• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Methyl Isopropyl Ketone and Diethyl Ketone over Ni-Na/ZrO2-MnO2-ZnO Catalyst*

    2011-03-22 10:07:44JIYongjun紀(jì)永軍andYANGJianguo楊建國(guó)
    關(guān)鍵詞:建國(guó)

    JI Yongjun (紀(jì)永軍)** and YANG Jianguo (楊建國(guó))

    Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062, China

    1 INTRODUCTION

    Methyl isopropyl ketone (MIPK) and diethyl ketone (DEK) are important organic chemical raw materials and solvents, which are widely used in producing synthetic dyes, pharmaceutical products, organic solvents,etc[1-4]. Methyl isopropyl ketone can be used to synthesize dye intermediates, extract precious metal tantalum and niobium and so on. Diethyl ketone can be used to synthesize organic materials, and it is also widely used in the pharmaceutical and pesticide industry, as well as many other fields.

    There are several methods to synthesize MIPK and DEK [4-13], but in common industrial applications, there are two main methods: the condensation method based on carboxylic acid or carboxylic acid salt and the aldol condensation method based on aldehydes and ketones. These two methods have many disadvantages. The former one requires high temperature, and while producing ketones, some byproducts containing carbon dioxide and water are released.Therefore, the energy consumption is high. The latter method usually requires three complicated processes,the aldol condensation, the dehydration and the hydrogenation, and the equipment cost is also very high.In recent years, the one-step synthesis of MIPK and DEK by methanol (MeOH) and methyl ethyl ketone(MEK) has attracted wide interests [14-18]. This process can produce the two organic materials MIPK and DEK simultaneously, and meanwhile, it is also advantageous in terms of raw material cost. Therefore, it has a great potential for industrial applications. Luoet al. [17]reported that the catalyst of Pd-Na/ZrO2-MnO2-ZnO showed good catalytic performance on this reaction,but using Pd as the active material was not feasible in industrial production in view of the noble metal cost.

    In this study, we developed the catalyst of Ni-Na/ZrO2-MnO2-ZnO, which possessed multiple functions, including dehydrogenation, aldol condensation, dehydration and hydrogenation. Ni was used as the active material, which reduced greatly the cost of raw materials, and the conversion and selectivity were comparable to that using Pd as the active material.Therefore, this catalyst would have good prospects for industrial application.

    2 EXPERIMENTAL

    2.1 Catalyst preparation

    ZrOCl2·8H2O, 50% of Mn(NO3)2solution and Zn(NO3)2·6H2O were dissolved into the distilled water according to a certain molar ratio (Zr∶Mn∶Zn=2∶2∶1) to get a solution with Zr of 0.4 mol·L-1, Mn of 0.4 mol·L-1and Zn of 0.2 mol·L-1, and then, 0.3 L of the resulted solution was transferred into a round bottom flask. NaOH aqueous solution of 0.3 mol·L-1was employed as the precipitation agent, and it was added dropwise until the solution pH reached 9. The resulting solution was firstly stirred at 82 °C for 4 h,then filtered, and the cake was washed with distilled water till neutral. After drying at 120 °C for 16 h and further calcined at 450 °C for 4 h in air, 31 g of Zr-Mn-Zn mixed oxides were obtained [17]. Subsequently, 0.055 L of 10% NaOH solution was used to impregnate the mixed oxides for 6 h (the incipient wetness technique), where the amount of Na added was 0.24% of the mass of the mixed oxides. After drying at 120 °C for 16 h and calcined at 400 °C for 3 h in air, the above-mentioned oxides were then impregnated with the 10% Ni(NO3)2solution followed by a similar procedure. Finally, the catalyst was obtained.

    2.2 Experiment process and methods

    The reactions were carried out in a fixed bed stainless steel microreactor. Typically, 2 ml of catalyst was packed between two layers of quartz wool. The activity measurements were carried out at several temperatures from 310 °C to 430 °C with an interval of 30 °C. The catalyst was firstly reduced in the reactor with hydrogen (100 ml·min-1) at 330-490 °C for 2 h prior to each measurement, and then the temperature was adjusted to the reaction temperature. The reactants were fed in by a microdosing pump in different liquid hourly space velocity (LHSV). The products were collected in an ice-bath cold trap, and analyzed quantitatively by Shimadzu GC-14B Gas Chromatograph (DB-WAX capillary: 30 m long, 0.25 mm i.d.)equipped with a flame ionization detector (FID). The conversion and selectivity were calculated by applying the area normalization method without the corrected factor. The following temperature program was employed: detector temperature at 250 °C, injection temperature at 250 °C, streaming, isothermal at 40 °C for 2 min, then heating to 250 °C with a rate of 10°C·min-1, isothermal at 250 °C for 25 min.

