• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network

    2014-08-12 02:31:02YANGJianguo楊建國XULanXIANGQianLIUBin
    關鍵詞:建國

    YANG Jian-guo (楊建國), XU Lan(徐 蘭) , XIANG Qian(項 前), LIU Bin(劉 彬)

    College of Mechanical Engineering, Donghua University, Shanghai 201620, China

    Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network

    YANG Jian-guo (楊建國)*, XU Lan(徐 蘭) , XIANG Qian(項 前), LIU Bin(劉 彬)

    CollegeofMechanicalEngineering,DonghuaUniversity,Shanghai201620,China

    In the spinning process, some key process parameters (i.e., raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a hybrid learning-based model was developed for on-line intelligent monitoring and diagnosis of the spinning process. In the proposed model, a knowledge-based artificial neural network (KBANN) was developed for monitoring the spinning process and recognizing faulty quality categories of yarn. In addition, a rough set (RS)-based rule extraction approach named RSRule was developed to discover the causal relationship between textile parameters and yarn quality. These extracted rules were applied in diagnosis of the spinning process, provided guidelines on improving yarn quality, and were used to construct KBANN. Experiments show that the proposed model significantly improve the learning efficiency, and its prediction precision is improved by about 5.4% compared with the BP neural network model.

    yarnqualityprediction;roughset(RS);knowledgediscovery;knowledge-basedartificialneuralnetwork(KBANN)

    Introduction

    Spinning process is a typically complex unstable industrial process, that can be easily disturbed by the surrounding environment, including not only the material displacement process, fluid dynamics process, but also heat exchange and chemical reactions. Traditional quality prediction was conducted frequently based on mathematical statistics, gray theory,etc. It has done a lot to simplify production conditions, with little consideration of the interaction between variables, which is a major factor in the actual production.

    A great many experts and scholars have done a lot of researches on complex production process quality prediction and diagnosis. Compared with the traditional regression methods, artificial neural network and support vector machine technology has a great advantage in dealing with complex nonlinear problems[1-9]. The research of Refs.[1-4] showed that, the neural network had good prediction performance in textile field; Evander and Eng used the neural network to predict the existence of acute pulmonary embolism[5-6]; Gebraeeletal. and Tian established the prediction model of remaining life of electronics or equipment based neural network[7-8]; Ribeiro applied support vector machines in injection molding production process quality diagnosis[9]. But the artificial neural network (ANN) has two obvious defects: one is using the gradient descent method leads to the slow learning speed and local optimization, and the other is the “black box” defects of neural network. Many scholars optimized the structure parameters of ANN by using the GA algorithm, PSO algorithm, and other optimization algorithm, and experiments showed that improved ANN’s performance had been significantly enhanced[10-16]. Considering the ANN cannot explicitly pointed out the shortcomings of the nonlinear relationship between process parameters and production quality, some machine learning algorithms which based on knowledge discovery have been proposed[17-25]. Sette developed a classification system based on fuzzy logic and applied to the process rules’ generation of the fiber into yarn’s production process[17]. Lüetal. presented rough set to extract the spinning process rules and extraction rules providing support for product quality control[18-19]. Yu proposed a quality remote monitoring and diagnosis model based on GA and the knowledge-based artificial neural network, and applied this model in a coating production line, which effectively improved the quality of the product[21-22]. Akkalaetal. applied the neural network of knowledge in the areas of environmental engineering and machine processing,etc[23-25].

    In this paper, considering the two major drawbacks of ANN, a hybrid intelligent forecasting model was established based on rough set (RS) and knowledge-based artificial neural network (KBANN), which reflected the complex nonlinear relationship between the parameters and the product quality in Spinning process. The results show that the model not only improves the prediction performance, but also solves the problem of diagnosis and adjustment of quality fluctuation through the extracted knowledge.

    1 Frame of a Hybrid Intelligent Learning Model

    Fig.1 Frame of a hybrid intelligent learning model

    Figure 1 illustrates the framework of a hybrid intelligent learning model presented in this paper. In order to realize intelligent monitoring, KBANN uses the training set to study the complex relationship between process parameters and product quality, then outputs neuron value to monitor the process status. To achieve intelligent diagnosis, explicit rules are extracted to explain the relationship between the process parameters and product quality based on RSRule. Meanwhile rules extracted by RSRule (i.e., domain knowledge) can be applied to the initialization of KBANN model. Therefore, the integration of KBANN and RSRule can not only monitor process anomalies, but also explain why there will be quality fluctuations and how to adjust the parameters to achieve stability control of product quality.

    2 Spinning Process Decision Rules Extraction Based on RS

    RS theory is a new mathematical tool proposed by Pawlak professor, it was based on set theory to deal with vagueness and uncertainty problem[26]. Pawlaketal. argued that knowledge could be understood as the ability to divide things within a certain category, and the research object of knowledge was described by decision table[26-29].

    Figure 2 shows the algorithm flow of knowledge extraction algorithm based on rough set theory. It consists of data preprocessing, data attribute reduction, decision algorithm, and other parts. Firstly, the data are discretized with the ordination and cluster analysis method, and then use genetic algorithm for attribute reduction of decision table, and further a minimal set of decision rules to get the final classification rules.

    Fig.2 Algorithm flow of rough set knowledge extraction

    2.1 Discrete data of textile process

    In the textile process, values of decision tables must be represented by discrete data when using rough set theory to deal with decision tables, which require the discrete processing prior the data processing if range of condition attributes and decision attributes are continuous value. For continuous textile processing attribute data, its discretion methods often need to consider the technical characteristics of the classification criteria, data distribution, data sample size, and other information. This paper deals with discrete problems by sorting and cluster analysis methods.

