comparison between simulation and experimental measurements[29]for the wave surface profile during wave overturning on a sloping beach

    Fig.3 (Color online) Detailed views of the water wave surface.Top pannel shows the water surfaces colored based on local values of /yDand bottom pannel shows the fully-unstructured mesh corresponded to the top pannel along three slices

    3.23-D Breaking wave impact on a vertical circular cylinder

    A 3-Dsolitary breaking waveover a constant slopeisinvestigated here.In thecomputation,the origin of the coordinates is located at the still water levelin thecentre of the toeof theslopeand all lengthsarenormalized by thewater depth D=0.3048m . The computational setup is similar to the case for a 3-D breaking wave without a cylinder[20],in which theslope is1:15and theincident plane solitary wave with the ratio of wave height to water depth is H / D = 0.45.A verticalcircular cylinder with a diameter of d /D = 0.33is considered here and it is located at a distance of =12.5x D from the toeof theslope.Thecomputationaldomain, which has a length of 19.75D, width of 1.3D, and height of 1.75D, is discretized by an adaptive fully-unstruc-thestreamwise,verticaland spanwisedirections,respectively.

    Figure 3 shows snapshots of detailed views of the solitary wave before, during and after wave breaking.Before wave breaking, it can be seen that the wave crest becomessteepdue totheshoaling effect(Fig.3(a)). A typical three-dimensional overturning jet just ahead of thecylinder can beseen in Fig.3(b)during wavebreaking.Thebreaking waveimpacts with the vertical cylinder and 3-D complex plunging jet isdeveloped in Fig.3(c).Theadaptivefullyunstructured meshes are also shown in Fig.3 and it can be seen that fine mesh is used in the vicinity of the interfaceand theregion near thecylinder whereas coarse mesh is used away from the interface. This has the advantage of reducing computational effort without sacrificing accuracy.

    Fig.4 (Color online) Streamwise impact force on the vertical circular cylinder for the breaking wave along the sloping beach

    Figure 4showsthe streamwise-component impact forceon the vertical cylinder during wave propagation along thesloping beach. It can be seen that the force is very small when the wave is far away from the cylinder. It gradually increases and obtains themaximum value when the plunging jet hits the cylinder. Then impact force gradually decreases when thebreaking wave passesby and there issome oscillation duetothree-dimensionaleffect of the breaking waves.

    4. Conclusions

    In thispaper,a controlvolumefiniteelement method with adaptive anisotropic unstructured meshes hasbeen used for 3-D breakingwaves,which can modify and adapt unstructured meshestobetter represent theunderlying physicsof interfacial problems and reduce computational effort without sacrificing accuracy.

    The numerical framework has been validated for a 2-D breaking wave over a sloping beach, in which a good agreement of the water surface profile between thesimulation and experimental measurementsis obtained.The present framework hasbeen further employed to investigate a 3-D breaking wave and its impact on a vertical cylinder along a slope. Development of plunging jet formation and complex interfacial structures during wave impact have been captured by the present method. The results presented hereestablished with sufficient confidencethat this method can be used to successfully model breaking waves and wave-structure interaction in a wide range of applications.

    Acknowledgements

    The first and second authorswould liketo acknowledge thefinancialsupport by the National Natural ScienceFoundation of China (Grant No.51490673),the Open Awardsof theState Key Laboratory of Coastal and Offshore Engineering. This work wasalsofunded by theEPSRC MEMPHIS multiphaseProgramme(Grant No.EP/K003976/1)and funding from the European Union Seventh Framework Programme (FP7/20072013) under grant agreement No.603663for the research project PEARL (Preparing for Extremeand Rareeventsin coastaL regions).

    [1]Peregrine D. H. Breaking waves on beaches [J]. Annual Review of Fluid Mechanics, 1983, 15: 149-178.

    [2]Banner M. L., Peregrine D. H. Wave breaking in deepwater [J]. Annual Review of Fluid Mechanics, 1993, 25:373-397.

    [3] Mei C. C., Liu P. L. F. Surface-waves and coastal dynamics [J]. Annual Review of Fluid Mechanics,1993, 25:215-240.

    [4]Kiger K. T., Duncan J. H. Air-entrainment mechanisms in plunging jets and breaking waves [J]. Annual Review of Fluid Mechanics, 2012, 44: 563-596.

