• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network

    2014-08-12 02:31:02YANGJianguo楊建國XULanXIANGQianLIUBin
    關鍵詞:建國

    YANG Jian-guo (楊建國), XU Lan(徐 蘭) , XIANG Qian(項 前), LIU Bin(劉 彬)

    College of Mechanical Engineering, Donghua University, Shanghai 201620, China

    Yarn Quality Prediction and Diagnosis Based on Rough Set and Knowledge-Based Artificial Neural Network

    YANG Jian-guo (楊建國)*, XU Lan(徐 蘭) , XIANG Qian(項 前), LIU Bin(劉 彬)

    CollegeofMechanicalEngineering,DonghuaUniversity,Shanghai201620,China

    In the spinning process, some key process parameters (i.e., raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a hybrid learning-based model was developed for on-line intelligent monitoring and diagnosis of the spinning process. In the proposed model, a knowledge-based artificial neural network (KBANN) was developed for monitoring the spinning process and recognizing faulty quality categories of yarn. In addition, a rough set (RS)-based rule extraction approach named RSRule was developed to discover the causal relationship between textile parameters and yarn quality. These extracted rules were applied in diagnosis of the spinning process, provided guidelines on improving yarn quality, and were used to construct KBANN. Experiments show that the proposed model significantly improve the learning efficiency, and its prediction precision is improved by about 5.4% compared with the BP neural network model.

    yarnqualityprediction;roughset(RS);knowledgediscovery;knowledge-basedartificialneuralnetwork(KBANN)

    Introduction

    Spinning process is a typically complex unstable industrial process, that can be easily disturbed by the surrounding environment, including not only the material displacement process, fluid dynamics process, but also heat exchange and chemical reactions. Traditional quality prediction was conducted frequently based on mathematical statistics, gray theory,etc. It has done a lot to simplify production conditions, with little consideration of the interaction between variables, which is a major factor in the actual production.

    A great many experts and scholars have done a lot of researches on complex production process quality prediction and diagnosis. Compared with the traditional regression methods, artificial neural network and support vector machine technology has a great advantage in dealing with complex nonlinear problems[1-9]. The research of Refs.[1-4] showed that, the neural network had good prediction performance in textile field; Evander and Eng used the neural network to predict the existence of acute pulmonary embolism[5-6]; Gebraeeletal. and Tian established the prediction model of remaining life of electronics or equipment based neural network[7-8]; Ribeiro applied support vector machines in injection molding production process quality diagnosis[9]. But the artificial neural network (ANN) has two obvious defects: one is using the gradient descent method leads to the slow learning speed and local optimization, and the other is the “black box” defects of neural network. Many scholars optimized the structure parameters of ANN by using the GA algorithm, PSO algorithm, and other optimization algorithm, and experiments showed that improved ANN’s performance had been significantly enhanced[10-16]. Considering the ANN cannot explicitly pointed out the shortcomings of the nonlinear relationship between process parameters and production quality, some machine learning algorithms which based on knowledge discovery have been proposed[17-25]. Sette developed a classification system based on fuzzy logic and applied to the process rules’ generation of the fiber into yarn’s production process[17]. Lüetal. presented rough set to extract the spinning process rules and extraction rules providing support for product quality control[18-19]. Yu proposed a quality remote monitoring and diagnosis model based on GA and the knowledge-based artificial neural network, and applied this model in a coating production line, which effectively improved the quality of the product[21-22]. Akkalaetal. applied the neural network of knowledge in the areas of environmental engineering and machine processing,etc[23-25].

    In this paper, considering the two major drawbacks of ANN, a hybrid intelligent forecasting model was established based on rough set (RS) and knowledge-based artificial neural network (KBANN), which reflected the complex nonlinear relationship between the parameters and the product quality in Spinning process. The results show that the model not only improves the prediction performance, but also solves the problem of diagnosis and adjustment of quality fluctuation through the extracted knowledge.

    1 Frame of a Hybrid Intelligent Learning Model

    Fig.1 Frame of a hybrid intelligent learning model

    Figure 1 illustrates the framework of a hybrid intelligent learning model presented in this paper. In order to realize intelligent monitoring, KBANN uses the training set to study the complex relationship between process parameters and product quality, then outputs neuron value to monitor the process status. To achieve intelligent diagnosis, explicit rules are extracted to explain the relationship between the process parameters and product quality based on RSRule. Meanwhile rules extracted by RSRule (i.e., domain knowledge) can be applied to the initialization of KBANN model. Therefore, the integration of KBANN and RSRule can not only monitor process anomalies, but also explain why there will be quality fluctuations and how to adjust the parameters to achieve stability control of product quality.