    Step 1 Sort the value of the attributea, get ordered domainVa.

    Step 2 The relative change rateδi -1=ai-ai -1of the property pointai(i=2, 3, …,n) into the previous property pointai -1is calculated, there may be a breakpoint where the rateδhas a step change, thereby obtaining an ordered domainVaand classification quantityka.

    (1)

    (2)

    (3)

    2.2 Decision table reduction based on the genetic algorithm

    Reduction process is removing unnecessary condition attributes from the condition attributes of decision table system to analyze the decision rules for condition property relative to decision property from the formerly obtained reduction. In this paper, the minimum attribute reduction problem is solved by transforming it into a multi-objective optimization problem, and the redundant condition is reduced based on the genetic algorithm to get the simplified decision table.

    (4)

    Set of reduction is:

    (5)

    wherecard(·) indicates the base of a set;Ris an attributes set to which minimal attribute reduction,card(R) denotes the number of elements of the attributes set,i.e., the attribute length;γR(D) is the dependence of condition attribute setRrelative to the decision attributeDfor the sense of rough set.

    Based on the definition of the minimum attribute reduction, the problem can be solved by transforming it into a multi-objective optimization problem, and the problem is described as:

    (6)

    The reduction step of condition attributeCof decision table is as follows.

    Step 1 Use the binary string {0, 1} of the lengthl(lrepresents the number of condition attributes) to represent the code of each, each bit corresponds to one conditional attribute.

    Step 3 If the best individual in the population is small enough, or after multi-generational cycle of continuous operation, individualf(R) hasn’t been significantly improved, go to Step 6, otherwise, population genetic manipulation goes on.

    Step 4 Select the operator to filter the individuals from the contemporary populations that meet the conditions.

    Step 5 Do crossover and mutation operations for individuals that meet the conditions, and return to Step 2.

    Step 6 Get the minimum attribute reduction, and form decision table after reduction.

    722 Research progress of mesenchymal stem cell-derived exosomes in kidney diseases

    2.3 Reduction of decision rules

    The results of attribute reduction, for the classification decision, still contain redundant information. Reduction of decision rule is to eliminate the unnecessary conditions of each decision rule of decision rule set by the means of decision logic,i.e., to remove redundant attribute values of each decision rule to make a further minimization of set of decision rules.

    For a decision table after attribute reduction obtained, we can form a decision rule for each sample. Therefore, samples of the decision table can be represented by the rules.Reduced decision table is actually a set of rules. For this set of rules, we can use the following reduction algorithm (Fig.3)[29].

    Fig.3 Flow chart of reduced algorithm

    All the rules in the processed rule set do not contain redundant attributes, that is, the number of conditions attributes of a rule is minimized.

    3 Intelligent Monitoring Model Based on KBANN

    The relationship between input and output can be modeled by KBANN algorithm, which is a method of constructing the network structure and giving the network connection weights based on the obtained expert knowledge in the field[30]. As shown in Fig.4, KBANN algorithm is consisted of two key steps: analysis step (neighborhood knowledge is transformed into equivalent neural network (steps 1-3)), and inductive step (neighborhood knowledge is then summed and refined with the back-propagation algorithm (step 4))[31].

    Fig.4 KBANN algorithm

    The basic KBANN algorithm supports rules based on binary (Bianry) and the discrete input feature. Fernando and Bernard presented a KBANN based INSS system[31]. INSS expands the types of rules that can be used by KBANN so that KBANN can use the rules of input feature of real type. The real rule type can be performed as follows:

    IF Greate_Than (Sensor_S1, 1.0) and Less_Than (Sensor_S2, 0.5) Then Conclusion_C1 where Sensor_S1 and Sensor_S2 are input features of the dataset, and Conclusion_C1 is corresponding conclusion class label. Such a rule set can be mapped into ANN by KBANN which is similar to multilayer perceptron. Figure 5 shows a simple rule mapping process.

    Greater_ThanX<-Greater_Than(A,0.3,w,C)Less_ThanX<-Less_Than(A,0.3,w,C)Realvalueinput:AV=constant(0.3)w=sensitivityRealvalueinput:AV=constant(0.3)w=sensitivity

    Fig.5 Greater_Than with Less_Than rule mapping process in INSS system

    4 Yarn Quality Monitoring and Diagnosis Based on Hybrid Intelligent Learning Model

    4.1 Spinning decision rules: RSrule

    Twenty five different sets of cotton samples are collected from the production, whose fiber qualities are measured by the fast large-capacity instruments. All the samples are spun by SDL MDTD/Quick spin system to total of 10 yarns and stored at conditions of relative humidity of (62±2)% and temperature of 20±2 and measuring the quality of its yarn 24 h later. Data are shown in Table 1.

    Table 1 Crude materials and yarn quality index sample

    (2) Discrete data

    Take fiber strength for example, it can be sorted from small to large by its value. We can observe the slope of the data changes by using the order as the horizontal axis and the fiber strength as the vertical axis (Fig.6). Classifying the data into three categories, and then using theK-mean clustering method to determine the split point (Fig.7); ultimately results are shown in Tables 2 and 3.

    Fig.6 Fiber strength values in ascending order

    Fig.7 Fiber strength property values cluster

    CategoryClusteringdatainascendingorder117.818.719.52020.220.320.820.920.92121.1221.321.421.521.721.82222.322.722.924.5327.930.93232.9

    Table 3 Cut point value of each attribute

    For discretion of combination attributes, the yellowness and the reflectance, for example, can be composed to color properties, using the samek-mean clustering method as well, shown in Fig.8, to classify the color property value into three categories. Synthesize discrete split point set of all the properties, the condition attributes C and decision attributes D are summarized in Table 4.