    [5]Lin P. Numericalmodeling of water waves:An introduction to engineersand scientists[M].London,UK:Taylor and Francis, 2008.

    [6]McSherry R.J.,Chua K.V.,Stoesser T.Largeeddy simulation of free-surfaceflows [J]. Journal of Hydrodynamics, 2017, 29(1): 1-12.

    [7]Lin P., Liu P. L. F. A numerical study of breaking waves in thesurf zone[J]. Journal of Fluid Mechanics,1998,359: 239-264.

    [8]Bradford S. F. Numerical simulation of surf zone dynamics [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 1-13.

    [9]Zhao Q., Armfield S., Tanimoto K. Numerical simulation of breaking waves by a multi-scale turbulence model [J].Coastal Engineering, 2004, 51(1): 53-80.

    [10] Shao S. Simulation of breaking wave by SPH method coupled with kε-model [J].Journal of Hydraulic Research, 2006, 44(3): 338-349.

    [11] Christensen E. D., Deigaard R. Large eddy simulation of breaking waves[J].Coastal Engineering,2001,42(1):53-86.

    [12] Watanabe Y., Saeki H., Hosking R. J. Three-dimensional vortex structuresunder breaking waves[J]. Journal of Fluid Mechanics, 2005, 545: 291-328.

    [13] Wang Z., Zou Q., Reeve D. E. Simulation of spilling breaking wavesusing a twophaseflow CFDmodel [J].Computers and Fluids, 2009, 38(10): 1995-2005.

    [14] Xie Z. Two-phase flow modelling of spilling and plunging breaking waves [J].Applied Mathematical Modelling,2013, 37(6): 3698-3713.

    [15] Xie Z. Numerical study of breaking waves by a two-phase flow model [J].International Journal for Numerical Methods in Fluids, 2012, 70(2): 246-268.

    [16] Xie Z. Numerical modelling of wind effects on breaking solitary waves [J].EuropeanJournal of Mechanics-B/Fluids, 2014, 43: 135-147.

    [17] Xie Z. Numerical modelling of wind effects on breaking waves in the surf zone [J]. Ocean Dynamics, 2017, DOI:10.1007/s10236-017-1086-8(in Press).

    [18] Lubin P., Vincent S., Abadie S. et al. Three-dimensional large eddy simulation of air entrainment under plunging breaking waves[J].Coastal Engineering,2006,53(8):631-655.

    [19] Lakehal D., Liovic P. Turbulence structure and interaction with steep breaking waves [J]. Journal of Fluid Mechanics,2011, 674: 522-577.

    [20]Xie Z.A two-phase flow model for three-dimensional breaking waves over complex topography [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2180): 20150101.

    [21] Pavlidis D., Gomes J. L. M. A., Xie Z. et al. Compressive advection and multi-component methodsfor interfacecapturing [J]. International Journal of Numerical Methods in Fluids, 2016, 80(4): 256-282.

    [22] Xie Z.,Pavlidis D.,SalinasP.et al. A balanced-force control volume finite element method for interfacial flows with surface tension using adaptive anisotropic unstructured meshes [J].Computersand Fluids,2016,138:38-50.

    [23] Pain C. C., Umpleby A. P., de Oliveira C. R. E.et al.Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations[J].Computer Methods in Applied Mechanics and Engineering, 2001, 190(29-30): 3771-3796.

    [24] Xie Z., Pavlidis D., Percival J. R. et al. Adaptive unstructured mesh modelling of multiphase flows [J]. International Journal of Multiphase Flow, 2014, 67: 104-110.

    [25] Pavlidis D., Xie Z., Percival J. R. et al. Two- and threephase horizontal slug flow simulations using an interfacecapturing compositional approach [J]. International Journal of Multiphase Flow, 2014, 67: 85-91.

    [26] Nowak E., Xie Z., Kovalchuk N. M. et al. Bulk advection and interfacial flows in the binary coalescenceof surfactant-laden and surfactant-free drops [J]. Soft Matter,2017, 13: 4616-4628.

    [27] Adebayo I., Xie Z.,Che Z.et al.Doubly-excited pulse waves on thin liquid films flowing down an inclined plane:An experimental and numerical study [J]. Physical Review E, 2017, 96: 013118.