    2 Spinning Process Decision Rules Extraction Based on RS

    RS theory is a new mathematical tool proposed by Pawlak professor, it was based on set theory to deal with vagueness and uncertainty problem[26]. Pawlaketal. argued that knowledge could be understood as the ability to divide things within a certain category, and the research object of knowledge was described by decision table[26-29].

    Figure 2 shows the algorithm flow of knowledge extraction algorithm based on rough set theory. It consists of data preprocessing, data attribute reduction, decision algorithm, and other parts. Firstly, the data are discretized with the ordination and cluster analysis method, and then use genetic algorithm for attribute reduction of decision table, and further a minimal set of decision rules to get the final classification rules.

    Fig.2 Algorithm flow of rough set knowledge extraction

    2.1 Discrete data of textile process

    In the textile process, values of decision tables must be represented by discrete data when using rough set theory to deal with decision tables, which require the discrete processing prior the data processing if range of condition attributes and decision attributes are continuous value. For continuous textile processing attribute data, its discretion methods often need to consider the technical characteristics of the classification criteria, data distribution, data sample size, and other information. This paper deals with discrete problems by sorting and cluster analysis methods.

    Step 1 Sort the value of the attributea, get ordered domainVa.

    Step 2 The relative change rateδi -1=ai-ai -1of the property pointai(i=2, 3, …,n) into the previous property pointai -1is calculated, there may be a breakpoint where the rateδhas a step change, thereby obtaining an ordered domainVaand classification quantityka.

    (1)

    (2)

    (3)

    2.2 Decision table reduction based on the genetic algorithm

    Reduction process is removing unnecessary condition attributes from the condition attributes of decision table system to analyze the decision rules for condition property relative to decision property from the formerly obtained reduction. In this paper, the minimum attribute reduction problem is solved by transforming it into a multi-objective optimization problem, and the redundant condition is reduced based on the genetic algorithm to get the simplified decision table.

    (4)

    Set of reduction is:

    (5)

    wherecard(·) indicates the base of a set;Ris an attributes set to which minimal attribute reduction,card(R) denotes the number of elements of the attributes set,i.e., the attribute length;γR(D) is the dependence of condition attribute setRrelative to the decision attributeDfor the sense of rough set.

    Based on the definition of the minimum attribute reduction, the problem can be solved by transforming it into a multi-objective optimization problem, and the problem is described as:

    (6)

    The reduction step of condition attributeCof decision table is as follows.

    Step 1 Use the binary string {0, 1} of the lengthl(lrepresents the number of condition attributes) to represent the code of each, each bit corresponds to one conditional attribute.

    Step 3 If the best individual in the population is small enough, or after multi-generational cycle of continuous operation, individualf(R) hasn’t been significantly improved, go to Step 6, otherwise, population genetic manipulation goes on.

    Step 4 Select the operator to filter the individuals from the contemporary populations that meet the conditions.

    Step 5 Do crossover and mutation operations for individuals that meet the conditions, and return to Step 2.

    Step 6 Get the minimum attribute reduction, and form decision table after reduction.

    722 Research progress of mesenchymal stem cell-derived exosomes in kidney diseases

    2.3 Reduction of decision rules

    The results of attribute reduction, for the classification decision, still contain redundant information. Reduction of decision rule is to eliminate the unnecessary conditions of each decision rule of decision rule set by the means of decision logic,i.e., to remove redundant attribute values of each decision rule to make a further minimization of set of decision rules.

    For a decision table after attribute reduction obtained, we can form a decision rule for each sample. Therefore, samples of the decision table can be represented by the rules.Reduced decision table is actually a set of rules. For this set of rules, we can use the following reduction algorithm (Fig.3)[29].

    Fig.3 Flow chart of reduced algorithm

    All the rules in the processed rule set do not contain redundant attributes, that is, the number of conditions attributes of a rule is minimized.

    3 Intelligent Monitoring Model Based on KBANN

    The relationship between input and output can be modeled by KBANN algorithm, which is a method of constructing the network structure and giving the network connection weights based on the obtained expert knowledge in the field[30]. As shown in Fig.4, KBANN algorithm is consisted of two key steps: analysis step (neighborhood knowledge is transformed into equivalent neural network (steps 1-3)), and inductive step (neighborhood knowledge is then summed and refined with the back-propagation algorithm (step 4))[31].