    Fig.8 The yellow color combination with reflectance properties of clusters

    Redundant condition attributes can be removed by attribute reduction, and the obtained attribute set after attribute reduction is: {fiber strength, elongation, length irregularity}.

    (4) Decision rules reduction

    After consolidating with reduction, redundant condition attribute items and attribute values are removed. As shown in Table 5,xrepresents a sample record, such asx3means the third sample. Each row represents a decision rule. Uncertainty factor of 1 indicates that the rules generated do not conflict with each other. The support of a decision rule means the ratio of the number of record data of the decision rule to the total number of records, reflecting the degree of confidence of the rule.

    Table 5 can be interpreted as decision rules as follows:

    Rule 1: if fiber strength is smaller than 21.2, then yarn strength is smaller than 12.5.

    Rule 2: if yarn strength lies in 21.2-26.2 and elongation is smaller than 5.85% and the length of the uneven rate is smaller than 43%, then yarn strength is smaller than 12.5.

    Rule 3: if fiber strength is between 21.2 and 26.2 and elongation is smaller than 5.85% and the length of unevenness between 43% and 49%, then yarn strength is between 12.5 and 14.

    Rule 4: if fiber strength is between 21.2 and 26.2 and elongation of is bigger than 5.85%, then yarn strength is smaller than 12.5.

    Rule 5:if fiber strength is bigger than 26.2, then yarn strength is bigger than 14.

    Table 4 Discrete data samples

    Table 5 Material properties and yarn strength decision rule table

    4.2 Monitoring model: KBANN

    4.2.1 The construction of KBANN

    Take the raw material index as the model input, and take the type of yarn strength quality as the output. The nonlinear relationship between them can be constructed based on KBANN. The network architecture can be built based on the spinning process rules, in which rule-to-network algorithm maps the rules to be the input layer hidden layer of KBANN structure, and the Topwell and Shavlik method[29]constructed the connection between the hidden layer and the output layer. Figure 9 shows the topology of the final structure of KBANN. The rule set contains a total of 14 conditions, and produces a total of 14 connections between the input layer and the hidden layer. Meanwhile, the weight and bias values are initiated to satisfy all rule conditions. Thus, a network topology is composed of 8 input neurons (corresponding to eight input indicators), 14 hidden nodes, and 3 output neurons (corresponding to the three types of output quality quality).

    Fig.9 KBANN mapping rules

    The output layer contains three neurons, corresponding to the three types of output quality, and the output can be represented by the following form:C1: (1, 0, 0),C2: (0, 1, 0), andC3: (0, 0, 1), which were used to identify three quality types. Output range of KBANN is [0, 1], where 1 represents an output completely corresponding to an output quality type. Meanwhile, deviation thresholds can be set. IfC1,C2, andC3 are greater than the predetermined deviation threshold, the quality fluctuations occurrence can be determined.

    4.2.2 Analysis

    After the construction of the network topology of KBANN is completed, KBANN will further learn the knowledge of the training set, using back-propagation algorithm. In order to compare the performance of learning between KBANN and BP neural network (BPNN), BPNN using KBANN topology and related parameters while the initial weights and thresholds are randomly obtained in the range [-0.05, 0.05]. Shown in Fig.10, both the learning process curves show: compared with standard BPN, KBANN has a faster fitting speed and better training result.

    Fig.10 Mean square error (MSE) curves of KBANN and BPNN training process

    The reason that KBANN is better than BPN on training performance is: KBANN learns from the rules before training the initial implicit knowledge in the data, obtains the optimized initialized network weights, and speeds up network fitting process. When using back-propagation algorithm to learn knowledge further, it will fine-tune the initial network weights and thresholds, and learn knowledge of those missing. This process avoids complex process where the traditional ANN needs to constantly try to get a proper network structure, which further improves the learning performance.

    Table 6 shows the KBANN model predictions for some sample results and the effectiveness of KBANN to identify the type of yarn product quality, while Table 7 shows correct identification rate of yarn quality type of both method. KBANN identification results are better than the standard BPN. Experiments show that using KBANN for yarn manufacturing process quality classification and forecasting process status is valid.

    Table 6 Predictions of the test set KBANN

    Table 7 Recognition accuracy of KBANN and BPN/%

    5 Conclusions

    This study proposed a hybrid learning-based system for online monitoring and diagnosis of spinning process, where some key process parameters (i.e., system inputs) have very strong relationship with the quality of finished products(i.e., system outputs). In order to provide effective and accurate monitoring and diagnosis, a hybrid learning-based model by seamless integration of KBANN and RSRule is developed. RSRule can extract accurate and comprehensible rules to help operators accurately diagnosis abnormal processes and optimally set spinning process parameters. KBANN correctly learns knowledge from a training data set collected from spinning process. KBANN shows better performance than those of the standard BPNs when it is used for predicting the faulty quality category of the product on-line.

    [1] üreyen M E, Gürkan P. Comparison of Artificial Neural Network and Linear Regression Models for Prediction of Ring Spun Yarn Properties: I. Prediction of Yarn Tensile Properties [J].FibersandPolymers, 2008, 9(1):87-91.

