• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Capillary-gravity ship wave patterns *

    2017-11-02 09:09:15HuiLiangXiaoboChen

    Hui Liang, Xiaobo Chen,2

    1. Deepwater Technology Research Centre (DTRC), Bureau Veritas, Singapore,

    E-mail: hui.liang@sg.bureauveritas.com

    2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    (Received June 6, 2017, Revised July 31, 2017)

    Capillary-gravity ship wave patterns*

    Hui Liang1, Xiaobo Chen1,2

    1. Deepwater Technology Research Centre (DTRC), Bureau Veritas, Singapore,

    E-mail: hui.liang@sg.bureauveritas.com

    2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    (Received June 6, 2017, Revised July 31, 2017)

    Ship wave pattern is a fascinating research topic in the fields of marine hydrodynamics and water waves. Within the pure-gravity wave theory, the ship wave pattern composed of transverse waves and divergent waves appearing on the downstream is confined within a sector symmetrical about the ship track with a half-angle 19o28′. However, when the surface tension is accounted for, the wave pattern is greatly modified especially at a low translating speed. Besides the minimum speed of capillary waves cmin=0.23m/s below which waves cannot be generated, there is another critical speed cdiv=0.45m/s associated with the disappearance of divergent waves. In the present paper, the wave patterns created by a steadily translating source are studied, and they are examined with the crestlines obtained from the asymptotic analysis.

    Ship waves, wave pattern, gravity-dominant waves, capillarity-dominant waves

    Introduction

    When a body (surface piecing or submerged) or a pressure patch steadily translates in calm water,free-surface waves are generated and they are referred to as “Kelvin ship waves”[1]. The Kelvin ship wave pattern composed of transverse waves and divergent waves is confined within a wedgeof half angle equal to 19o28′, and this angle is referred to as“Kelvin capillarity-dominant waves on the upstream. On the downstream,the pattern of gravity-dominant waves is close to the classical pure-gravity ship wavesat a high advancing speed. At a low travelling speed, however,the difference is obvious. A striking feature is that there is a critical speed cmin=0.23m/s belowon the upstream[2].

    Furthermore, there is another critical speed cdiv=0.45m/s which was firstly mentioned by Binnie[11]. Features of far-field ship wave patterns across the critical speedcdivhave been investigated recently[7-9]. When the travelling speedis greater than cdiv=0.45m/s, the gravity-dominant wave pattern is composed of three wave systems including: transverse waves, divergent waves and fan waves. At the critical speedcdiv=0.45m/s, divergent waves disappear just right, and transverse waves and fan waves are connected. When the speed is less than cdiv=0.45m/s but greater than cmin=0.23m/s,new transverse-fan wave system[9].

    In the present article, the capillary-gravity ship wave patterns generated by a translating source are studied, and numerical examples across the critical angle” which can be expounded by the stationary phase analysis[2].Recently, more sophisticated cases are also considered[3-5].

    In the water wave theory, the surface tension effect is usually ignored, because it is only significant to very short waves with wavelength in the order of centimeters[6]. However, the ship wave pattern accounting for the surface tension effect can be totally different from the classical Kelvin ship wave pattern predicted by the pure-gravity wave theory[7-9], and this difference is noted as early as Lamb[10].When the surface tension effect is accounted for, there exist speed cdivare demonstrated. The layout of the paper is as follows. The basic equations are firstly presented.Then, the fundamental solution for the steady capillary-gravity ship wave problem based on the Fourier transform is formulated. Finally, numerical implementations are made to study the features of the wave patterns for different travelling speeds.

    1. Basic equations

    A frame of reference OXYZ translating with the object at the forwardspeed U in the direction of the positive X-axis is defined with theXY plane coincidingwith the undisturbed free surface and Z-axis orienting positively upwards. Weassume the fluid inviscid, incompressible and flow irrotational so that thevelocity potential exists.

    For the sake of simplicity, we define the nondimensional coordinates (x,y,z ), Fourier coordinates(α,β) and velocity potentialφ as following:

    whereL denotes the reference length. In addition,the non-dimensional Froude number Fr associated with the travelling speed is defined as

    whereg represents the acceleration of gravity. Then,the linearized free-surface boundary condition in anon-dimensional form is expressed

    In (5),σ denotes a parameter associated with the surface tension effect which is defined as