    The Scanning Electron Microscopy (SEM) image was taken on a Hitachi S-4800 microscope. The X-ray Powder Diffraction (XRD) was analyzed in a Bruker D8 Advance Diffractometer with CuKαradiation operated at 35 kV and 25 mA at a scanning rate of 5 (°)·min-1.The N2adsorption was carried out at -196 °C in an BELSORP-max system (Micromeritics) with the BET model. The sample was preheated at 200 °C for 10 h before the nitrogen absorption.

    3 RESULTS AND DISCUSSION

    3.1 Catalysts characterization

    Figure 1 SEM image of fresh catalyst

    The result of SEM characterization was shown in Fig. 1. It can be observed that the particle size was about 50 nm, and the particle distribution was uniform.The result of XRD characterization was shown in Fig. 2. It was clearly showed that the diffraction angle of 30 °, 35 °, 50 ° and 60 ° symboled by * were the characteristic diffraction peaks of zirconia, while the angle around 45 ° and 76 ° symboled by + were the characteristic diffraction peaks of metal nickel. The shape of the peaks indicated that they were in very high crystallinity.

    Figure 2 XRD patterns of catalysts at different Ni loading(by mass)

    3.2 Impacts of catalyst preparation conditions on catalytic properties

    3.2.1Impact of Ni loading

    Entry Ni loading/% (by mass)Selectivity/%Conversion of MEK/% MIPK DEK

    Table 1 Catalytic activities at different Ni loading①

    The catalysts containing different Ni loading were tested to show its impact on the catalytic activity and selectivity (Table 1). When Ni loading was low(between 0.25% and 0.5%), the active sites of the hydrogenation/dehydrogenation were much less than the acidic active sites, and the conversion was also low.This was due to that this reaction required the matching of the two types of active sites. With the Ni loading being increased from 5% to 25%, the conversion was improved, and the byproducts were decreased significantly. This was because that the active sites of the hydrogenation/dehydrogenation matched better with the acidic active sites, and they also inhibited the side reaction triggered by the excess acidic active sites.When the Ni loading was increased to the level higher than 25%, the change of conversion and selectivity became insignificant. It is showed that the catalytic performance was determined by the matching of the two types of active sites in the bifunctional catalyst.The optimal Ni loading was 25%, which was consistent with the results of XRD.

    3.2.2Impact of calcination temperature

    The impact of calcination temperature on the catalyst performance was shown in Table 2. It can be seen that with the increase of the calcination temperature, the conversion of MEK was improved, and the peak value was observed at 400 °C. The overall selectivity of MIPK and DEK had almost no change. This was because that if the calcination temperature was too high, the specific surface area would decrease.Therefore, the most suitable calcination temperature was 400 °C.

    Table 2 Specific surface area of catalysts and catalytic activities of various calcination temperature①

    3.2.3Impact of reduction temperature

    The impact of reduction temperature on the catalyst performance was shown in Table 3, indicating that the increased reduction temperature improved the conversion of MEK, and the peak value was observed at 410 °C. Meanwhile, the overall selectivity of MIPK and DEK decreased slightly. This was because that the surface area reached the largest value when the reduction temperature was at 410 °C. If the temperature continued to rise, the increase of the nickel particle size would decrease the surface area. Therefore, the optimal reduction temperature was 410 °C.

    3.3 Impact of reaction conditions on catalytic properties

    3.3.1Impact of reaction temperature on catalytic performance

    Reaction was carried out at different temperatures under the same raw material molar ratio and space ve-locity. Both the catalyst activity and the product composition were found to change with changing reaction temperature as shown in Table 4. It is evident that the conversion of MEK was also improved with increasing temperature from 310 °C to 400 °C. However, the overall selectivity of MIPK and DEK showed a general trend of decrease with the maximum at 310 °C,and the selectivity of DEK decreased at higher temperature 400 °C. Therefore, to achieve the best yield,400 °C was the appropriate temperature.

    Table 3 Specific surface area of catalysts and catalytic activities of various reduction temperature①

    Table 4 Specific surface area of catalysts and catalytic activities of various reaction temperature①

    3.3.2Impact of LHSV on catalytic performance

    The impact of LHSV on the catalytic performance was shown in Table 5. When LHSV was at 0.5 h-1, the conversion of MEK could reach 41.7%, which was comparable to 38.1% achieved by using Pd.Meanwhile, the selectivity of MIPK and DEK could reach 83.3%, comparable to 82.2% achieved by using Pd [17]. When LHSV was increased, the conversion of MEK decreased continuously for shorter contact time with the catalyst, but the overall selectivity was observed at lower LHSV.