    [28] Xie Z., Hewitt G. F., Pavlidis D. et al. Numerical study of three-dimensional droplet impact on a flowing liquid film in annular two-phase flow [J]. Chemical Engineering Science, 2017, 166: 303-312.

    [29] Li Y. Tsunamis: Non-breaking and breaking solitary wave run-up[D]. Doctoral Thesis, Pasadena, USA: California Institute of Technology, 2000.

    June 6, 2017, Revised July 29, 2017)

    * Biography: Zhihua Xie (1980-), Male, Ph. D., Lecturer

    猜你喜歡
    建國(guó)
    程建國(guó)作品(一)
    大眾文藝(2023年3期)2023-03-03 03:30:50
    程建國(guó)作品(二)
    大眾文藝(2023年3期)2023-03-03 03:30:44
    比大小,想背景,悟本質(zhì)
    Flow separation control over an airfoil using continuous alternating current plasma actuator
    你是我最牽掛的人
    “建國(guó)通寶”錢(qián)考辨
    黃建國(guó)小小說(shuō)欣賞
    Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network
    Synthesis of Methyl Isopropyl Ketone and Diethyl Ketone over Ni-Na/ZrO2-MnO2-ZnO Catalyst*
    建國(guó)后我軍歷次作戰(zhàn)中的戰(zhàn)略戰(zhàn)術(shù)
    軍事歷史(1997年6期)1997-08-21 02:37:06
    久久久久久免费高清国产稀缺| 久久精品成人免费网站| 老司机午夜福利在线观看视频| 精品国内亚洲2022精品成人| 不卡一级毛片| 亚洲精品美女久久av网站| 18美女黄网站色大片免费观看| 婷婷丁香在线五月| 免费在线观看视频国产中文字幕亚洲| 亚洲少妇的诱惑av| 欧美日韩乱码在线| 亚洲成国产人片在线观看| 精品卡一卡二卡四卡免费| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻丝袜一区二区| 一本久久中文字幕| 久久久久精品国产欧美久久久| 欧美性长视频在线观看| 亚洲精品一区av在线观看| 成人免费观看视频高清| 精品无人区乱码1区二区| 啦啦啦观看免费观看视频高清 | 精品国产一区二区久久| 麻豆一二三区av精品| 少妇粗大呻吟视频| 90打野战视频偷拍视频| 亚洲欧美激情综合另类| 咕卡用的链子| 午夜影院日韩av| 天天添夜夜摸| 可以免费在线观看a视频的电影网站| 亚洲av成人一区二区三| 亚洲成人精品中文字幕电影| 嫩草影院精品99| 国产成人av教育| 国产精品野战在线观看| 此物有八面人人有两片| 免费高清在线观看日韩| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 老熟妇仑乱视频hdxx| 天堂动漫精品| 热99re8久久精品国产| 一级毛片精品| 99国产极品粉嫩在线观看| 欧美激情极品国产一区二区三区| x7x7x7水蜜桃| 91九色精品人成在线观看| 久久欧美精品欧美久久欧美| 日韩欧美免费精品| 少妇的丰满在线观看| 精品久久久精品久久久| 久久人人精品亚洲av| 大陆偷拍与自拍| aaaaa片日本免费| 亚洲午夜理论影院| 美女午夜性视频免费| 亚洲精品中文字幕一二三四区| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| 