    2. Fundamental solution

    In this section, we are concerned with the fundamental solution to the capillary-gravity ship wave problem, which is also referred to as the capillary-gravity ship wave Green function. The capillary-gravity ship wave Green function is useful in constructing the boundary integral equation which can be used to study the wave-resistance and wave patterns generated by a translating body or a pressure patch. Usually, the expression of Green function takes the form of

    where denotes the distance between the field point(x,y,z ) and the source point (ξ,η,ζ), and the term Gaccounting for the free-surface wavy effect is accompanied to make sure the potential φ satisfies the free-surface boundary condition given by (5). Here,the potentialφ satisfies

    whileG is harmonic in the fluid and satisfies the Laplace equation

    We suppose that the source point locates on the axis which means that ξ=0 and η=0 without loss of generality. In (7), expression 1/r representing the source potentialin theinfinite fluidcan bewritten in the form of a double Fourier

    Performing Fourier transform to velocity potential as conducted in Ref.[2] yields

    where the operator F denotes the Fourier transform.Its inverse Fourier transform is

    Performing the Fourier transform to the free-sur-face boundary condition yields

    where the Fourier transform of 1/r is expressed as

    Recalling the Laplace equation ▽2G=0, its Fourier transform is

    Accounting for the fact that the disturbance disappears at a large depth, the solution to (15) is in the form of

    By introducing (14) and (16) into (13), we can obtain the expression of A(α,β)

    By substituting (17) into (16) and performing inverse Fourier transform as conducted in (12), we can obtain the expression of G

    As a consequence, the capillary-gravity ship wave Green function is written as

    In (19),r′ represents the distance between the field point and the mirror source point above the free surface. The first two terms on the right-hand side of(19) are often called Rankine part of Green function.An equivalent expression of φ with 1/r - 1/r′ as the Rankine part is usually given in the case of pure-gravity ship waves. We prefer (19) here since the integrand in the double Fourier integral behaves as O (1 /k) ask→∞.

    By converting the Cartesian Fourier coordinates to polar Fourier coordinates, representation (19) becomes

    We define the denominator of the integrand in above double Fourier integral as dispersion function which is associated with the linear free-surface boundary condition (5) and expressed as

    The dispersion equation D(α,β)=0 gives two closed dispersion curves symmetrical about axes α=0 and β=0 by:

    where kGand kTdenote the gravity-dominant and capillarity-dominant wavenumbers[13], respectively.

    The dispersion relation described by these curves ties up with far-field waves. As described in Ref.[14],the close relationship reveals that kinematic behaviours including phase and group velocities, crestlines,cusp angles, etc can be determined by the geometrical property of dispersion curves. In Ref.[9], the analysis of the dispersion relation defined by (23) on the Fourier plane has been carried out. For pure-gravity ship waves, there are also two dispersion curves which are open, i.e., the wavenumber tends to infinity.However, when the surface tension effect is accounted for, the dispersion curves are closed with a minimum wavenumber and a finite maximum wavenumber.Each dispersion curve can be divided intotwo parts[15]:gravity-dominant dispersion part and capillaritydominant dispersion part corresponding to gravitydominant waves and capillarity-dominant waves,respectively. When the travelling speed is equal to the minimum speed of capillary waves cmin=0.23m/s,the dispersion curve reduces to an isolated point at(2,0), which means that far-field waves totally disappear and no wave exists[15].

    For the gravity-dominant dispersion curve, according to the asymptotic analysis in Ref.[9], constitution of gravity-dominant wave pattern is determined by the number of inflection points along the gravitydominant dispersion curve. When the speed is greater than cdiv=0.45m/s (or σ<0.133), there are two inflection pointsdividingthegravity-dominant dispersion curve intothreesegmentswhich correspond to transverse waves, divergent waves and fan waves, respectively. At the critical speed cdiv=0.45m/s (or σ=0.133), two inflection points coincide, and the coalesced inflection point divides the gravity-dominant dispersion curve into two segments. In this scenario, divergent waves associated with the segment between two inflection points disappear, and transverse waves and fan waves joint together. When thespeed is less than cdiv=0.45m/s but larger than cmin=0.23m/s(0.133< σ <0.5), there is no inflection point along the gravity-dominant dispersion curve, and transverse waves and divergent waves are merged to the transverse-fan wave system.

    Expression (20) represents the capillary-gravity ship wave Green function consisting of the source term (1/r), image source term (1/r′)and the free-surface term (G) expressed by a double Fourier integral which provides the wavy properties. For the efficient and accurate computation of the double Fourier integral in (20), we first of all consider the inner k-integral. Unlike the ship wave Green function ignoring the surface tension effect, there are two poles in the denominator of (20) associated with two characteristic wavenumberskGand kTgiven by (22).

    Fig.1 (Color online) Sketch of the integration contours passing by poles kG and kT

    In order to identify the integration path passing by the poles given by (22), we introduce a small parameter following the weakly-damped free-surfaceflowto satisfy the radiation condition in the far field. As a consequence, the integration contour passes by the polefrom below while it goes acrossfrom above as depicted in Fig.1. By changing the integration contour on the complex kplane and applying Cauchy's theorem of residue, we can decompose the capillary-gravity ship wave Green function into two parts. One is the wave component in the form of a single integral with respect toθ which is dominant in the far field, and the other one is local component in the form of a double integralwith respect to both k and θ[17].