    3.3.3Impact of raw materials ratio on catalytic performance

    The impact of raw materials ratio on the catalytic performance in Table 6 showed that with the increaseof the molar ratio of MeOH and MEK, the conversion of MEK was improved, while the total selectivity of MIPK and DEK dropped. 1/1 of (MeOH)/(MEK)seemed to be an appropriate molar ratio. In addition,with the increase of water, both the conversion of MEK and the selectivity of MIPK were increased at the beginning, and then started to drop after reaching a certain threshold value. Adding water into the materials could inhibit the coking of the catalyst, but the excess water would reduce the efficiency of the raw materials,leading to the increase of energy consumption. Therefore, the optimal molar ratio of (MeOH)/(MEK)/(H2O)was 1/1/1.

    Table 5 Catalytic activities of various liquid hourly space velocity①

    Table 6 Catalytic activities of various raw materials ratio①

    3.4 Stability of catalyst

    The stability of the catalyst was tested at 400 °C and atmospheric pressure for about 315 h time on stream (TOS), as shown in Fig. 3. It can be observed from this figure that the conversion of MEK remained more or less constant (>38%) for the period studied(<300 h). However, after 300 h, the conversion started to drop rapidly, and the catalyst became inactive in a short time. These results were also tested for reproducibility and found to be consistent.

    4 CONCLUSIONS

    Figure 3 Relation between activity of catalyst and time on stream(Ni loading 25%, calcination temperature 400 °C,reduction temperature 410 °C, reaction temperature 400 °C, atmospheric pressure, LHSV of raw material 0.5 h-1, the molar ratio of(MeOH)/(MEK)/(H2O) being 1/1/1)

    When the Ni loading was 25%, the calcination temperature was 400 °C and the reduction temperature was 410 °C, the Ni-Na/ZrO2-MnO2-ZnO catalyst had good catalytic performance on the one-step synthesis reaction of MIPK and DEK from MEK and MeOH.The suitable reaction conditions were 400 °C for reaction; atmospheric pressure for reaction; LHSV of raw material of 0.5 h-1; the molar ratio of (MeOH)/(MEK)/(H2O) being 1/1/1. Under such conditions, the conversion of MEK could achieve 41.7%, and the overall selectivity of MIPK and DEK could achieve 83.3%, which was comparable to the conversion of 38.1% and the selectivity of 82.2% achieved by using Pd as the active material. The good stability made this catalyst have good prospects for industrial application.

    1 Liang, C., “Production and development of methyl isopropyl ketone”,Chemical Technology and Development, (4), 33-34 (2002).(in Chinese)

    2 Liang, C., “Market and development of methyl isopropyl ketone”,Fine and Specialty Chemicals, (24), 11-12 (2000). (in Chinese)

    3 Gui, Y.C., Wang, H., Guo, W. L., “Study of synthesis of methyl isopropyl ketone”,Chemistry and Bonding, (2), 76-77 (1999). (in Chinese)

    4 Zhu, R.H., “Study of synthetic technology of methyl isopropyl ketone”,Jiangsu Chemical Industry, (6), 23-25 (1999). (in Chinese)

    5 Chen, A., “Synthesis of methyl isopropyl ketone”,Chemical Industry and Scientific Technology, 2, 25-34 (1994). (in Chinese)

    6 Frankenthanl, W.H., Friedelsheim, L.H., “Preparation of ketones”, U.S. Pat., 4866210 (1990).

    7 Ludwigshafen, C.S., Mutterstadt, K.E., “Preparation of ketones”, U.S. Pat., 4950763 (1976).

    8 Olah, G.A., Mathew, T., Marinez, E.R., Esteves, P.M., Etzkorn, M.,Rasul, G., Prakash, G.K.S., “Acid-catalyzed isomerization of pivalaldehyde to methyl isopropyl ketoneviaa reactive protosolvated carboxonium ion intermediate”,J.Am.Chem.Soc., 123,11556-11560 (2001).

    9 Joseph, P., Monroeville, B., Jeffreys, S., “Preparation of methyl isopropeny1 ketone”, U. S. Pat., 5072051 (1991).

    10 Olah, G.A., Tse-Lok, H., Prakash, G.K.S., “Synthetic methods and reaction: A genera1 ketone synthesis by the Friedel-Crafts acylation of alkylsilanes”,J.Am.Chem.Soc., 10, 677-678 (1977).