国产蜜桃级精品一区二区三区| 男女下面插进去视频免费观看| 老司机福利观看| 又黄又爽又免费观看的视频| 久久天堂一区二区三区四区| 日韩大码丰满熟妇| 欧美最黄视频在线播放免费| 亚洲av成人不卡在线观看播放网| 国产精品爽爽va在线观看网站 | 欧美成人免费av一区二区三区| 日韩国内少妇激情av| 美女免费视频网站| 一边摸一边抽搐一进一小说| 久久青草综合色| 麻豆久久精品国产亚洲av| 长腿黑丝高跟| 黄片大片在线免费观看| 啦啦啦韩国在线观看视频| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 亚洲人成电影免费在线| 99国产精品一区二区三区| 丁香欧美五月| a在线观看视频网站| 国产aⅴ精品一区二区三区波| 中文亚洲av片在线观看爽| 黄片小视频在线播放| 欧美成狂野欧美在线观看| 我的亚洲天堂| 人人妻人人澡欧美一区二区 | 国产亚洲精品久久久久久毛片| 1024香蕉在线观看| 日本一区二区免费在线视频| 精品卡一卡二卡四卡免费| 久久人人精品亚洲av| 久久精品国产亚洲av高清一级| 欧美一级毛片孕妇| 久久香蕉精品热| 日本精品一区二区三区蜜桃| 99久久精品国产亚洲精品| 亚洲专区字幕在线| 男人舔女人下体高潮全视频| 桃红色精品国产亚洲av| 亚洲精品av麻豆狂野| 嫩草影视91久久| 99国产综合亚洲精品| 女人被狂操c到高潮| 欧美性长视频在线观看| 亚洲av美国av| 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 亚洲黑人精品在线| xxx96com| 波多野结衣高清无吗| 免费看美女性在线毛片视频| 亚洲天堂国产精品一区在线| 国产精品影院久久| 日韩av在线大香蕉| 中文字幕久久专区| 美女大奶头视频| 欧美激情高清一区二区三区| 国产高清videossex| 妹子高潮喷水视频| 久久中文字幕一级| 午夜成年电影在线免费观看| 欧美一区二区精品小视频在线| 色综合站精品国产| 可以免费在线观看a视频的电影网站| 精品福利观看| 黄片小视频在线播放| 中文字幕人妻熟女乱码| 亚洲国产精品合色在线| 国产欧美日韩精品亚洲av| x7x7x7水蜜桃| 欧美不卡视频在线免费观看 | 亚洲国产看品久久| 精品欧美国产一区二区三| 中文字幕高清在线视频| 国产蜜桃级精品一区二区三区| 如日韩欧美国产精品一区二区三区| 麻豆一二三区av精品| 在线视频色国产色| 亚洲精品久久国产高清桃花| 午夜日韩欧美国产| 色在线成人网| 久久九九热精品免费| 91精品国产国语对白视频| 午夜影院日韩av| 久久天躁狠狠躁夜夜2o2o| 中文字幕久久专区| 精品一品国产午夜福利视频| 国产极品粉嫩免费观看在线| 757午夜福利合集在线观看| 午夜免费观看网址| 亚洲成国产人片在线观看| 精品少妇一区二区三区视频日本电影| 免费高清在线观看日韩| 丰满人妻熟妇乱又伦精品不卡| 国产一级毛片七仙女欲春2 | 色av中文字幕| 可以免费在线观看a视频的电影网站| 一边摸一边抽搐一进一出视频| 亚洲激情在线av| 可以在线观看的亚洲视频| 一本综合久久免费| 99re在线观看精品视频| 波多野结衣一区麻豆| 19禁男女啪啪无遮挡网站| 一级作爱视频免费观看| 中文字幕久久专区| 天天躁夜夜躁狠狠躁躁| 中文字幕另类日韩欧美亚洲嫩草| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 日韩欧美三级三区| 中出人妻视频一区二区| 悠悠久久av| 少妇裸体淫交视频免费看高清 | 国产亚洲av嫩草精品影院| 中文字幕高清在线视频| av视频免费观看在线观看| 久久香蕉激情| 麻豆成人av在线观看| 久久香蕉国产精品| 欧美成人免费av一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 99久久国产精品久久久| 精品不卡国产一区二区三区| 成人亚洲精品一区在线观看| 国产精品一区二区在线不卡| 国产av在哪里看| 亚洲黑人精品在线| 91在线观看av| 婷婷六月久久综合丁香| 国产精品秋霞免费鲁丝片| av免费在线观看网站| 琪琪午夜伦伦电影理论片6080| 婷婷丁香在线五月| 久久久久亚洲av毛片大全| 夜夜爽天天搞| 欧美乱码精品一区二区三区| 十八禁网站免费在线| 精品欧美一区二区三区在线| 国产精品久久久久久亚洲av鲁大| 午夜精品在线福利| 老熟妇乱子伦视频在线观看| 一个人免费在线观看的高清视频| 国内久久婷婷六月综合欲色啪| www.