    Furthermore, for the local component in the form of double integral, the integral with respect tok can be represented by the complex exponential-integral function. Finally, the capillary-gravity ship wave Green function can be represented fully by a single integral with respect toθ, and the single integral can be evaluated using the numerical quadrature rule in an efficient and accurate way.

    3. Numerical implementations and wave patterns

    In the present section, the capillary-gravity ship wave patterns generated by a steadily translating source are studied, and the numerically evaluated wave patternis compared with the far-field crestlines obtained from the asymptotic analysis[9].

    In Fig.2, the classical pure-gravity ship wave pattern ignoring the surface tension effect is firstly investigated. On the upper part of Fig.2, the plan view of the free-surface profile induced by a submerged steadily translating source located at (0,0,-0.2) is presented.The wake pattern obviously consists of transverse waves and divergent waves.Both wave systems are confined within a cusp line with Kelvin angle. The far-field crestlines are plotted on the lower part of the figure in which the phase jump of π/2 between two wave systems along the cusp line is omitted as in Ref.[18].

    Fig.2 (Colo r onl ine ) Pu re-gravity sh ip wav e pattern.Upper part: reliefp lotof thefree -surfacep rofilegenerated by a tran- slatingpointsourcelocatingat (x,y,z) =(0,0,-0.2). Lower part: crestlines obtained from the asymptotic ana- lysis

    Then, we consider the capillary-gravity ship wave patterns for different translating velocities.Figure 3 depicts the free-surface profile generated by a travelling source with the same submergence as in Fig.2 on the upper part and far-field wave creastlines on the lower part at σ=0.06. In this scenario, the translating speed isU=0.67m/s which is larger than the critical speedcdiv=0.45m/s, and thus the gravity-dominant wave pattern is composed of three wave systems including transverse waves, divergent waves and fan waves as illustrated on the lower part of Fig.3. On the upper part where the wave profile is exhibited, however, the contour lines at large polar angles are not smooth. In this region, fan waves and capillarity-dominant waves extending to infinity are present. Therefore, the non-smooth contour lines are caused by the interference between different wave systems.

    Fig.3 (Color online) Capillary-gravity ship wave pattern for σ=0.06 at which Fr =0.21 and U=0.67m/s>cdiv. Up pe r part: relief plot of the free -surface p rofile generated byatransla tingpo ints ourceloca tingat (x,y ,z)=(0,0,-0.2).Lowerpart:crestlinesobtainedfromthe asymptotic analysis

    In Fig.4, the case at the translating speed equal to is considered. The numerically calculated wave pattern is presented on the upper part while the crestlines obtained from the asymptotic analysis are plotted on the lower part. From the asymptotic analysis conducted in Ref.[9], the divergent waves disappear just right while transverse waves and fan waves joint together as depicted on the lower part of the figure. On the upper part, divergent waves are also invisible, and the contours of the gravitydominant waves are smooth which is different from Fig.3. In addition, the capillarity-dominant waves with very short wavelength are observed.

    Figure 5 displays the free-surface profile and the=0.45m/s corresponding far-field wave crestlines for =0.4σ at which the translating speed is 0.26 m/s less thanthis numerical example, the transverse waves and fan waves are merged to a new wave system referred to as transverse-fan waves, and this wave system is curved and extends smoothly outwards. The wave pattern generated by the translating source exhibited on the upper part is consistent with the crestlines plotted on the lower part with very obvious capillarity-dominant waves.

    Fig.4 (Color online) Capillary-gravity ship wave pattern for=0.133 σ at which =0.14 Fr and div= =U c file generated by a translating point source locating at 0.45m/s . Upper part: relief plot of the free-surface pro-(,,)=(0,0,0.2)xyz -. Lower part: crestlines obtained from the asymptotic analysis

    Fig.5 (Color online) Capillary-gravity ship wave pattern foratw hich =0.083 andU=0.26m/s<pper part: relief plot of the free-surfa ce profile ge- nerated bya transla ting point sourcelo cating at.Lower part:crestlinesobtained from the asymptotic analysis

    4. Conclusion

    In the present article, the capillary-gravity ship wave patterns generated by a steadily translating source are numerically studied for various travelling speeds across the critical speed cdiv=0.45m/s through formulating the free-surface Green function.Generally, the numerical calculation is consistent with the wave crestlines obtained from the asymptotic analysis. When the translating speed is greater than the critical speed cdiv=0.45m/s, fan waves are present and they pass through the region where transverse waves and divergent waves appear. So, the interference occurs between these wave systems resulting in non-smooth contours of the wave pattern.As the speed is less thancdiv=0.45m/s but larger thancmin=0.23m/s, the resultant transverse-fan wave pattern is curved and extends smoothly outwards.