    [2] Yin X G, Xiang Q, Lü Z J,etal. The Whole Virtual Manufacturing System for the Worsted Based on the Intelligent Technology [J].JournalofXi’anPolytechnicUniversity, 2008, 22(4): 407-411. (in Chinese)

    [3] üreyen M E, Gürkan P. Comparison of Artificial Neural Network and Linear Regression Models for Prediction of Ring Spun Yarn Properties. II. Prediction of Yarn tlairiness and Uneveness [J].FibersandPolymers, 2008, 9(1): 92-96.

    [4] Li X, Peng Z Q, Jin F Y,etal. Comparing Prediction Models for Worsted Yarn Performances Based on Neutral Networks [J].JournalofTextileResearch, 2011, 32(3): 51-56. (in Chinese)

    [5] Evander E, Holst H, Jarund A,etal. Role of Ventilation Scintigraphy in Diagnosis of Acute Pulmonary Embolism: an Evaluation Using Artificial Neural Networks [J].EuropeanJournalofNuclearandMolecularImaging, 2003, 30(7): 961-965.

    [6] Eng J. Predicting the Presence of Acute Pulmonary Embolism: a Comparative Analysis of the Artificial Neural Network, Logistic Regression, and Threshold Models [J].AmericanJournalofRoentgenology, 2002, 179(4): 869-874.

    [7] Gebraeel N Z, Lawley M A. A Neural Network Degradation Model for Computing and Updating Residual Life Distributions[J].IEEETransactionsonAutomationScienceandEngineering, 2008, 5(1): 154-163.

    [8] Tian Z G. An Articial Neural Network Method for Remaining Useful Life Prediction of Equipment Subject to Condition Monitoring [J].JournalofIntelligentManufacturing, 2012, 23(2): 227-237.

    [9] Ribeiro B. Support Vector Machines for Quality Monitoring in a Plastic Injection Molding Process [J].IEEETransactionsonSystems,ManandCybernetics,PartC:ApplicationsandReviews, 2005, 35(3): 401-410.

    [10] Lü Z J, Xiang Q, Li B Z,etal. Support Vector Machine with Real Code Genetic Algorithm for Yarn Quality Prediction [J].AdvancedScienceLetters, 2013, 19(8): 2468-2472.

    [11] Li S, Liu L J, Xie Y L. Chaotic Prediction for Short-Term Traffic Flow of Optimized BP Neural Network Based on Genetic Algorithm [J].ControlandDecision, 2011, 26(10): 1581-1585. (in Chinese)

    [12] Das S, Ghosh S, Majumdar A,etal. Yarn Engineering Using Hybrid Artificial Neural Network-Genetic Algorithm Model [J].FibersandPolymers, 2013, 14(7): 1220-1226.

    [13] Josphat M I, Huang X B, Wang X H. The Use of Hybrid Algorithms to Improve the Performance of Yarn Parameters Prediction Models [J].FibersandPolymers, 2012, 13(9): 1201-1208.

    [14] Kuo C F J, Chang C D, Su T L,etal. Optimization of the Dyeing Process and Prediction of Quality Characteristics on Elastic Fiber Blending Fabrics [J].Polymer-PlasticsTechnologyandEngineering, 2010, 47(7): 678-687.

    [15] Ji R Y. Particle Swarm Optimization Neural Network in the Application of Traffic Flow Prediction [D]. Hangzhou: Zhejiang University of Technology, 2013. (in Chinese)

    [16] Liu B, Xiang Q, Yang J G,etal. Combining the Genetic Algorithm with Artificial Neural Networks for Yarn Quality Forecasting [J].JournalofDonghuaUniversity:NaturalEdition, 2013, 39(4): 504-508.(in Chinese)

    [17] Sette S, Langenhove L V. An Overview of Soft Computing in Textile [J].TextileInstitute, 2003, 94(1/2): 103-109.

    [18] Lü Z J, Xiang Q, Yang J G. A Novel Date Mining Method on Quality Control within Spinning Process [J].AppliedMechanicsandMaterials, 2012, 224: 87-92.

    [19] Xiang Q, Lü Z J, Yang J G,etal. Mining Rule of Quality Control for Spinning Process with Rough Set Theory[J].AppliedMechanicsandMaterials, 2011, 80/81: 1021-1026.

    [20] Zhang X W, Wu Z W. Rough Set Theory and Method [M]. Beijing: People’s Posts and Telecommunications Press, 2007. (in Chinese)

    [21] Yu J B. Studying of Manufacturing Process Quality Control Theory and Methodology Based on Intelligent Learning Model [D]. Shanghai: Shanghai Jiaotong University, 2009. (in Chinese)

    [22] Yu J B, Xi L F, Zhou X J. Intelligent Monitoring and Diagnosis of Manufacturing Processes Using an Integrated Approach of KBANN and GA [J].ComputersinIndustry, 2008, 59(5): 489-501.

    [23] Akkala A, Bhatt D, Devabhaktuni V,etal. Knowledge-Based Neural Network Approaches for Modeling and Estimating Radon Concentrations [J].EnvironmentalProgress&SustainableEnergy, 2013, 32(2): 355-364.

    [24] Chandra R, Knight R, Omlin C W. Renosterveld Conservation in South Africa: a Case Study for Handling Uncertainty in Knowledge-Based Neural Networks for Environmental Management [J].JournalofEnvironmentalInformatics, 2009, 13(1): 56-65.

    [25] Jha M N, Pratihar D K, Bapat A V,etal. Knowledge-Based Systems Using Neural Networks for Electron Beam Welding Process of Reactive Material (Zircaloy-4) [J].JournalofIntelligentManufacturing, 2014, 25(6): 1315-1333.