自偷自拍.com| 久久天躁狠狠躁夜夜2o2o| 波多野结衣巨乳人妻| 亚洲国产看品久久| 亚洲成a人片在线一区二区| 在线观看66精品国产| 免费高清在线观看日韩| 中文字幕久久专区| 久久精品国产清高在天天线| 成人三级做爰电影| 精品电影一区二区在线| 午夜免费激情av| av电影中文网址| 亚洲成人国产一区在线观看| 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐gif免费好疼| cao死你这个sao货| 香蕉久久夜色| 久久香蕉国产精品| 亚洲在线自拍视频| 国产真人三级小视频在线观看| 久久久国产成人免费| 女性被躁到高潮视频| 国产三级黄色录像| 午夜免费鲁丝| 午夜免费观看网址| 午夜久久久在线观看| 18禁观看日本| 两性夫妻黄色片| 亚洲最大成人中文| av在线天堂中文字幕| 制服人妻中文乱码| 男女下面进入的视频免费午夜 | 人妻久久中文字幕网| 悠悠久久av| 久久久久久久久久久久大奶| 精品久久久精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一区中文字幕在线| 黄色视频,在线免费观看| 黑人欧美特级aaaaaa片| 午夜福利一区二区在线看| 非洲黑人性xxxx精品又粗又长| 一级黄色大片毛片| 一个人观看的视频www高清免费观看 | 美女大奶头视频| 99精品久久久久人妻精品| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频,在线免费观看| 91老司机精品| 国产精品免费一区二区三区在线| 法律面前人人平等表现在哪些方面| 黑人巨大精品欧美一区二区蜜桃| 男人的好看免费观看在线视频 | 精品久久久精品久久久| 亚洲精品美女久久久久99蜜臀| 熟女少妇亚洲综合色aaa.| 97碰自拍视频| 国产精品美女特级片免费视频播放器 | 俄罗斯特黄特色一大片| 夜夜躁狠狠躁天天躁| 国产不卡一卡二| 国产成人一区二区三区免费视频网站| 亚洲成人久久性| 久久天躁狠狠躁夜夜2o2o| 熟妇人妻久久中文字幕3abv| 亚洲性夜色夜夜综合| 午夜免费鲁丝| 国产成年人精品一区二区| 国产精品久久电影中文字幕| 国产又爽黄色视频| 亚洲成国产人片在线观看| 日本免费一区二区三区高清不卡 | www.自偷自拍.com| 精品熟女少妇八av免费久了| 在线观看免费视频日本深夜| av超薄肉色丝袜交足视频| 亚洲一区二区三区不卡视频| 露出奶头的视频| 50天的宝宝边吃奶边哭怎么回事| 午夜福利,免费看| 精品日产1卡2卡| 午夜免费成人在线视频| 麻豆国产av国片精品| 又紧又爽又黄一区二区| 一级,二级,三级黄色视频| 欧美绝顶高潮抽搐喷水| 日韩欧美免费精品| 一本综合久久免费| 欧美日韩亚洲综合一区二区三区_| 亚洲 欧美一区二区三区| 日韩欧美一区二区三区在线观看| 欧美另类亚洲清纯唯美| 久久狼人影院| 亚洲欧美精品综合久久99| 久久欧美精品欧美久久欧美| 非洲黑人性xxxx精品又粗又长| 色哟哟哟哟哟哟| 久久精品91无色码中文字幕| 国产精品一区二区精品视频观看| 久久精品国产亚洲av高清一级| 亚洲国产日韩欧美精品在线观看 | 国产麻豆69| 亚洲第一av免费看| 热99re8久久精品国产| 久久婷婷成人综合色麻豆| 视频在线观看一区二区三区| 久久国产精品影院| 久久精品91无色码中文字幕| 一二三四在线观看免费中文在| 18禁美女被吸乳视频| 亚洲午夜理论影院| 大陆偷拍与自拍| 一区二区三区国产精品乱码| 长腿黑丝高跟| 九色国产91popny在线| 久热这里只有精品99| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 性欧美人与动物交配| 精品人妻1区二区| 三级毛片av免费| 老司机靠b影院| 在线观看免费日韩欧美大片| 