    Acknowledgements

    The first author is indebted to Prof. Zhi Zong for his supervision on anearlywork of the subject when the first author was studying in Dalian University of Technology.

    [1] Dias F. Ship waves and Kelvin [J]. Journal of Fluid Mechanics, 2014, 746: 1-4.

    [2] Lighthill J. Waves in fluids [M]. Cambridge, UK: Cambridge University Press, 1960.

    [3] Ellingsen S. A. Ship waves in the presence of uniform vorticity [J]. Journal of Fluid Mechanics, 2013, 742: R2.

    [4] Zhu Y., He J., Zhang C. et al. Farfield waves created by a monohull ship in shallow water [J]. European Journal of Mechanics-B/Fluids, 2015, 49: 226-234.

    [5] Pethiyagoda R., McCue S. W., Moroney T. J. et al.Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns [J].Journal of Computational Physics, 2014, 269(10):297-313.

    [6] Faltinsen O. M. Hydrodynamics of high-speed marine vehicles [M]. Cambridge, UK: Cambridge University Press, 2005.

    [7] Doyle T. B., McKenzie J. F. Stationary wave patterns in deep water [J]. Quaestiones Mathematicae, 2013, 36(4):487-500.

    [8] Moisy F., Rabaud M. Mach-like capillary-gravity wakes[J]. Physical Review E, 2014, 90(2): 023009.

    [9] Liang H., Chen X. Far-field behaviours of steady capillary-gravity ship waves [C]. The 32nd International Workshop on Water Waves and Floating Bodies. Dalian,China, 2017.

    [10] Lamb H. Hydrodynamics [M]. Sixth Edition. Cambridge,UK: Cambridge University Press, 1932.

    [11] Binnie A. M. Solutions of the fish-line problem at intermediate velocities [J]. British Journal of Applied Physics,1965, 16(11): 1755-1758.

    [12] Gradshtejn I. S., Ryzhik I. M. Table of integrals, series and products [M]. New York, USA: Academic Press, 1965.

    [13] Crapper G. D. Surface waves generated by a travelling pressure point [J]. Proceedings of the Royal Society London, 1964, 282(1391): 547-558.

    [14] Chen X. B., Noblesse F. Dispersion relation and far-field waves [C]. The 12th International WorkshoponWater Waves and Floating Bodies. Carry le Rouet, France, 1997.

    [15] Chen X. B. Analytical features of unsteady ship waves(Chwang A. T., Teng M. H., Valentine D. T. Advances in Engineering Mechanic–Reflections and outlook [M].Singapore: World Scientific, 2004, 371-389.

    [16] Dias F., Dyachenko A. I., Zakharov V. E. Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions [J]. Physics Letters A, 2008,372(8): 1297-1302.

    [17] Noblesse F., Chen X. B. Decomposition of free-surface effects into wave and near-field components [J]. Ship Technology Research, 1995, 42: 167-185.

    [18] Noblesse F., He J., Zhu Y. Why can ship wakes appear narrower than Kelvin's angle?[J]. EuropeanJournal of Mechanics-B/Fluids, 2014, 46: 164-171.