    11 Kamimura, Y., Sato, S., Takahashi, R., Sodesawa, T., Akashi, T.,“Synthesis of 3-pentanone from 1-propanol over CeO2-Fe2O3catalysts”,Appl.Cata1.A, 252, 399-410 (2003).

    12 Sakagami, H., Ohta, N., Endo, S., Harada, T., Takahashi, N., Matsuda, T., “Location of active sites for 3-pentanone formation during ethene hydroformylation on Rh/active-carbon catalysts”,J.Catal.,171, 449-456 (1997).

    13 Claridge, J.B., Green, M.L.H., Tsang, S.C., “Conversion of propanol to 3-pentanone using lanthanide oxides”,J.Chem.Soc.Faraday.Trans., 89, 1089-1094 (1993).

    14 Luksza, M., Gaustrasse, D., “Process for the manufacture of methyl isopropyl ketone and diethyl ketone”, EP. Pat., 0224218A1 (1987).(in German)

    15 Tian, L., Jiang, W.F., Luo, H.Y., Ding, Y.J., “Synthesis of methyl isopropyl ketone and diethyl ketone over ZrO2/MnOx/ZnO catalyst”,Petrochemical Technology, 33, 1060-1062 (2004). (in Chinese)

    16 Tian, L., Jiang, W.F., Luo, H.Y., “Preparation and characterization of Na-Pd/ZrO2-MnOx-ZnO catalyst for synthesis of methyl isopropyl ketone and diethyl ketone”,Fine Chemicals, (5), 365-368 (2005).(in Chinese)

    17 Luo, H.Y., Ding, Y.J., Tian, L., He, D.P., “A catalyst for synthesis of methyl isopropyl ketone and diethyl ketone and production method and application”, CN. Pat., 1733360A (2006). (in Chinese)

    18 Liu, D., Cao, W.H., Shen, L., “Study of catalyst for synthesis of methyl isopropyl ketone and diethyl ketone”,Journal of ZheJiang University of Technology, 35, 194-197 (2007). (in Chinese)