    [26] Pawlak Z. Rough Sets [J].InternationalJournalofComputerandInformationSciences, 1982(5): 341-356.

    [27] Wang G Y, Yao Y Y, Yu H. A Survey on Rough Set Theory and Applications [J].ChineseJournalofComputers, 2009, 32(7): 1229-1246.(in Chinese)

    [28] An L P. Multi-attribute Decision Analysis Based on Rough Set Theory [M]. Beijing: Science Press, 2008. (in Chinese)

    [29] Towell G G, Shavlik J W. Knowledge-Based Artificial Neural Networks [J].ArtificialIntelligence, 1994, 70(1/2): 119-165.

    [30] Mitchell T. Machine Learning [M]. Beijing: China Machine Press, 2003.(in Chinese)

    [31] Fernando S O, Bernard A. INSS: a Hybrid System for Constructive Machine Learning [J].Neurocomputing, 1999, 28(1/2/3): 191-205.

    Foundation item: National Natural Science Foundation of China (No.51175077)

    1672-5220(2014)06-0817-07

    Received date: 2014-08-08

    * Correspondence should be addressed to YANG Jian-guo, E-mail: jgyangm@dhu.edu.cn

    CLC number: TS103.2 Document code: A

    猜你喜歡
    建國
    程建國作品(一)
    大眾文藝(2023年3期)2023-03-03 03:30:50
    程建國作品(二)
    大眾文藝(2023年3期)2023-03-03 03:30:44
    比大小,想背景,悟本質
    Flow separation control over an airfoil using continuous alternating current plasma actuator
    你是我最牽掛的人
    藝術評鑒(2020年2期)2020-03-23 13:34:24
    Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder *
    “建國通寶”錢考辨
    中國錢幣(2016年5期)2016-06-15 20:29:54
    黃建國小小說欣賞
    小說月刊(2015年6期)2015-04-23 08:49:00
    Synthesis of Methyl Isopropyl Ketone and Diethyl Ketone over Ni-Na/ZrO2-MnO2-ZnO Catalyst*
    建國后我軍歷次作戰(zhàn)中的戰(zhàn)略戰(zhàn)術
    軍事歷史(1997年6期)1997-08-21 02:37:06
    欧美久久黑人一区二区| svipshipincom国产片| or卡值多少钱| 亚洲自拍偷在线| 一级a爱片免费观看的视频| 两个人免费观看高清视频| 国产亚洲精品久久久久久毛片| 少妇的丰满在线观看| 欧美性猛交黑人性爽| 老司机靠b影院| 看黄色毛片网站| 精品国产美女av久久久久小说| 又紧又爽又黄一区二区| 777久久人妻少妇嫩草av网站| 亚洲精品中文字幕在线视频| 成人国产一区最新在线观看| 久久久国产欧美日韩av| 日韩精品免费视频一区二区三区| 在线观看www视频免费| 九色国产91popny在线| 欧美成人免费av一区二区三区| 男女视频在线观看网站免费 | 国产在线观看jvid| 一级a爱片免费观看的视频| 听说在线观看完整版免费高清| 国产高清有码在线观看视频 | 琪琪午夜伦伦电影理论片6080| 男女下面进入的视频免费午夜| 一a级毛片在线观看| 免费看十八禁软件| 人成视频在线观看免费观看| 欧美黄色淫秽网站| 最新美女视频免费是黄的| 国产片内射在线| 亚洲第一电影网av| 欧美丝袜亚洲另类 | 国产精品久久久人人做人人爽| 国产爱豆传媒在线观看 | 国产精品久久久久久人妻精品电影| 免费在线观看亚洲国产| 免费在线观看日本一区| 亚洲色图av天堂| 成人特级黄色片久久久久久久| 香蕉久久夜色| 成人欧美大片| 99精品在免费线老司机午夜| 日本熟妇午夜| 黑人欧美特级aaaaaa片| 校园春色视频在线观看| 免费在线观看黄色视频的| 人妻久久中文字幕网| 不卡av一区二区三区| 精品电影一区二区在线| 日韩欧美精品v在线| 曰老女人黄片| 成人18禁高潮啪啪吃奶动态图| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区精品| aaaaa片日本免费| 在线观看日韩欧美| 国产亚洲av嫩草精品影院| 国产精品 国内视频| 黄频高清免费视频| 午夜福利视频1000在线观看| 搡老妇女老女人老熟妇| 亚洲,欧美精品.