    * Biography: Hui Liang (1988-), Male, Ph. D.,Research Engineer

    Xiaobo Chen,

    E-mail: xiao-bo.chen@bureauveritas.com

    毛片一级片免费看久久久久 | 美女被艹到高潮喷水动态| 亚洲美女搞黄在线观看 | 欧美性猛交╳xxx乱大交人| 噜噜噜噜噜久久久久久91| 一夜夜www| 日日干狠狠操夜夜爽| 深爱激情五月婷婷| 麻豆国产97在线/欧美| 亚洲电影在线观看av| 国产精品一区二区性色av| 日本与韩国留学比较| 男人舔女人下体高潮全视频| 婷婷六月久久综合丁香| 床上黄色一级片| 91久久精品国产一区二区成人| 美女cb高潮喷水在线观看| 亚洲五月天丁香| 十八禁人妻一区二区| 高清毛片免费观看视频网站| 欧美色视频一区免费| 国产人妻一区二区三区在| 一级黄片播放器| 精品午夜福利视频在线观看一区| 亚洲久久久久久中文字幕| 国产av一区在线观看免费| 啦啦啦观看免费观看视频高清| 亚洲中文日韩欧美视频| 成年版毛片免费区| 少妇被粗大猛烈的视频| 欧美成人一区二区免费高清观看| 成年免费大片在线观看| 99国产精品一区二区三区| 国产男靠女视频免费网站| a级毛片免费高清观看在线播放| 午夜老司机福利剧场| 国产久久久一区二区三区| 757午夜福利合集在线观看| 日韩欧美精品v在线| 国内毛片毛片毛片毛片毛片| 成熟少妇高潮喷水视频| 一级黄色大片毛片| 亚洲自偷自拍三级| 亚洲成人久久爱视频| 成人一区二区视频在线观看| 色哟哟哟哟哟哟| 国产不卡一卡二| 精品一区二区三区人妻视频| 99热精品在线国产| 真人做人爱边吃奶动态| 99久久99久久久精品蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 伦理电影大哥的女人| 很黄的视频免费| 欧美日本亚洲视频在线播放| 色在线成人网| 美女高潮喷水抽搐中文字幕| 五月玫瑰六月丁香| 免费看美女性在线毛片视频| 亚洲成人久久爱视频| 色尼玛亚洲综合影院| 久久久久久久久久成人| 91午夜精品亚洲一区二区三区 | 国产精品免费一区二区三区在线| 日本免费a在线| 久久久国产成人免费| 在线看三级毛片| 丰满人妻熟妇乱又伦精品不卡| 窝窝影院91人妻| 熟女电影av网| 国产不卡一卡二| 国产精品一区二区三区四区久久| 亚洲精品粉嫩美女一区| or卡值多少钱| 嫁个100分男人电影在线观看| 色视频www国产| 看免费av毛片| 国产精品乱码一区二三区的特点| 波多野结衣高清无吗| 最新中文字幕久久久久| 久久久久久国产a免费观看| 综合色av麻豆| 在线观看午夜福利视频| 欧美色欧美亚洲另类二区| 久久久久免费精品人妻一区二区| 3wmmmm亚洲av在线观看| 男插女下体视频免费在线播放| 一本精品99久久精品77| 97碰自拍视频| 两个人视频免费观看高清| 免费黄网站久久成人精品 | 美女cb高潮喷水在线观看| 亚洲人成网站高清观看| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女| 校园春色视频在线观看| 亚洲电影在线观看av| АⅤ资源中文在线天堂| 国产亚洲欧美98| 99国产精品一区二区三区| 精品国产三级普通话版| 国产淫片久久久久久久久 | 日韩欧美三级三区| 欧美色欧美亚洲另类二区| 99国产精品一区二区三区| 日本 av在线| 18美女黄网站色大片免费观看| 天堂影院成人在线观看| 久久欧美精品欧美久久欧美| 天天躁日日操中文字幕| 看免费av毛片| av国产免费在线观看| 国产精品久久久久久人妻精品电影| 亚洲不卡免费看| 夜夜看夜夜爽夜夜摸| 深夜精品福利| 制服丝袜大香蕉在线| 久久性视频一级片| 观看免费一级毛片| 激情在线观看视频在线高清| 欧美黑人欧美精品刺激| x7x7x7水蜜桃| 亚洲经典国产精华液单 | 国产精品人妻久久久久久| 亚洲乱码一区二区免费版| 69人妻影院| 久久伊人香网站| 一区二区三区激情视频| av在线天堂中文字幕| 亚洲av不卡在线观看| 国语自产精品视频在线第100页| 他把我摸到了高潮在线观看| 国产成人av教育| 日日摸夜夜添夜夜添av毛片 | 夜夜爽天天搞| 国产伦精品一区二区三区四那| 2021天堂中文幕一二区在线观| 国产伦人伦偷精品视频| 日韩欧美国产在线观看| 精品国产亚洲在线| 日本免费a在线| 久久久久精品国产欧美久久久| 悠悠久久av| 国产精品自产拍在线观看55亚洲| 欧美国产日韩亚洲一区| 