    猜你喜歡
    建國(guó)
    程建國(guó)作品(一)
    大眾文藝(2023年3期)2023-03-03 03:30:50
    程建國(guó)作品(二)
    大眾文藝(2023年3期)2023-03-03 03:30:44
    比大小,想背景,悟本質(zhì)
    Flow separation control over an airfoil using continuous alternating current plasma actuator
    你是我最牽掛的人
    Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder *
    “建國(guó)通寶”錢(qián)考辨
    黃建國(guó)小小說(shuō)欣賞
    Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network
    建國(guó)后我軍歷次作戰(zhàn)中的戰(zhàn)略戰(zhàn)術(shù)
    軍事歷史(1997年6期)1997-08-21 02:37:06
    亚洲欧美日韩另类电影网站| 中出人妻视频一区二区| av片东京热男人的天堂| 国产精品久久视频播放| 国产91精品成人一区二区三区| 大型黄色视频在线免费观看| 亚洲专区中文字幕在线| 亚洲欧美激情在线| 又黄又爽又免费观看的视频| 97人妻天天添夜夜摸| 一边摸一边做爽爽视频免费| 婷婷成人精品国产| 久久久久久人人人人人| 日韩成人在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 精品一区二区三卡| 精品视频人人做人人爽| 亚洲男人天堂网一区| 精品久久久久久久毛片微露脸| 高清黄色对白视频在线免费看| 这个男人来自地球电影免费观看| 免费观看a级毛片全部| 国产精品秋霞免费鲁丝片| 91麻豆av在线| 欧美另类亚洲清纯唯美| 最近最新中文字幕大全电影3 | 精品第一国产精品| 看黄色毛片网站| 757午夜福利合集在线观看| 亚洲精品成人av观看孕妇| 一进一出抽搐gif免费好疼 | 午夜影院日韩av| 一区二区日韩欧美中文字幕| 精品人妻熟女毛片av久久网站| 久久香蕉国产精品| 高清视频免费观看一区二区| 久久香蕉国产精品| 男女免费视频国产| 十八禁人妻一区二区| 国产成人一区二区三区免费视频网站| 高清在线国产一区| 啦啦啦视频在线资源免费观看| 50天的宝宝边吃奶边哭怎么回事| 老汉色∧v一级毛片| 亚洲色图av天堂| 日本黄色视频三级网站网址 | videosex国产| 人妻一区二区av| 99在线人妻在线中文字幕 | 亚洲av片天天在线观看| 成年版毛片免费区| 妹子高潮喷水视频| 国产野战对白在线观看| 精品国产美女av久久久久小说| 一二三四社区在线视频社区8| 亚洲性夜色夜夜综合| 亚洲精华国产精华精| 国产欧美日韩综合在线一区二区| 老司机福利观看| 免费一级毛片在线播放高清视频 | 91麻豆av在线| 欧美 亚洲 国产 日韩一| 丝瓜视频免费看黄片| 日本黄色视频三级网站网址 | 久9热在线精品视频| 国产成人一区二区三区免费视频网站| svipshipincom国产片| 精品国内亚洲2022精品成人 | a级毛片黄视频| 在线十欧美十亚洲十日本专区| 欧美亚洲日本最大视频资源| 日本欧美视频一区| 一a级毛片在线观看| 国产一卡二卡三卡精品| 久久香蕉国产精品| 亚洲国产欧美一区二区综合| 精品熟女少妇八av免费久了| 99久久综合精品五月天人人| 亚洲情色 制服丝袜| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品成人av观看孕妇| ponron亚洲| 人妻 亚洲 视频| 久久久国产精品麻豆| 啪啪无遮挡十八禁网站| 国产精华一区二区三区| 久99久视频精品免费| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 王馨瑶露胸无遮挡在线观看| 国产精品免费视频内射| 黑人巨大精品欧美一区二区蜜桃| 精品视频人人做人人爽| 欧美日韩中文字幕国产精品一区二区三区 | 一级作爱视频免费观看| 亚洲综合色网址| 国精品久久久久久国模美| 色老头精品视频在线观看| 久久青草综合色| av国产精品久久久久影院| 国产精品久久电影中文字幕 | 村上凉子中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区黑人| 后天国语完整版免费观看| 婷婷丁香在线五月| 亚洲色图综合在线观看| 麻豆成人av在线观看| 国产精品久久久av美女十八| 在线免费观看的www视频| 欧美日韩乱码在线| 制服诱惑二区| 一级片'在线观看视频| 亚洲中文日韩欧美视频| 亚洲精品成人av观看孕妇| 色在线成人网| 国产亚洲欧美在线一区二区| av超薄肉色丝袜交足视频| 热99re8久久精品国产| 国产人伦9x9x在线观看| 色综合婷婷激情| 又紧又爽又黄一区二区| 久久国产乱子伦精品免费另类| 十八禁网站免费在线| 