    Fig.4 KBANN algorithm

    The basic KBANN algorithm supports rules based on binary (Bianry) and the discrete input feature. Fernando and Bernard presented a KBANN based INSS system[31]. INSS expands the types of rules that can be used by KBANN so that KBANN can use the rules of input feature of real type. The real rule type can be performed as follows:

    IF Greate_Than (Sensor_S1, 1.0) and Less_Than (Sensor_S2, 0.5) Then Conclusion_C1 where Sensor_S1 and Sensor_S2 are input features of the dataset, and Conclusion_C1 is corresponding conclusion class label. Such a rule set can be mapped into ANN by KBANN which is similar to multilayer perceptron. Figure 5 shows a simple rule mapping process.

    Greater_ThanX<-Greater_Than(A,0.3,w,C)Less_ThanX<-Less_Than(A,0.3,w,C)Realvalueinput:AV=constant(0.3)w=sensitivityRealvalueinput:AV=constant(0.3)w=sensitivity

    Fig.5 Greater_Than with Less_Than rule mapping process in INSS system

    4 Yarn Quality Monitoring and Diagnosis Based on Hybrid Intelligent Learning Model

    4.1 Spinning decision rules: RSrule

    Twenty five different sets of cotton samples are collected from the production, whose fiber qualities are measured by the fast large-capacity instruments. All the samples are spun by SDL MDTD/Quick spin system to total of 10 yarns and stored at conditions of relative humidity of (62±2)% and temperature of 20±2 and measuring the quality of its yarn 24 h later. Data are shown in Table 1.

    Table 1 Crude materials and yarn quality index sample

    (2) Discrete data

    Take fiber strength for example, it can be sorted from small to large by its value. We can observe the slope of the data changes by using the order as the horizontal axis and the fiber strength as the vertical axis (Fig.6). Classifying the data into three categories, and then using theK-mean clustering method to determine the split point (Fig.7); ultimately results are shown in Tables 2 and 3.

    Fig.6 Fiber strength values in ascending order

    Fig.7 Fiber strength property values cluster

    CategoryClusteringdatainascendingorder117.818.719.52020.220.320.820.920.92121.1221.321.421.521.721.82222.322.722.924.5327.930.93232.9

    Table 3 Cut point value of each attribute

    For discretion of combination attributes, the yellowness and the reflectance, for example, can be composed to color properties, using the samek-mean clustering method as well, shown in Fig.8, to classify the color property value into three categories. Synthesize discrete split point set of all the properties, the condition attributes C and decision attributes D are summarized in Table 4.

    Fig.8 The yellow color combination with reflectance properties of clusters

    Redundant condition attributes can be removed by attribute reduction, and the obtained attribute set after attribute reduction is: {fiber strength, elongation, length irregularity}.

    (4) Decision rules reduction

    After consolidating with reduction, redundant condition attribute items and attribute values are removed. As shown in Table 5,xrepresents a sample record, such asx3means the third sample. Each row represents a decision rule. Uncertainty factor of 1 indicates that the rules generated do not conflict with each other. The support of a decision rule means the ratio of the number of record data of the decision rule to the total number of records, reflecting the degree of confidence of the rule.

    Table 5 can be interpreted as decision rules as follows:

    Rule 1: if fiber strength is smaller than 21.2, then yarn strength is smaller than 12.5.

    Rule 2: if yarn strength lies in 21.2-26.2 and elongation is smaller than 5.85% and the length of the uneven rate is smaller than 43%, then yarn strength is smaller than 12.5.

    Rule 3: if fiber strength is between 21.2 and 26.2 and elongation is smaller than 5.85% and the length of unevenness between 43% and 49%, then yarn strength is between 12.5 and 14.

    Rule 4: if fiber strength is between 21.2 and 26.2 and elongation of is bigger than 5.85%, then yarn strength is smaller than 12.5.

    Rule 5:if fiber strength is bigger than 26.2, then yarn strength is bigger than 14.

    Table 4 Discrete data samples

    Table 5 Material properties and yarn strength decision rule table

    4.2 Monitoring model: KBANN

    4.2.1 The construction of KBANN

    Take the raw material index as the model input, and take the type of yarn strength quality as the output. The nonlinear relationship between them can be constructed based on KBANN. The network architecture can be built based on the spinning process rules, in which rule-to-network algorithm maps the rules to be the input layer hidden layer of KBANN structure, and the Topwell and Shavlik method[29]constructed the connection between the hidden layer and the output layer. Figure 9 shows the topology of the final structure of KBANN. The rule set contains a total of 14 conditions, and produces a total of 14 connections between the input layer and the hidden layer. Meanwhile, the weight and bias values are initiated to satisfy all rule conditions. Thus, a network topology is composed of 8 input neurons (corresponding to eight input indicators), 14 hidden nodes, and 3 output neurons (corresponding to the three types of output quality quality).