夜夜看夜夜爽夜夜摸| 18美女黄网站色大片免费观看| 美女国产高潮福利片在线看| 亚洲国产精品成人综合色| 国产精品亚洲美女久久久| 国产精品爽爽va在线观看网站 | 色老头精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 国产精品亚洲av一区麻豆| 韩国精品一区二区三区| 在线观看免费午夜福利视频| 精品电影一区二区在线| x7x7x7水蜜桃| 亚洲美女黄片视频| 大码成人一级视频| 久久狼人影院| 国产精品永久免费网站| 国产私拍福利视频在线观看| xxx96com| 在线天堂中文资源库| 午夜免费鲁丝| av有码第一页| 精品卡一卡二卡四卡免费| 国产成人精品在线电影| 国产精品亚洲美女久久久| 丝袜在线中文字幕| 国产成人影院久久av| 亚洲精品一卡2卡三卡4卡5卡| 性色av乱码一区二区三区2| 色综合婷婷激情| 在线天堂中文资源库| 97超级碰碰碰精品色视频在线观看| 久久亚洲真实| 看免费av毛片| 丁香欧美五月| 免费在线观看黄色视频的| 日韩精品中文字幕看吧| 女生性感内裤真人,穿戴方法视频| 精品日产1卡2卡| 欧美一区二区精品小视频在线| 久久久久久久久久久久大奶| 色播在线永久视频| av在线播放免费不卡| 一级作爱视频免费观看| 成年版毛片免费区| 国产一区二区激情短视频| 日本在线视频免费播放| 人人妻人人澡欧美一区二区 | 亚洲精品在线美女| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 国产 在线| 女警被强在线播放| 乱人伦中国视频| 国内精品久久久久久久电影| 美女大奶头视频| 老司机福利观看| 亚洲精品久久成人aⅴ小说| 国产精品久久电影中文字幕| 国产一卡二卡三卡精品| 午夜免费鲁丝| 久久精品人人爽人人爽视色| 国产精品亚洲美女久久久| 男女之事视频高清在线观看| 国语自产精品视频在线第100页| 中国美女看黄片| 亚洲国产高清在线一区二区三 | av片东京热男人的天堂| 美女免费视频网站| svipshipincom国产片| 国产一卡二卡三卡精品| 精品国内亚洲2022精品成人| 亚洲狠狠婷婷综合久久图片| 日韩国内少妇激情av| 欧美在线一区亚洲| 久久香蕉精品热| 好男人在线观看高清免费视频 | 一个人免费在线观看的高清视频| 日韩国内少妇激情av| 色播亚洲综合网| 黑人巨大精品欧美一区二区mp4| 国产成人影院久久av| 国产一区二区三区视频了| 亚洲色图 男人天堂 中文字幕| 亚洲成人久久性| 久久久精品国产亚洲av高清涩受| 国产成人系列免费观看| 欧美中文综合在线视频| 亚洲av美国av| 亚洲av片天天在线观看| 日本a在线网址| 国产精品1区2区在线观看.| 十八禁人妻一区二区| 国产成人欧美| 日本vs欧美在线观看视频| 在线视频色国产色| 久久久久精品国产欧美久久久| 88av欧美| 成人精品一区二区免费| 亚洲七黄色美女视频| 国产精品一区二区精品视频观看| 成年人黄色毛片网站| 大型黄色视频在线免费观看| 性欧美人与动物交配| 精品一品国产午夜福利视频| 精品久久久久久久久久免费视频| 成人亚洲精品一区在线观看| 日韩精品中文字幕看吧| 青草久久国产| 婷婷精品国产亚洲av在线| 99久久综合精品五月天人人| 1024香蕉在线观看| 国产1区2区3区精品| 精品国产乱码久久久久久男人| 久久狼人影院| 精品久久久久久成人av| 男女床上黄色一级片免费看| 精品国产国语对白av| 两个人视频免费观看高清| 亚洲欧美精品综合一区二区三区| 麻豆国产av国片精品| av天堂在线播放| 久久草成人影院| 午夜福利欧美成人| 亚洲在线自拍视频| 国产精品精品国产色婷婷| 中文字幕精品免费在线观看视频| 久久精品成人免费网站| 亚洲全国av大片| 中文字幕色久视频| 国产精品久久久久久精品电影 | 一区二区三区高清视频在线| 亚洲一区高清亚洲精品| 国产免费av片在线观看野外av| 亚洲情色 制服丝袜| 宅男免费午夜| 亚洲精品国产色婷婷电影| 亚洲中文字幕一区二区三区有码在线看 | 国产精品一区二区免费欧美| av视频免费观看在线观看| 多毛熟女@视频| 丰满的人妻完整版| www.