99国产精品一区二区蜜桃av | 中文字幕制服av| av在线播放免费不卡| 露出奶头的视频| 在线观看免费日韩欧美大片| 欧美成人免费av一区二区三区 | 精品人妻1区二区| 人妻一区二区av| 人成视频在线观看免费观看| 在线av久久热| av国产精品久久久久影院| 一二三四在线观看免费中文在| 免费黄频网站在线观看国产| 成年人免费黄色播放视频| 久久亚洲真实| 人人妻人人澡人人看| xxx96com| 老司机在亚洲福利影院| 免费看a级黄色片| 啦啦啦 在线观看视频| 一级片免费观看大全| e午夜精品久久久久久久| 国产成人av激情在线播放| 亚洲色图av天堂| 午夜影院日韩av| 女人久久www免费人成看片| 亚洲人成电影观看| 老司机福利观看| 9色porny在线观看| 老司机在亚洲福利影院| 色在线成人网| 露出奶头的视频| 免费在线观看黄色视频的| av天堂久久9| 色老头精品视频在线观看| 精品亚洲成a人片在线观看| 黄色视频不卡| 超色免费av| 色尼玛亚洲综合影院| 国产精品久久久久成人av| 亚洲 国产 在线| 亚洲熟妇熟女久久| 视频在线观看一区二区三区| 在线av久久热| 黑人操中国人逼视频| 老司机靠b影院| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区蜜桃av | 自线自在国产av| 91精品三级在线观看| 亚洲五月婷婷丁香| 操出白浆在线播放| 黄色a级毛片大全视频| 精品福利观看| 国产一区在线观看成人免费| 日韩视频一区二区在线观看| 国产av又大| 久久久久精品国产欧美久久久| 成年人午夜在线观看视频| av中文乱码字幕在线| 欧美激情极品国产一区二区三区| 这个男人来自地球电影免费观看| 国产精品免费大片| 又黄又爽又免费观看的视频| 欧美精品高潮呻吟av久久| 天天添夜夜摸| 久99久视频精品免费| 看免费av毛片| 热re99久久精品国产66热6| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 成熟少妇高潮喷水视频| 亚洲专区字幕在线| 久久精品国产a三级三级三级| 国产三级黄色录像| 桃红色精品国产亚洲av| 男女高潮啪啪啪动态图| 成年人午夜在线观看视频| 在线观看一区二区三区激情| 久久中文字幕人妻熟女| 久久久精品国产亚洲av高清涩受| 黄色毛片三级朝国网站| 丝袜在线中文字幕| 精品乱码久久久久久99久播| 在线观看午夜福利视频| 多毛熟女@视频| 欧美精品亚洲一区二区| 久久亚洲精品不卡| 男女免费视频国产| 91麻豆av在线| 色老头精品视频在线观看| 99re在线观看精品视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品中文字幕在线视频| 午夜免费观看网址| 啪啪无遮挡十八禁网站| 大香蕉久久成人网| 欧美国产精品一级二级三级| 国产精品国产高清国产av | av片东京热男人的天堂| 成人精品一区二区免费| 男人舔女人的私密视频| 国产精品九九99| 99精品久久久久人妻精品| 黑人欧美特级aaaaaa片| 欧美成人午夜精品| 国产一卡二卡三卡精品| 又大又爽又粗| av天堂久久9| 日韩中文字幕欧美一区二区| 欧美激情 高清一区二区三区| 久久性视频一级片| 久久久久久久久免费视频了| 成人特级黄色片久久久久久久| 91麻豆精品激情在线观看国产 | 中文欧美无线码| 9色porny在线观看| 午夜视频精品福利| 久久久水蜜桃国产精品网| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久午夜乱码| 老司机靠b影院| 女性生殖器流出的白浆| 亚洲aⅴ乱码一区二区在线播放 | 日韩大码丰满熟妇| 欧美精品av麻豆av| 在线观看66精品国产| 亚洲成人国产一区在线观看| 国产成人影院久久av| 亚洲情色 制服丝袜| 飞空精品影院首页| 岛国毛片在线播放| 国产欧美日韩综合在线一区二区| 热re99久久国产66热| 国产日韩欧美亚洲二区| 少妇裸体淫交视频免费看高清 | 91成年电影在线观看| 精品久久久久久电影网| 国产亚洲精品一区二区www | 久久草成人影院| 一本大道久久a久久精品| 日韩 欧美 亚洲 中文字幕| 色精品久久人妻99蜜桃| 中文字幕最新亚洲高清| 999久久久精品免费观看国产| 99re6热这里在线精品视频| 免费观看a级毛片全部| 精品高清国产在线一区| av中文乱码字幕在线| 免费观看人在逋| 老司机福利观看| 亚洲专区国产一区二区| 亚洲av成人av| 国产精品秋霞免费鲁丝片| 91九色精品人成在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 高清黄色对白视频在线免费看| 国内久久婷婷六月综合欲色啪| 建设人人有责人人尽责人人享有的| 捣出白浆h1v1| 精品无人区乱码1区二区| 人妻丰满熟妇av一区二区三区 | 女人久久www免费人成看片| 日韩有码中文字幕| 亚洲午夜理论影院| 久久久国产欧美日韩av| 老鸭窝网址在线观看| 多毛熟女@视频| 日韩中文字幕欧美一区二区| 国产精品九九99| 