    Fig.9 KBANN mapping rules

    The output layer contains three neurons, corresponding to the three types of output quality, and the output can be represented by the following form:C1: (1, 0, 0),C2: (0, 1, 0), andC3: (0, 0, 1), which were used to identify three quality types. Output range of KBANN is [0, 1], where 1 represents an output completely corresponding to an output quality type. Meanwhile, deviation thresholds can be set. IfC1,C2, andC3 are greater than the predetermined deviation threshold, the quality fluctuations occurrence can be determined.

    4.2.2 Analysis

    After the construction of the network topology of KBANN is completed, KBANN will further learn the knowledge of the training set, using back-propagation algorithm. In order to compare the performance of learning between KBANN and BP neural network (BPNN), BPNN using KBANN topology and related parameters while the initial weights and thresholds are randomly obtained in the range [-0.05, 0.05]. Shown in Fig.10, both the learning process curves show: compared with standard BPN, KBANN has a faster fitting speed and better training result.

    Fig.10 Mean square error (MSE) curves of KBANN and BPNN training process

    The reason that KBANN is better than BPN on training performance is: KBANN learns from the rules before training the initial implicit knowledge in the data, obtains the optimized initialized network weights, and speeds up network fitting process. When using back-propagation algorithm to learn knowledge further, it will fine-tune the initial network weights and thresholds, and learn knowledge of those missing. This process avoids complex process where the traditional ANN needs to constantly try to get a proper network structure, which further improves the learning performance.

    Table 6 shows the KBANN model predictions for some sample results and the effectiveness of KBANN to identify the type of yarn product quality, while Table 7 shows correct identification rate of yarn quality type of both method. KBANN identification results are better than the standard BPN. Experiments show that using KBANN for yarn manufacturing process quality classification and forecasting process status is valid.

    Table 6 Predictions of the test set KBANN

    Table 7 Recognition accuracy of KBANN and BPN/%

    5 Conclusions

    This study proposed a hybrid learning-based system for online monitoring and diagnosis of spinning process, where some key process parameters (i.e., system inputs) have very strong relationship with the quality of finished products(i.e., system outputs). In order to provide effective and accurate monitoring and diagnosis, a hybrid learning-based model by seamless integration of KBANN and RSRule is developed. RSRule can extract accurate and comprehensible rules to help operators accurately diagnosis abnormal processes and optimally set spinning process parameters. KBANN correctly learns knowledge from a training data set collected from spinning process. KBANN shows better performance than those of the standard BPNs when it is used for predicting the faulty quality category of the product on-line.

    [1] üreyen M E, Gürkan P. Comparison of Artificial Neural Network and Linear Regression Models for Prediction of Ring Spun Yarn Properties: I. Prediction of Yarn Tensile Properties [J].FibersandPolymers, 2008, 9(1):87-91.

    [2] Yin X G, Xiang Q, Lü Z J,etal. The Whole Virtual Manufacturing System for the Worsted Based on the Intelligent Technology [J].JournalofXi’anPolytechnicUniversity, 2008, 22(4): 407-411. (in Chinese)

    [3] üreyen M E, Gürkan P. Comparison of Artificial Neural Network and Linear Regression Models for Prediction of Ring Spun Yarn Properties. II. Prediction of Yarn tlairiness and Uneveness [J].FibersandPolymers, 2008, 9(1): 92-96.

    [4] Li X, Peng Z Q, Jin F Y,etal. Comparing Prediction Models for Worsted Yarn Performances Based on Neutral Networks [J].JournalofTextileResearch, 2011, 32(3): 51-56. (in Chinese)

    [5] Evander E, Holst H, Jarund A,etal. Role of Ventilation Scintigraphy in Diagnosis of Acute Pulmonary Embolism: an Evaluation Using Artificial Neural Networks [J].EuropeanJournalofNuclearandMolecularImaging, 2003, 30(7): 961-965.

    [6] Eng J. Predicting the Presence of Acute Pulmonary Embolism: a Comparative Analysis of the Artificial Neural Network, Logistic Regression, and Threshold Models [J].AmericanJournalofRoentgenology, 2002, 179(4): 869-874.

    [7] Gebraeel N Z, Lawley M A. A Neural Network Degradation Model for Computing and Updating Residual Life Distributions[J].IEEETransactionsonAutomationScienceandEngineering, 2008, 5(1): 154-163.