熟女人妻精品国产| 亚洲片人在线观看| 欧美中文综合在线视频| 日韩精品免费视频一区二区三区| 亚洲欧美精品综合久久99| 伊人久久大香线蕉亚洲五| 国产极品粉嫩免费观看在线| 嫩草影视91久久| 日本一区二区免费在线视频| 纯流量卡能插随身wifi吗| tocl精华| 亚洲国产高清在线一区二区三 | 99在线人妻在线中文字幕| 亚洲第一电影网av| 国产不卡一卡二| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网| 精品熟女少妇八av免费久了| 妹子高潮喷水视频| 在线观看免费日韩欧美大片| 一边摸一边做爽爽视频免费| 久久亚洲真实| 欧美日韩瑟瑟在线播放| 国内毛片毛片毛片毛片毛片| 99久久99久久久精品蜜桃| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美| 精品国产美女av久久久久小说| 亚洲男人的天堂狠狠| 日本 av在线| √禁漫天堂资源中文www| 国产欧美日韩一区二区三| 亚洲情色 制服丝袜| 国产精品九九99| 亚洲av片天天在线观看| 久久中文字幕人妻熟女| 国产亚洲精品av在线| 免费观看人在逋| www日本在线高清视频| 亚洲av熟女| 亚洲最大成人中文| 久久精品国产亚洲av高清一级| 精品国产国语对白av| 久久中文字幕人妻熟女| 国产精品亚洲美女久久久| 黄频高清免费视频| 国产免费男女视频| 日本免费a在线| 欧美精品啪啪一区二区三区| 一个人观看的视频www高清免费观看 | 精品熟女少妇八av免费久了| www.自偷自拍.com| 极品人妻少妇av视频| 亚洲欧美日韩无卡精品| 最新在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美精品综合一区二区三区| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| 色综合亚洲欧美另类图片| 亚洲欧美精品综合久久99| 女人高潮潮喷娇喘18禁视频| 后天国语完整版免费观看| 亚洲成人免费电影在线观看| 久久性视频一级片| 12—13女人毛片做爰片一| 18禁黄网站禁片午夜丰满| 国产精品久久久久久亚洲av鲁大| 午夜老司机福利片| av中文乱码字幕在线| 性少妇av在线| 波多野结衣av一区二区av| 欧美一级毛片孕妇| 午夜a级毛片| 级片在线观看| 男女床上黄色一级片免费看| 久久国产亚洲av麻豆专区| 日韩视频一区二区在线观看| 无限看片的www在线观看| 亚洲国产精品成人综合色| 麻豆成人av在线观看| 久久午夜亚洲精品久久| 麻豆久久精品国产亚洲av| 黄色片一级片一级黄色片| 人人妻人人澡欧美一区二区 | 美女大奶头视频| √禁漫天堂资源中文www| 久久中文看片网| 国产精品电影一区二区三区| 嫩草影院精品99| www日本在线高清视频| 日韩大码丰满熟妇| 一区二区三区高清视频在线| 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| 黑人欧美特级aaaaaa片| av视频在线观看入口| 国产一区二区三区视频了| 成熟少妇高潮喷水视频| 成人亚洲精品一区在线观看| 亚洲欧美激情在线| 精品欧美一区二区三区在线| 美女高潮到喷水免费观看| 麻豆成人av在线观看| 首页视频小说图片口味搜索| 国产一区二区三区综合在线观看| 美女国产高潮福利片在线看| 精品无人区乱码1区二区| 欧美黄色片欧美黄色片| 日韩精品中文字幕看吧| 久久这里只有精品19| 国产不卡一卡二| 黄片播放在线免费| 午夜福利免费观看在线| 熟妇人妻久久中文字幕3abv| 久久久久久久久久久久大奶| 夜夜看夜夜爽夜夜摸| bbb黄色大片| 日韩精品免费视频一区二区三区| 精品久久久久久久久久免费视频| 在线天堂中文资源库| 好看av亚洲va欧美ⅴa在| 久久中文字幕一级| 手机成人av网站| 色精品久久人妻99蜜桃| av免费在线观看网站| 亚洲五月天丁香| 少妇 在线观看| 高清毛片免费观看视频网站| 变态另类成人亚洲欧美熟女 | 国产免费男女视频| 欧美成人性av电影在线观看| 在线观看66精品国产| 免费在线观看黄色视频的| 国产又爽黄色视频| 国产成人av激情在线播放|