| 男女床上黄色一级片免费看| 香蕉丝袜av| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看黄色视频的| 99久久无色码亚洲精品果冻| 黄片大片在线免费观看| 看免费av毛片| 又粗又爽又猛毛片免费看| 他把我摸到了高潮在线观看| 日韩欧美一区二区三区在线观看| 成人av一区二区三区在线看| 亚洲国产精品合色在线| 亚洲午夜精品一区,二区,三区| 在线观看免费视频日本深夜| 国产爱豆传媒在线观看 | 国产精品久久电影中文字幕| 两个人看的免费小视频| www.精华液| 国产v大片淫在线免费观看| 日本在线视频免费播放| 中出人妻视频一区二区| 成年免费大片在线观看| 成年女人毛片免费观看观看9| 欧美丝袜亚洲另类 | 亚洲黑人精品在线| 禁无遮挡网站| 99热6这里只有精品| 99热这里只有是精品50| 国产精品一区二区精品视频观看| 亚洲乱码一区二区免费版| 村上凉子中文字幕在线| av天堂在线播放| 亚洲乱码一区二区免费版| 亚洲真实伦在线观看| 在线观看一区二区三区| 久久这里只有精品中国| 97人妻精品一区二区三区麻豆| 国产一区在线观看成人免费| 欧美又色又爽又黄视频| 一级a爱片免费观看的视频| 日韩欧美精品v在线| 一进一出好大好爽视频| 亚洲av电影在线进入| 国产私拍福利视频在线观看| 91成年电影在线观看| 国产精品久久久久久人妻精品电影| 99riav亚洲国产免费| av福利片在线| 日本在线视频免费播放| 两个人看的免费小视频| 好看av亚洲va欧美ⅴa在| 亚洲精品在线美女| 国内揄拍国产精品人妻在线| 琪琪午夜伦伦电影理论片6080| 免费人成视频x8x8入口观看| cao死你这个sao货| 日韩高清综合在线| 高清毛片免费观看视频网站| 午夜老司机福利片| 天堂动漫精品| 精品国产美女av久久久久小说| 十八禁网站免费在线| 村上凉子中文字幕在线| 亚洲成人久久性| 亚洲精品一区av在线观看| 色综合亚洲欧美另类图片| 久久中文字幕人妻熟女| 成人手机av| 亚洲成av人片免费观看| 好看av亚洲va欧美ⅴa在| 2021天堂中文幕一二区在线观| 亚洲七黄色美女视频| 国产av一区在线观看免费| 亚洲中文字幕一区二区三区有码在线看 | 日本在线视频免费播放| 久久久久久久久中文| www日本在线高清视频| 国产亚洲av高清不卡| 18禁观看日本| 美女午夜性视频免费| 中文字幕熟女人妻在线| 亚洲精品中文字幕一二三四区| 久久天躁狠狠躁夜夜2o2o| 少妇的丰满在线观看| 国产探花在线观看一区二区| 亚洲av五月六月丁香网| 国产av不卡久久| 麻豆国产av国片精品| 午夜久久久久精精品| 一区二区三区国产精品乱码| 亚洲av片天天在线观看| 国产精品亚洲美女久久久| 亚洲精品中文字幕在线视频| 久久国产乱子伦精品免费另类| 国产av一区二区精品久久| 青草久久国产| 亚洲 欧美一区二区三区| 欧美三级亚洲精品| 免费看a级黄色片| 日韩欧美三级三区| 久久精品国产亚洲av高清一级| 午夜福利视频1000在线观看| 在线观看日韩欧美| 国产日本99.免费观看| 国产单亲对白刺激| 怎么达到女性高潮| 免费无遮挡裸体视频| 亚洲男人天堂网一区| 精品无人区乱码1区二区| 老熟妇乱子伦视频在线观看| 国产精品爽爽va在线观看网站| 国产日本99.免费观看| 日韩国内少妇激情av| 精品久久久久久,| 女生性感内裤真人,穿戴方法视频| 亚洲av熟女| 人成视频在线观看免费观看| 欧美成人一区二区免费高清观看 | 我要搜黄色片| 久久久久九九精品影院| 欧美中文日本在线观看视频| 成人精品一区二区免费| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 国产精品一区二区精品视频观看| videosex国产| 男女那种视频在线观看| 97人妻精品一区二区三区麻豆| 母亲3免费完整高清在线观看| 亚洲av电影不卡..在线观看| 国产亚洲精品综合一区在线观看 | 国产高清激情床上av| 国产高清视频在线观看网站| av在线天堂中文字幕| 久9热在线精品视频| 亚洲国产精品久久男人天堂| 好看av亚洲va欧美ⅴa在| 老汉色∧v一级毛片| 免费电影在线观看免费观看| 免费看日本二区| 亚洲国产高清在线一区二区三| 变态另类丝袜制服| 久久午夜亚洲精品久久| 久久久久国产一级毛片高清牌| 国产精品野战在线观看| 国产99白浆流出| 日韩精品免费视频一区二区三区| 欧美黑人欧美精品刺激| 日本 欧美在线| 一级作爱视频免费观看| 久久久久精品国产欧美久久久| 一区二区三区国产精品乱码| 国产视频一区二区在线看| av国产免费在线观看| 香蕉av资源在线| 精品免费久久久久久久清纯| 非洲黑人性xxxx精品又粗又长| 亚洲在线自拍视频| 在线观看66精品国产| 一级a爱片免费观看的视频| 一个人免费在线观看的高清视频| 亚洲五月婷婷丁香| xxxwww97欧美| 高清在线国产一区| 日日夜夜操网爽| 久热爱精品视频在线9| 男女下面进入的视频免费午夜| www.999成人在线观看| 露出奶头的视频| 欧美色视频一区免费| 法律面前人人平等表现在哪些方面| 在线观看www视频免费| 国产黄色小视频在线观看| 久久久久久久久免费视频了| 国产精品av视频在线免费观看| 日本一区二区免费在线视频| 国产精品免费视频内射| 日日干狠狠操夜夜爽| 啦啦啦韩国在线观看视频| 一区福利在线观看| 久9热在线精品视频| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 