    [8] Tian Z G. An Articial Neural Network Method for Remaining Useful Life Prediction of Equipment Subject to Condition Monitoring [J].JournalofIntelligentManufacturing, 2012, 23(2): 227-237.

    [9] Ribeiro B. Support Vector Machines for Quality Monitoring in a Plastic Injection Molding Process [J].IEEETransactionsonSystems,ManandCybernetics,PartC:ApplicationsandReviews, 2005, 35(3): 401-410.

    [10] Lü Z J, Xiang Q, Li B Z,etal. Support Vector Machine with Real Code Genetic Algorithm for Yarn Quality Prediction [J].AdvancedScienceLetters, 2013, 19(8): 2468-2472.

    [11] Li S, Liu L J, Xie Y L. Chaotic Prediction for Short-Term Traffic Flow of Optimized BP Neural Network Based on Genetic Algorithm [J].ControlandDecision, 2011, 26(10): 1581-1585. (in Chinese)

    [12] Das S, Ghosh S, Majumdar A,etal. Yarn Engineering Using Hybrid Artificial Neural Network-Genetic Algorithm Model [J].FibersandPolymers, 2013, 14(7): 1220-1226.

    [13] Josphat M I, Huang X B, Wang X H. The Use of Hybrid Algorithms to Improve the Performance of Yarn Parameters Prediction Models [J].FibersandPolymers, 2012, 13(9): 1201-1208.

    [14] Kuo C F J, Chang C D, Su T L,etal. Optimization of the Dyeing Process and Prediction of Quality Characteristics on Elastic Fiber Blending Fabrics [J].Polymer-PlasticsTechnologyandEngineering, 2010, 47(7): 678-687.

    [15] Ji R Y. Particle Swarm Optimization Neural Network in the Application of Traffic Flow Prediction [D]. Hangzhou: Zhejiang University of Technology, 2013. (in Chinese)

    [16] Liu B, Xiang Q, Yang J G,etal. Combining the Genetic Algorithm with Artificial Neural Networks for Yarn Quality Forecasting [J].JournalofDonghuaUniversity:NaturalEdition, 2013, 39(4): 504-508.(in Chinese)

    [17] Sette S, Langenhove L V. An Overview of Soft Computing in Textile [J].TextileInstitute, 2003, 94(1/2): 103-109.

    [18] Lü Z J, Xiang Q, Yang J G. A Novel Date Mining Method on Quality Control within Spinning Process [J].AppliedMechanicsandMaterials, 2012, 224: 87-92.

    [19] Xiang Q, Lü Z J, Yang J G,etal. Mining Rule of Quality Control for Spinning Process with Rough Set Theory[J].AppliedMechanicsandMaterials, 2011, 80/81: 1021-1026.

    [20] Zhang X W, Wu Z W. Rough Set Theory and Method [M]. Beijing: People’s Posts and Telecommunications Press, 2007. (in Chinese)

    [21] Yu J B. Studying of Manufacturing Process Quality Control Theory and Methodology Based on Intelligent Learning Model [D]. Shanghai: Shanghai Jiaotong University, 2009. (in Chinese)

    [22] Yu J B, Xi L F, Zhou X J. Intelligent Monitoring and Diagnosis of Manufacturing Processes Using an Integrated Approach of KBANN and GA [J].ComputersinIndustry, 2008, 59(5): 489-501.

    [23] Akkala A, Bhatt D, Devabhaktuni V,etal. Knowledge-Based Neural Network Approaches for Modeling and Estimating Radon Concentrations [J].EnvironmentalProgress&SustainableEnergy, 2013, 32(2): 355-364.

    [24] Chandra R, Knight R, Omlin C W. Renosterveld Conservation in South Africa: a Case Study for Handling Uncertainty in Knowledge-Based Neural Networks for Environmental Management [J].JournalofEnvironmentalInformatics, 2009, 13(1): 56-65.

    [25] Jha M N, Pratihar D K, Bapat A V,etal. Knowledge-Based Systems Using Neural Networks for Electron Beam Welding Process of Reactive Material (Zircaloy-4) [J].JournalofIntelligentManufacturing, 2014, 25(6): 1315-1333.

    [26] Pawlak Z. Rough Sets [J].InternationalJournalofComputerandInformationSciences, 1982(5): 341-356.

    [27] Wang G Y, Yao Y Y, Yu H. A Survey on Rough Set Theory and Applications [J].ChineseJournalofComputers, 2009, 32(7): 1229-1246.(in Chinese)

    [28] An L P. Multi-attribute Decision Analysis Based on Rough Set Theory [M]. Beijing: Science Press, 2008. (in Chinese)

    [29] Towell G G, Shavlik J W. Knowledge-Based Artificial Neural Networks [J].ArtificialIntelligence, 1994, 70(1/2): 119-165.