神马国产精品三级电影在线观看| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区av网在线观看| 精品久久久久久,| 久久天躁狠狠躁夜夜2o2o| 中文字幕久久专区| 国产不卡一卡二| 午夜免费激情av| 国产精品野战在线观看| 亚洲国产精品sss在线观看| 日本 欧美在线| 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| 国内少妇人妻偷人精品xxx网站| 久久久国产成人免费| 午夜精品一区二区三区免费看| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 久久精品影院6| 精品欧美国产一区二区三| 亚洲人成网站高清观看| 久久久久国产精品人妻aⅴ院| 女同久久另类99精品国产91| 午夜日韩欧美国产| 国产三级中文精品| 99在线人妻在线中文字幕| 俺也久久电影网| 校园春色视频在线观看| 亚洲三级黄色毛片| 中文亚洲av片在线观看爽| 国产一区二区在线观看日韩| 一个人免费在线观看电影| 日韩高清综合在线| 97超级碰碰碰精品色视频在线观看| 宅男免费午夜| 嫩草影院新地址| 免费在线观看成人毛片| av在线老鸭窝| 一级黄色大片毛片| 一区福利在线观看| а√天堂www在线а√下载| 麻豆av噜噜一区二区三区| 免费在线观看日本一区| 国产精品一区二区性色av| 丰满的人妻完整版| 桃色一区二区三区在线观看| 999久久久精品免费观看国产| 黄色视频,在线免费观看| 精品人妻一区二区三区麻豆 | 久久精品国产亚洲av天美| 精品一区二区三区人妻视频| 欧美日韩乱码在线| 国产精品野战在线观看| 一a级毛片在线观看| 日韩亚洲欧美综合| 99久久九九国产精品国产免费| 五月玫瑰六月丁香| 欧美国产日韩亚洲一区| 亚洲国产精品999在线| 亚洲av免费高清在线观看| 国产免费男女视频| 国产亚洲欧美在线一区二区| av在线老鸭窝| 精品久久久久久,| 在现免费观看毛片| 国产黄片美女视频| 欧美日韩乱码在线| 久久久久久久久中文| 精品国产三级普通话版| 欧美中文日本在线观看视频| 国产爱豆传媒在线观看| a在线观看视频网站| 9191精品国产免费久久| 长腿黑丝高跟| av黄色大香蕉| 精华霜和精华液先用哪个| 国产精品嫩草影院av在线观看 | 夜夜看夜夜爽夜夜摸| 国内毛片毛片毛片毛片毛片| 日日摸夜夜添夜夜添小说| avwww免费| 一进一出抽搐动态| 欧美三级亚洲精品| 夜夜爽天天搞| 一个人看视频在线观看www免费| 欧美黄色片欧美黄色片| 99久久精品国产亚洲精品| 亚洲成人免费电影在线观看| 天天躁日日操中文字幕| 9191精品国产免费久久| 麻豆国产97在线/欧美| 精品久久久久久成人av| 男人舔奶头视频| 99riav亚洲国产免费| 久久久久久久久久成人| 成人特级av手机在线观看| 直男gayav资源| av天堂在线播放| 禁无遮挡网站| 一级黄色大片毛片| 搡老妇女老女人老熟妇| 在线播放无遮挡| 亚洲精品色激情综合| 亚洲欧美精品综合久久99| 91久久精品电影网| 午夜免费激情av| 99国产精品一区二区三区| 色哟哟·www| 高清在线国产一区| 婷婷色综合大香蕉| 国产视频内射| 亚洲一区二区三区色噜噜| 变态另类丝袜制服| 日韩 亚洲 欧美在线| 老熟妇乱子伦视频在线观看| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 五月玫瑰六月丁香| 亚洲第一电影网av| 欧美bdsm另类| 99久国产av精品| 国产乱人视频| 亚洲国产色片| 亚洲第一区二区三区不卡| 一区二区三区四区激情视频 | 久久亚洲真实| 黄色一级大片看看| 天美传媒精品一区二区| 人人妻人人看人人澡| 久久久久久久久久黄片| 99久久成人亚洲精品观看| 久久国产乱子伦精品免费另类| 别揉我奶头~嗯~啊~动态视频| 一个人看的www免费观看视频| 噜噜噜噜噜久久久久久91| 婷婷丁香在线五月| 看十八女毛片水多多多| 五月玫瑰六月丁香| 日本三级黄在线观看| 国产野战对白在线观看| 国内精品久久久久久久电影| 日韩免费av在线播放| 一边摸一边抽搐一进一小说| 国产乱人伦免费视频| 免费看美女性在线毛片视频| 天堂av国产一区二区熟女人妻| 亚洲激情在线av| 99久国产av精品| 神马国产精品三级电影在线观看| 51国产日韩欧美| 色哟哟哟哟哟哟| 97热精品久久久久久| 一个人看视频在线观看www免费| 亚洲av日韩精品久久久久久密| 精品一区二区三区av网在线观看| 99热只有精品国产| 十八禁国产超污无遮挡网站| 亚洲激情在线av| 中文字幕免费在线视频6| av天堂在线播放| 