亚洲激情在线av| 成在线人永久免费视频| 亚洲成人久久爱视频| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 波多野结衣高清作品| 精品午夜福利视频在线观看一区| 首页视频小说图片口味搜索| 久久精品人妻少妇| 国产av又大| 欧美不卡视频在线免费观看 | 九色国产91popny在线| 亚洲成人中文字幕在线播放| 久9热在线精品视频| 亚洲午夜理论影院| av中文乱码字幕在线| 国产精品日韩av在线免费观看| 18美女黄网站色大片免费观看| 可以免费在线观看a视频的电影网站| 国产成+人综合+亚洲专区| 久久欧美精品欧美久久欧美| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| av片东京热男人的天堂| xxx96com| www日本在线高清视频| 中文字幕人成人乱码亚洲影| 18禁美女被吸乳视频| 中出人妻视频一区二区| 国产免费男女视频| 欧美在线黄色| 国产亚洲精品久久久久5区| 久9热在线精品视频| 精品高清国产在线一区| 国产精品亚洲美女久久久| 嫩草影视91久久| 女生性感内裤真人,穿戴方法视频| 午夜福利在线观看吧| 久久午夜综合久久蜜桃| 久久香蕉精品热| 免费看a级黄色片| 国产亚洲欧美在线一区二区| 成人av在线播放网站| 免费在线观看日本一区| 免费在线观看影片大全网站| 露出奶头的视频| 国产成人一区二区三区免费视频网站| 亚洲第一电影网av| 国产精品99久久99久久久不卡| 亚洲成人精品中文字幕电影| 舔av片在线| 成人手机av| 国产精品 欧美亚洲| 又黄又爽又免费观看的视频| 国产蜜桃级精品一区二区三区| 日日干狠狠操夜夜爽| 色综合欧美亚洲国产小说| 麻豆久久精品国产亚洲av| 老鸭窝网址在线观看| 久久精品亚洲精品国产色婷小说| 亚洲九九香蕉| 中文字幕av在线有码专区| 国产av不卡久久| 久久人妻av系列| 国产在线观看jvid| 一边摸一边抽搐一进一小说| 99热这里只有是精品50| 久久香蕉精品热| 亚洲中文av在线| 精品午夜福利视频在线观看一区| 好看av亚洲va欧美ⅴa在| 妹子高潮喷水视频| 亚洲精品国产精品久久久不卡| 在线观看日韩欧美| 人人妻人人看人人澡| 久久久国产欧美日韩av| 久久精品成人免费网站| 欧美最黄视频在线播放免费| 亚洲熟妇中文字幕五十中出| 中文字幕久久专区| 日韩三级视频一区二区三区| 在线看三级毛片| 看片在线看免费视频| 动漫黄色视频在线观看| 成人国产一区最新在线观看| 床上黄色一级片| 国产熟女午夜一区二区三区| 精品第一国产精品| 熟女电影av网| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 欧美日韩国产亚洲二区| 亚洲国产精品999在线| 国产午夜精品久久久久久| 黄色丝袜av网址大全| av欧美777| e午夜精品久久久久久久| 一区二区三区激情视频| 成在线人永久免费视频| 我要搜黄色片| 国产片内射在线| 色哟哟哟哟哟哟| 国产蜜桃级精品一区二区三区| 男女视频在线观看网站免费 | 免费观看精品视频网站| 午夜福利在线在线| 欧美日韩乱码在线| 亚洲第一电影网av| 欧美一区二区精品小视频在线| 九色成人免费人妻av| av片东京热男人的天堂| 午夜两性在线视频| 亚洲国产欧美人成| 免费在线观看成人毛片| 91九色精品人成在线观看| 在线视频色国产色| 久久天躁狠狠躁夜夜2o2o| 正在播放国产对白刺激| 国产三级在线视频| 最近视频中文字幕2019在线8| 国产精品野战在线观看| 国产一区二区三区在线臀色熟女| 国产伦在线观看视频一区| av有码第一页| 午夜久久久久精精品| 国产男靠女视频免费网站| 亚洲无线在线观看| www国产在线视频色| 成人国产综合亚洲| 国产精品久久久人人做人人爽| 久久午夜亚洲精品久久| 9191精品国产免费久久| 中文字幕人成人乱码亚洲影| 十八禁人妻一区二区| 国产熟女xx| 男人舔女人下体高潮全视频| 制服诱惑二区| av福利片在线观看| 18禁裸乳无遮挡免费网站照片| 黑人巨大精品欧美一区二区mp4| 18美女黄网站色大片免费观看| 日本成人三级电影网站| 欧美成狂野欧美在线观看| 色哟哟哟哟哟哟| 亚洲一卡2卡3卡4卡5卡精品中文| 精品不卡国产一区二区三区| 免费观看人在逋| 嫁个100分男人电影在线观看| 亚洲一区高清亚洲精品| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 亚洲专区国产一区二区| av有码第一页| 亚洲男人的天堂狠狠| 日韩成人在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 草草在线视频免费看| 级片在线观看| АⅤ资源中文在线天堂| 亚洲午夜理论影院| 狠狠狠狠99中文字幕| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美一区二区综合| 欧美绝顶高潮抽搐喷水| 亚洲中文av在线| 欧洲精品卡2卡3卡4卡5卡区| 我的老师免费观看完整版| 极品教师在线免费播放| 正在播放国产对白刺激| 成人av一区二区三区在线看| 大型av网站在线播放| 免费在线观看日本一区| 婷婷精品国产亚洲av在线| 18美女黄网站色大片免费观看| 波多野结衣巨乳人妻| 午夜免费观看网址| 最新在线观看一区二区三区| av在线播放免费不卡| 黄色丝袜av网址大全| 亚洲精品色激情综合| 国产av麻豆久久久久久久| 黄色视频,在线免费观看| 日本熟妇午夜| 在线观看美女被高潮喷水网站 | av视频在线观看入口| 