    [30] Mitchell T. Machine Learning [M]. Beijing: China Machine Press, 2003.(in Chinese)

    [31] Fernando S O, Bernard A. INSS: a Hybrid System for Constructive Machine Learning [J].Neurocomputing, 1999, 28(1/2/3): 191-205.

    Foundation item: National Natural Science Foundation of China (No.51175077)

    1672-5220(2014)06-0817-07

    Received date: 2014-08-08

    * Correspondence should be addressed to YANG Jian-guo, E-mail: jgyangm@dhu.edu.cn

    CLC number: TS103.2 Document code: A

    猜你喜歡
    建國
    程建國作品(一)
    大眾文藝(2023年3期)2023-03-03 03:30:50
    程建國作品(二)
    大眾文藝(2023年3期)2023-03-03 03:30:44
    比大小,想背景,悟本質
    Flow separation control over an airfoil using continuous alternating current plasma actuator
    你是我最牽掛的人
    藝術評鑒(2020年2期)2020-03-23 13:34:24
    Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder *
    “建國通寶”錢考辨
    中國錢幣(2016年5期)2016-06-15 20:29:54
    黃建國小小說欣賞
    小說月刊(2015年6期)2015-04-23 08:49:00
    Synthesis of Methyl Isopropyl Ketone and Diethyl Ketone over Ni-Na/ZrO2-MnO2-ZnO Catalyst*
    建國后我軍歷次作戰(zhàn)中的戰(zhàn)略戰(zhàn)術
    軍事歷史(1997年6期)1997-08-21 02:37:06
    波多野结衣巨乳人妻| 人人妻人人看人人澡| 最近在线观看免费完整版| 亚洲国产精品成人综合色| 99久久久亚洲精品蜜臀av| 欧美日韩国产亚洲二区| 久久午夜亚洲精品久久| 黄色一级大片看看| 最新在线观看一区二区三区| 免费观看人在逋| 免费电影在线观看免费观看| 国产精品久久久久久亚洲av鲁大| 国产精品亚洲美女久久久| 亚洲不卡免费看| 亚洲欧美清纯卡通| 久久精品国产亚洲av香蕉五月| 91在线观看av| 亚洲人与动物交配视频| 嫩草影院新地址| 免费av毛片视频| 中文字幕av成人在线电影| 亚洲最大成人中文| 亚洲不卡免费看| 能在线免费观看的黄片| 99九九线精品视频在线观看视频| 美女高潮喷水抽搐中文字幕| 我的老师免费观看完整版| 欧美人与善性xxx| 国产大屁股一区二区在线视频| 国产美女午夜福利| 两个人视频免费观看高清| 久久精品夜夜夜夜夜久久蜜豆| 又黄又爽又免费观看的视频| 色尼玛亚洲综合影院| 色视频www国产| 极品教师在线免费播放| 国产精品久久久久久久电影| 最近最新中文字幕大全电影3| 性插视频无遮挡在线免费观看| 欧美精品国产亚洲| 亚洲国产精品sss在线观看| 在线观看免费视频日本深夜| 成人精品一区二区免费| 亚洲美女搞黄在线观看 | av中文乱码字幕在线| 99视频精品全部免费 在线| 人妻制服诱惑在线中文字幕| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美精品免费久久| 亚洲内射少妇av| 亚洲精品成人久久久久久| 悠悠久久av| 亚洲精品一卡2卡三卡4卡5卡| 国产精品不卡视频一区二区| 久久久精品大字幕| 99久久中文字幕三级久久日本| 