首页视频小说图片口味搜索| 成年人午夜在线观看视频| a级片在线免费高清观看视频| tocl精华| 亚洲av成人一区二区三| 日韩 欧美 亚洲 中文字幕| 国产色视频综合| 真人做人爱边吃奶动态| 亚洲av成人不卡在线观看播放网| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 亚洲五月色婷婷综合| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 老司机在亚洲福利影院| 国产91精品成人一区二区三区| a在线观看视频网站| 黄色毛片三级朝国网站| 色在线成人网| 在线观看午夜福利视频| 亚洲av成人一区二区三| 国产xxxxx性猛交| 国产精华一区二区三区| 亚洲av片天天在线观看| 久久精品熟女亚洲av麻豆精品| 超色免费av| 色播在线永久视频| 日本欧美视频一区| 最新的欧美精品一区二区| xxxhd国产人妻xxx| videos熟女内射| 亚洲一区二区三区欧美精品| 免费观看精品视频网站| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 国产1区2区3区精品| 欧美精品高潮呻吟av久久| 久久人妻熟女aⅴ| 多毛熟女@视频| 中文字幕制服av| 午夜亚洲福利在线播放| 亚洲欧洲精品一区二区精品久久久| 久久久久久人人人人人| 国产亚洲精品久久久久5区| 欧美成人免费av一区二区三区 | 1024香蕉在线观看| 桃红色精品国产亚洲av| 王馨瑶露胸无遮挡在线观看| 在线永久观看黄色视频| 亚洲人成电影免费在线| 亚洲国产精品合色在线| 99精品欧美一区二区三区四区| 人人妻人人澡人人看| 人妻丰满熟妇av一区二区三区 | 香蕉丝袜av| 99久久精品国产亚洲精品| 超碰成人久久| 人妻一区二区av| 婷婷丁香在线五月| 久久婷婷成人综合色麻豆| 丝袜美腿诱惑在线| 亚洲精品国产色婷婷电影| 午夜精品国产一区二区电影| 亚洲av日韩在线播放| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 国产黄色免费在线视频| 中文字幕高清在线视频| 国产xxxxx性猛交| 欧美精品一区二区免费开放| 欧美乱码精品一区二区三区| 欧美在线黄色| 99riav亚洲国产免费| 亚洲精品av麻豆狂野| 久久人人97超碰香蕉20202| 国产成人精品无人区| 日日摸夜夜添夜夜添小说| 精品一区二区三卡| 在线观看免费午夜福利视频| 成年人午夜在线观看视频| 国产午夜精品久久久久久| 美女扒开内裤让男人捅视频| 一进一出抽搐gif免费好疼 | a级毛片在线看网站| 亚洲成人手机| 日韩欧美一区二区三区在线观看 | 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 在线播放国产精品三级| 婷婷精品国产亚洲av在线 | 国产无遮挡羞羞视频在线观看| 一夜夜www| 精品国内亚洲2022精品成人 | 国产成人精品久久二区二区91| 国产99久久九九免费精品| 一a级毛片在线观看| x7x7x7水蜜桃| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区久久久樱花| 欧美精品av麻豆av| 精品久久久久久,| 波多野结衣一区麻豆| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 亚洲精品久久午夜乱码| av欧美777| 国产精品秋霞免费鲁丝片| 国产亚洲精品久久久久久毛片 | 香蕉久久夜色| 国产精品二区激情视频| 99久久综合精品五月天人人| 嫩草影视91久久| 黄色成人免费大全| videosex国产| 黄色a级毛片大全视频| 一区二区日韩欧美中文字幕| 亚洲成a人片在线一区二区| 激情视频va一区二区三区| 午夜亚洲福利在线播放| 国产成人免费无遮挡视频| 国产不卡一卡二| 两人在一起打扑克的视频| 老汉色∧v一级毛片| 电影成人av| 欧美人与性动交α欧美软件| 国产午夜精品久久久久久| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区精品视频观看| 极品教师在线免费播放| 99精品在免费线老司机午夜| 一进一出好大好爽视频| 中出人妻视频一区二区| 黑人巨大精品欧美一区二区蜜桃| 91国产中文字幕| 水蜜桃什么品种好| 中文字幕另类日韩欧美亚洲嫩草| 高潮久久久久久久久久久不卡| 国产精品香港三级国产av潘金莲| aaaaa片日本免费| 妹子高潮喷水视频| 久久天躁狠狠躁夜夜2o2o| 高清欧美精品videossex| 亚洲av日韩精品久久久久久密| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 亚洲人成伊人成综合网2020| 亚洲精品在线美女| 精品福利永久在线观看| 久久精品亚洲精品国产色婷小说| 美女高潮到喷水免费观看| 中文字幕最新亚洲高清| 国产不卡一卡二| а√天堂www在线а√下载 | 欧美老熟妇乱子伦牲交| 亚洲第一欧美日韩一区二区三区| ponron亚洲| 91国产中文字幕| 