国产美女午夜福利| 亚洲 国产 在线| 一本一本综合久久| 久久香蕉精品热| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| 国产精品日韩av在线免费观看| 亚洲在线自拍视频| 亚洲精品色激情综合| 精品久久久久久久久久久久久| 一级a爱片免费观看的视频| 99久久精品国产亚洲精品| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 亚洲五月婷婷丁香| 国产极品精品免费视频能看的| 一边摸一边抽搐一进一小说| 久久国产精品影院| 一边摸一边抽搐一进一小说| 99视频精品全部免费 在线| 毛片一级片免费看久久久久 | 国产一区二区三区视频了| 99riav亚洲国产免费| .国产精品久久| 亚洲欧美日韩卡通动漫| 成人永久免费在线观看视频| 深爱激情五月婷婷| 内射极品少妇av片p| 舔av片在线| 麻豆一二三区av精品| 欧美精品国产亚洲| 中文字幕久久专区| 色哟哟·www| 精品国内亚洲2022精品成人| 国产一区二区激情短视频| 精品久久久久久久久久免费视频| 五月玫瑰六月丁香| 嫩草影院精品99| 午夜视频国产福利| 综合色av麻豆| 色5月婷婷丁香| 90打野战视频偷拍视频| 91在线观看av| 制服丝袜大香蕉在线| 国产午夜精品论理片| 国产精品精品国产色婷婷| 免费av观看视频| 欧美性猛交黑人性爽| 国产在线男女| 国产av不卡久久| 国产 一区 欧美 日韩| 我的女老师完整版在线观看| 精品久久久久久久久久免费视频| 久久精品影院6| 看免费av毛片| 成人特级av手机在线观看| 真人做人爱边吃奶动态| 乱人视频在线观看| 成人永久免费在线观看视频| 麻豆国产97在线/欧美| 成人欧美大片| a级毛片免费高清观看在线播放| av在线老鸭窝| 变态另类丝袜制服| 成人精品一区二区免费| 国产精品精品国产色婷婷| 91九色精品人成在线观看| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久久久| 国产一区二区三区在线臀色熟女| 国产精品99久久久久久久久| 两个人视频免费观看高清| 黄色一级大片看看| 一边摸一边抽搐一进一小说| 永久网站在线| 日韩 亚洲 欧美在线| 欧美+亚洲+日韩+国产| 美女 人体艺术 gogo| 亚洲精品在线观看二区| 国产69精品久久久久777片| av在线观看视频网站免费| 国产69精品久久久久777片| 久久国产乱子伦精品免费另类| 国产精品伦人一区二区| 国产主播在线观看一区二区| 国产在视频线在精品| 久久久久久久久大av| 又爽又黄a免费视频| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3| 日韩欧美三级三区| 日日摸夜夜添夜夜添小说| 欧美性猛交黑人性爽| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 一个人看视频在线观看www免费| 亚洲七黄色美女视频| 欧美不卡视频在线免费观看| a在线观看视频网站| 999久久久精品免费观看国产| av女优亚洲男人天堂| 每晚都被弄得嗷嗷叫到高潮| 一级黄片播放器| 日本与韩国留学比较| 国产v大片淫在线免费观看| 少妇丰满av| 99热这里只有精品一区| 97超视频在线观看视频| av专区在线播放| 丰满乱子伦码专区| 伊人久久精品亚洲午夜| 久久午夜福利片| 亚洲第一区二区三区不卡| 99精品久久久久人妻精品| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 一进一出好大好爽视频| 免费在线观看日本一区| av在线天堂中文字幕| 在线十欧美十亚洲十日本专区| 天天躁日日操中文字幕| 色哟哟哟哟哟哟| 午夜激情福利司机影院| 美女大奶头视频| 欧美高清性xxxxhd video| 国产私拍福利视频在线观看| 99久久精品一区二区三区| 舔av片在线| 757午夜福利合集在线观看| 欧美成人a在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精华国产精华精| 精品一区二区三区视频在线观看免费| 午夜激情欧美在线| 国产一区二区在线观看日韩| av在线老鸭窝| or卡值多少钱| 白带黄色成豆腐渣| 欧美乱妇无乱码| 91午夜精品亚洲一区二区三区 | 国内精品一区二区在线观看| 一本久久中文字幕| 中文字幕av成人在线电影| 欧美3d第一页| 国产蜜桃级精品一区二区三区| 亚洲在线观看片| 露出奶头的视频| 欧美绝顶高潮抽搐喷水| 十八禁人妻一区二区| 日韩欧美 国产精品| 国内精品久久久久久久电影| 亚洲片人在线观看| av在线老鸭窝| 舔av片在线| 婷婷亚洲欧美| 日韩亚洲欧美综合| 欧美日本亚洲视频在线播放| 国产精品永久免费网站| 哪里可以看免费的av片| 亚洲一区二区三区不卡视频| 97热精品久久久久久| 国产高清视频在线播放一区| 欧美黄色淫秽网站| 国产高清有码在线观看视频| .