此物有八面人人有两片| 久久精品人妻少妇| 99久久九九国产精品国产免费| 午夜精品久久久久久毛片777| 久久久久久大精品| 3wmmmm亚洲av在线观看| 国产乱人视频| 身体一侧抽搐| 99热这里只有是精品50| 成人鲁丝片一二三区免费| 毛片女人毛片| 亚洲狠狠婷婷综合久久图片| 我的女老师完整版在线观看| 村上凉子中文字幕在线| 亚洲美女黄片视频| 久久热精品热| 亚洲无线观看免费| 欧美另类亚洲清纯唯美| 51国产日韩欧美| 国模一区二区三区四区视频| 美女xxoo啪啪120秒动态图| 国产高清激情床上av| 亚洲国产高清在线一区二区三| 国产精品永久免费网站| 国产视频内射| 久久久国产成人免费| 中国美女看黄片| 一个人免费在线观看电影| 九色成人免费人妻av| 丰满人妻一区二区三区视频av| 18禁黄网站禁片免费观看直播| 成人毛片a级毛片在线播放| 欧美潮喷喷水| 国产综合懂色| 欧美色欧美亚洲另类二区| 男人和女人高潮做爰伦理| 久久精品影院6| 色噜噜av男人的天堂激情| 亚洲av中文av极速乱 | 久久精品综合一区二区三区| 亚洲综合色惰| 丰满的人妻完整版| 少妇丰满av| 少妇被粗大猛烈的视频| 欧美一区二区精品小视频在线| 人妻制服诱惑在线中文字幕| 午夜免费男女啪啪视频观看 | 精品日产1卡2卡| x7x7x7水蜜桃| 别揉我奶头~嗯~啊~动态视频| 99riav亚洲国产免费| 69av精品久久久久久| 日韩欧美免费精品| 99九九线精品视频在线观看视频| 精品久久久久久,| 久久热精品热| 日韩一本色道免费dvd| 久久欧美精品欧美久久欧美| 免费一级毛片在线播放高清视频| 直男gayav资源| 日韩亚洲欧美综合| 亚洲欧美日韩卡通动漫| 中文字幕熟女人妻在线| 女生性感内裤真人,穿戴方法视频| 日本 av在线| 男人舔女人下体高潮全视频| 午夜影院日韩av| 成人国产一区最新在线观看| 日本黄大片高清| 亚洲国产高清在线一区二区三| 一级黄色大片毛片| 亚洲精品一卡2卡三卡4卡5卡| 少妇高潮的动态图| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲性久久影院| 午夜免费男女啪啪视频观看 | 精品99又大又爽又粗少妇毛片 | 人妻夜夜爽99麻豆av| 国产乱人伦免费视频| 欧美不卡视频在线免费观看| 国产毛片a区久久久久| .国产精品久久| 免费在线观看影片大全网站| 亚洲乱码一区二区免费版| 熟妇人妻久久中文字幕3abv| 国产亚洲精品综合一区在线观看| 精品久久久久久久久久免费视频| 国内久久婷婷六月综合欲色啪| 亚洲久久久久久中文字幕| 久久精品国产鲁丝片午夜精品 | 在线观看免费视频日本深夜| 亚洲av五月六月丁香网| 日本熟妇午夜| 内射极品少妇av片p| 欧美激情国产日韩精品一区| 搡老熟女国产l中国老女人| 久久久久久久久中文| 亚洲精华国产精华液的使用体验 | 俄罗斯特黄特色一大片| 草草在线视频免费看| 亚洲精品日韩av片在线观看| 美女大奶头视频| 国产 一区精品| 国产午夜精品久久久久久一区二区三区 | 欧美成人一区二区免费高清观看| 嫩草影院新地址| 亚洲精华国产精华精| 毛片女人毛片| 国产人妻一区二区三区在| 真人一进一出gif抽搐免费| 给我免费播放毛片高清在线观看| 麻豆成人午夜福利视频| 99热6这里只有精品| 久久草成人影院| 亚洲av不卡在线观看| 欧美国产日韩亚洲一区| 啦啦啦观看免费观看视频高清| 亚洲国产欧洲综合997久久,| 黄色女人牲交| 丰满人妻一区二区三区视频av| 精品乱码久久久久久99久播| 亚洲av免费在线观看| 哪里可以看免费的av片| 久久久久久国产a免费观看| or卡值多少钱| 亚洲av一区综合| 69av精品久久久久久| 久久久久国内视频| 亚洲欧美日韩高清专用| 国产美女午夜福利| 国产单亲对白刺激| 人妻久久中文字幕网| av黄色大香蕉| 看片在线看免费视频| 一级黄色大片毛片| 色在线成人网| 婷婷色综合大香蕉| 国产91精品成人一区二区三区| 极品教师在线免费播放| 美女xxoo啪啪120秒动态图| 精品免费久久久久久久清纯| 欧美zozozo另类| 成人无遮挡网站| 日韩亚洲欧美综合| 中文字幕精品亚洲无线码一区| 麻豆av噜噜一区二区三区| 亚洲avbb在线观看| 国产 一区 欧美 