国产av一区在线观看免费| 在线观看www视频免费| 一夜夜www| 日本一本二区三区精品| 国产男靠女视频免费网站| 黄片大片在线免费观看| 欧美绝顶高潮抽搐喷水| 天堂√8在线中文| 99精品在免费线老司机午夜| 国产欧美日韩一区二区精品| 日日干狠狠操夜夜爽| 在线国产一区二区在线| 一二三四社区在线视频社区8| 黄色丝袜av网址大全| 亚洲国产精品999在线| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| 成在线人永久免费视频| 久久热在线av| 少妇被粗大的猛进出69影院| 国产亚洲欧美98| 妹子高潮喷水视频| 性色av乱码一区二区三区2| 成人精品一区二区免费| 国产精品免费一区二区三区在线| 国产成人啪精品午夜网站| 啦啦啦免费观看视频1| 国内久久婷婷六月综合欲色啪| 天堂动漫精品| 国产激情偷乱视频一区二区| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3| 免费看a级黄色片| 成人av在线播放网站| 欧美三级亚洲精品| 免费人成视频x8x8入口观看| 无限看片的www在线观看| 舔av片在线| 国产av一区在线观看免费| 色噜噜av男人的天堂激情| 久久久久性生活片| 悠悠久久av| 亚洲aⅴ乱码一区二区在线播放 | 国产三级在线视频| 十八禁人妻一区二区| 欧美绝顶高潮抽搐喷水| 亚洲精品国产精品久久久不卡| 国内久久婷婷六月综合欲色啪| avwww免费| 97超级碰碰碰精品色视频在线观看| 一区二区三区高清视频在线| 18美女黄网站色大片免费观看| 天天一区二区日本电影三级| 欧美日韩中文字幕国产精品一区二区三区| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 18禁黄网站禁片午夜丰满| 午夜视频精品福利| 麻豆成人午夜福利视频| 99久久99久久久精品蜜桃| 九色成人免费人妻av| 啦啦啦韩国在线观看视频| 国产一区二区在线观看日韩 | 午夜精品一区二区三区免费看| 国产又色又爽无遮挡免费看| 国产成人av教育| 日本黄大片高清| 亚洲五月婷婷丁香| 一本综合久久免费| 女生性感内裤真人,穿戴方法视频| 欧美大码av| 两个人免费观看高清视频| 国产久久久一区二区三区| 无遮挡黄片免费观看| 久久久久性生活片| 国产三级在线视频| 久久久久国产一级毛片高清牌| 国产精品免费一区二区三区在线| 99久久99久久久精品蜜桃| 一级片免费观看大全| 日韩免费av在线播放| 少妇的丰满在线观看| 欧美黄色片欧美黄色片| 91九色精品人成在线观看| 两个人视频免费观看高清| 岛国在线观看网站| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩东京热| 亚洲狠狠婷婷综合久久图片| 国产精品野战在线观看| 亚洲18禁久久av| 国产精品永久免费网站| 日韩精品免费视频一区二区三区| 校园春色视频在线观看| 亚洲片人在线观看| 精品一区二区三区四区五区乱码| 99久久久亚洲精品蜜臀av| 成人av在线播放网站| 久久香蕉精品热| a级毛片在线看网站| 国语自产精品视频在线第100页| 成人av在线播放网站| 亚洲国产看品久久| 成人一区二区视频在线观看| 大型av网站在线播放| 变态另类成人亚洲欧美熟女| 曰老女人黄片| 国产精品久久视频播放| 亚洲中文字幕日韩| 色精品久久人妻99蜜桃| 老司机深夜福利视频在线观看| 亚洲性夜色夜夜综合| 9191精品国产免费久久| or卡值多少钱| 波多野结衣巨乳人妻| 国产精品自产拍在线观看55亚洲| 9191精品国产免费久久| 露出奶头的视频| 久久 成人 亚洲| 国产三级黄色录像| 黄色a级毛片大全视频| 美女黄网站色视频| 伦理电影免费视频| 免费电影在线观看免费观看| 脱女人内裤的视频| 国产伦人伦偷精品视频| 我的老师免费观看完整版| www国产在线视频色| 亚洲美女视频黄频| 久久人妻av系列| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品久久男人天堂| www日本黄色视频网| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 亚洲一区高清亚洲精品| 国产一区二区在线观看日韩 | 国产精品电影一区二区三区| 久久久久久国产a免费观看| 黑人欧美特级aaaaaa片| 国产av不卡久久| 香蕉久久夜色| 亚洲色图 男人天堂 中文字幕| 无遮挡黄片免费观看| 国产精品永久免费网站| 天堂动漫精品| 窝窝影院91人妻| 国产一区二区三区在线臀色熟女| 国产探花在线观看一区二区| 亚洲精品粉嫩美女一区| 国产1区2区3区精品| 亚洲九九香蕉| 中文资源天堂在线| 男女之事视频高清在线观看| 亚洲欧美精品综合一区二区三区| 欧美乱妇无乱码| 精品电影一区二区在线| 久久久精品国产亚洲av高清涩受| 好男人电影高清在线观看| 亚洲第一欧美日韩一区二区三区| 男女下面进入的视频免费午夜| 正在播放国产对白刺激| 亚洲精品美女久久久久99蜜臀| 久久久久免费精品人妻一区二区| tocl精华| 一区福利在线观看| 九色国产91popny在线| 欧美性猛交黑人性爽| 超碰成人久久| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 麻豆国产av国片精品| 悠悠久久av| 国产成人一区二区三区免费视频网站| 人人妻,人人澡人人爽秒播| 精品日产1卡2卡| 亚洲片人在线观看| 精品久久久久久久久久久久久| 亚洲成人国产一区在线观看| 免费在线观看日本一区|