国产精品免费视频内射| 满18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 国产精品九九99| 人人妻人人添人人爽欧美一区卜| 午夜福利一区二区在线看| 成人三级做爰电影| 免费黄频网站在线观看国产| 国产精品秋霞免费鲁丝片| 少妇粗大呻吟视频| 一区二区三区精品91| 97人妻天天添夜夜摸| 在线看a的网站| 日韩免费高清中文字幕av| 亚洲中文av在线| 久久青草综合色| 人人妻人人爽人人添夜夜欢视频| 在线播放国产精品三级| 国产主播在线观看一区二区| 国产单亲对白刺激| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻熟女乱码| 999久久久精品免费观看国产| 最新的欧美精品一区二区| 水蜜桃什么品种好| 精品福利永久在线观看| 女性被躁到高潮视频| 天堂中文最新版在线下载| 香蕉久久夜色| 老司机影院毛片| 看黄色毛片网站| 视频区欧美日本亚洲| 一级毛片精品| 亚洲av成人av| 怎么达到女性高潮| www.999成人在线观看| 夜夜躁狠狠躁天天躁| 久久天堂一区二区三区四区| 在线播放国产精品三级| 在线观看免费视频网站a站| 精品久久久久久久毛片微露脸| 亚洲精品av麻豆狂野| 99精品欧美一区二区三区四区| 久久久久久久久免费视频了| 午夜福利,免费看| 丰满迷人的少妇在线观看| 日韩欧美一区二区三区在线观看 | 亚洲色图av天堂| cao死你这个sao货| 国产免费男女视频| 久久人妻福利社区极品人妻图片| 咕卡用的链子| 精品国产一区二区三区久久久樱花| 色播在线永久视频| 老司机影院毛片| 咕卡用的链子| 俄罗斯特黄特色一大片| 欧美日韩国产mv在线观看视频| 精品久久久久久久毛片微露脸| 丝袜美足系列| videosex国产| 王馨瑶露胸无遮挡在线观看| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 99精国产麻豆久久婷婷| 国产亚洲精品一区二区www | 国产免费男女视频| 精品国产乱码久久久久久男人| 一本综合久久免费| а√天堂www在线а√下载 | 免费人成视频x8x8入口观看| www日本在线高清视频| 51午夜福利影视在线观看| 欧美精品啪啪一区二区三区| 高清黄色对白视频在线免费看| 国产乱人伦免费视频| 高清毛片免费观看视频网站 | netflix在线观看网站| 国产精品自产拍在线观看55亚洲 | 俄罗斯特黄特色一大片| 91九色精品人成在线观看| 性色av乱码一区二区三区2| 日韩免费高清中文字幕av| 精品免费久久久久久久清纯 | 老鸭窝网址在线观看| 一二三四在线观看免费中文在| 一边摸一边抽搐一进一小说 | 如日韩欧美国产精品一区二区三区| 亚洲欧美激情在线| 国产av又大| 精品电影一区二区在线| 久久这里只有精品19| 亚洲美女黄片视频| 少妇的丰满在线观看| 久久精品熟女亚洲av麻豆精品| 国产精品 欧美亚洲| 欧美老熟妇乱子伦牲交| 精品久久久久久久久久免费视频 | 国产日韩欧美亚洲二区| 狂野欧美激情性xxxx| 久久精品aⅴ一区二区三区四区| 国产精品一区二区在线不卡| 一二三四社区在线视频社区8| 国精品久久久久久国模美| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| 男女之事视频高清在线观看| 9热在线视频观看99| 超色免费av| 欧美日韩亚洲高清精品| 国产麻豆69| 无遮挡黄片免费观看| av网站在线播放免费| 国产蜜桃级精品一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 怎么达到女性高潮| 精品久久久久久久毛片微露脸| 高清欧美精品videossex| 啪啪无遮挡十八禁网站| 亚洲欧美激情在线| 99热国产这里只有精品6| 涩涩av久久男人的天堂| 欧美成人免费av一区二区三区 | 制服诱惑二区| 亚洲av成人不卡在线观看播放网| 精品久久蜜臀av无| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 美女高潮到喷水免费观看| 精品国产国语对白av| 叶爱在线成人免费视频播放| 亚洲一区中文字幕在线| 亚洲人成电影观看| 精品电影一区二区在线| 国产97色在线日韩免费| 午夜影院日韩av| svipshipincom国产片| 一二三四社区在线视频社区8| 色综合婷婷激情| 亚洲一码二码三码区别大吗| 欧美成人午夜精品| 一进一出抽搐动态| 国产又爽黄色视频| 欧美大码av| 国产精品一区二区在线观看99| 色婷婷久久久亚洲欧美| 久久精品91无色码中文字幕| 每晚都被弄得嗷嗷叫到高潮| 两人在一起打扑克的视频| 日韩欧美一区视频在线观看| 丰满迷人的少妇在线观看| 叶爱在线成人免费视频播放| 12—13女人毛片做爰片一| 久久久久精品国产欧美久久久| 狠狠婷婷综合久久久久久88av| 老司机靠b影院| 国产片内射在线| 男女之事视频高清在线观看| 999久久久国产精品视频| 久久国产精品人妻蜜桃| 人成视频在线观看免费观看| videos熟女内射|