国产精品久久| 国产亚洲av嫩草精品影院| 嫩草影视91久久| 国产精品久久久久久久久免 | 高清毛片免费观看视频网站| 国产亚洲精品久久久久久毛片| 久久久国产成人免费| 午夜福利高清视频| 熟女人妻精品中文字幕| 亚洲专区中文字幕在线| 亚洲av电影不卡..在线观看| 亚洲熟妇中文字幕五十中出| 久久久久免费精品人妻一区二区| 午夜福利在线观看吧| 国产高潮美女av| 国产亚洲欧美98| 国产免费av片在线观看野外av| 欧美潮喷喷水| 国产黄色小视频在线观看| 99视频精品全部免费 在线| bbb黄色大片| 国产一区二区在线观看日韩| 啦啦啦观看免费观看视频高清| 极品教师在线免费播放| 在线观看免费视频日本深夜| 在线免费观看不下载黄p国产 | 久久亚洲真实| 日本免费一区二区三区高清不卡| 国产精品久久久久久久久免 | 久久伊人香网站| 国产一区二区在线av高清观看| 内射极品少妇av片p| 亚洲欧美清纯卡通| 人人妻,人人澡人人爽秒播| 亚洲国产精品久久男人天堂| 国产成人福利小说| 亚洲国产精品合色在线| 国产欧美日韩一区二区精品| 18禁黄网站禁片免费观看直播| av在线老鸭窝| 在线观看美女被高潮喷水网站 | 色播亚洲综合网| 亚洲电影在线观看av| 桃色一区二区三区在线观看| 免费电影在线观看免费观看| 久久久久免费精品人妻一区二区| 十八禁人妻一区二区| 日本五十路高清| av黄色大香蕉| 一个人免费在线观看的高清视频| 网址你懂的国产日韩在线| 别揉我奶头~嗯~啊~动态视频| 亚洲成人中文字幕在线播放| 啦啦啦观看免费观看视频高清| 搡老妇女老女人老熟妇| 身体一侧抽搐| 亚洲欧美精品综合久久99| 欧美精品国产亚洲| 国内精品一区二区在线观看| 成人av在线播放网站| 亚洲精品成人久久久久久| 国产在线精品亚洲第一网站| 一夜夜www| 我的老师免费观看完整版| 91麻豆av在线| 亚洲熟妇熟女久久| 人妻制服诱惑在线中文字幕| 精品一区二区三区视频在线| 一a级毛片在线观看| 日日夜夜操网爽| 免费搜索国产男女视频| 日本免费一区二区三区高清不卡| 亚洲精品乱码久久久v下载方式| 亚洲内射少妇av| 白带黄色成豆腐渣| 少妇人妻精品综合一区二区 | 性欧美人与动物交配| 五月玫瑰六月丁香| 国产不卡一卡二| 国产色婷婷99| 69人妻影院| 国产高潮美女av| 免费黄网站久久成人精品 | 内射极品少妇av片p| 在现免费观看毛片| 在线观看一区二区三区| 丁香六月欧美| 亚洲av熟女| 久久精品人妻少妇| 精品久久久久久久久久久久久| 黄色视频,在线免费观看| 久久精品91蜜桃| 极品教师在线视频| 国产成人福利小说| 欧美最新免费一区二区三区 | 免费在线观看影片大全网站| 精品久久久久久成人av| 九九热线精品视视频播放| av福利片在线观看| 51国产日韩欧美| 国产91精品成人一区二区三区| 中文资源天堂在线| 亚洲最大成人手机在线| 美女大奶头视频| 亚洲人成网站高清观看| 国产精品自产拍在线观看55亚洲| 亚洲电影在线观看av| 特大巨黑吊av在线直播| 欧美一区二区国产精品久久精品| 在线观看免费视频日本深夜| 欧美中文日本在线观看视频| 国产成人福利小说| 一级黄色大片毛片| 欧美xxxx性猛交bbbb| 宅男免费午夜| 日本熟妇午夜| 亚洲国产精品成人综合色| 小说图片视频综合网站| 成人午夜高清在线视频| 欧美色欧美亚洲另类二区| 18禁黄网站禁片免费观看直播| 又爽又黄a免费视频| АⅤ资源中文在线天堂| 99久久99久久久精品蜜桃| 在线观看美女被高潮喷水网站 | 色视频www国产| 男女做爰动态图高潮gif福利片| 国产av一区在线观看免费| www.999成人在线观看| 18+在线观看网站| 女人十人毛片免费观看3o分钟| 激情在线观看视频在线高清| 一本久久中文字幕| 嫩草影视91久久| 欧美另类亚洲清纯唯美| 亚洲av免费在线观看| 在线国产一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 夜夜看夜夜爽夜夜摸| 非洲黑人性xxxx精品又粗又长| 欧美bdsm另类| 亚洲欧美日韩高清在线视频| 国产精品精品国产色婷婷| 波野结衣二区三区在线| 成人性生交大片免费视频hd|