日韩| 国产探花在线观看一区二区| 在线国产一区二区在线| 亚洲欧美日韩东京热| 国产老妇女一区| 99久久久亚洲精品蜜臀av| av中文乱码字幕在线| 一区福利在线观看| 日韩欧美三级三区| 亚洲国产欧美人成| 一夜夜www| 97热精品久久久久久| 能在线免费观看的黄片| 女人被狂操c到高潮| 在线播放国产精品三级| 国产精品电影一区二区三区| 成人永久免费在线观看视频| 国产精品98久久久久久宅男小说| 波野结衣二区三区在线| 国产女主播在线喷水免费视频网站 | 亚洲真实伦在线观看| 热99在线观看视频| 国产黄a三级三级三级人| 免费观看人在逋| 国产成人影院久久av| 无人区码免费观看不卡| 国产精品久久久久久久久免| 国产色爽女视频免费观看| 看免费成人av毛片| 2021天堂中文幕一二区在线观| 五月玫瑰六月丁香| 长腿黑丝高跟| 久久久久久久精品吃奶| 久久99热6这里只有精品| 精品日产1卡2卡| 国内精品久久久久精免费| 婷婷亚洲欧美| 日日啪夜夜撸| 亚洲av.av天堂| 久久婷婷人人爽人人干人人爱| 九色成人免费人妻av| 91在线精品国自产拍蜜月| 高清毛片免费观看视频网站| 很黄的视频免费| 精品久久久久久久久久久久久| 成人精品一区二区免费| 免费无遮挡裸体视频| 国产高潮美女av| 精华霜和精华液先用哪个| 免费不卡的大黄色大毛片视频在线观看 | 高清毛片免费观看视频网站| 国内久久婷婷六月综合欲色啪| 国产色婷婷99| 搞女人的毛片| 嫩草影视91久久| 精品久久久久久久久亚洲 | 精品久久久久久成人av| 欧美激情国产日韩精品一区| 久久精品人妻少妇| 一级a爱片免费观看的视频| 国产男靠女视频免费网站| 最新中文字幕久久久久| 久久久久久久午夜电影| a在线观看视频网站| 免费看av在线观看网站| 欧美最黄视频在线播放免费| av福利片在线观看| 亚洲成人精品中文字幕电影| 国产伦精品一区二区三区视频9| 女生性感内裤真人,穿戴方法视频| 两个人视频免费观看高清| 99热这里只有是精品在线观看| 日本三级黄在线观看| 欧美日韩国产亚洲二区| 日本在线视频免费播放| 国产在线男女| 亚洲成人免费电影在线观看| 成人三级黄色视频| 欧美精品国产亚洲| 久久天躁狠狠躁夜夜2o2o| 午夜激情欧美在线| 九九爱精品视频在线观看| 午夜日韩欧美国产| 国产亚洲精品久久久久久毛片| 精品久久久久久久久亚洲 | 亚洲欧美激情综合另类| 精品久久久久久成人av| 亚洲人成网站高清观看| a级一级毛片免费在线观看| 国产午夜精品论理片| 精品一区二区三区视频在线观看免费| 国产真实伦视频高清在线观看 | 高清在线国产一区| 搞女人的毛片| 在线观看av片永久免费下载| 我的女老师完整版在线观看| а√天堂www在线а√下载| 人妻少妇偷人精品九色| 级片在线观看| 黄色一级大片看看| 人人妻,人人澡人人爽秒播| 国产精品人妻久久久影院| 两个人视频免费观看高清| x7x7x7水蜜桃| 精品国内亚洲2022精品成人| .国产精品久久| 村上凉子中文字幕在线| 成年女人永久免费观看视频| 禁无遮挡网站| 亚洲精品乱码久久久v下载方式| 亚洲性久久影院| 久久热精品热| 十八禁网站免费在线| www.www免费av| 又爽又黄a免费视频| 久久久久免费精品人妻一区二区| 精品一区二区三区视频在线观看免费| 久久国产乱子免费精品| 搡老妇女老女人老熟妇| 免费看日本二区| 老女人水多毛片| 色综合婷婷激情| av在线蜜桃| 久久中文看片网| 毛片一级片免费看久久久久 | 啦啦啦韩国在线观看视频| 亚洲专区国产一区二区| 黄片wwwwww| 国产高清有码在线观看视频| 又爽又黄无遮挡网站| 国产精品亚洲美女久久久| 人人妻人人澡欧美一区二区| a级毛片免费高清观看在线播放| 99久久精品国产国产毛片| 老司机福利观看| 免费一级毛片在线播放高清视频| 成年女人看的毛片在线观看| 深夜精品福利| 午夜爱爱视频在线播放| 级片在线观看| 欧美不卡视频在线免费观看| 无遮挡黄片免费观看| 久久久精品欧美日韩精品| 亚洲av免费高清在线观看| 在线播放国产精品三级| 麻豆成人av在线观看| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 啦啦啦啦在线视频资源| 99精品在免费线老司机午夜| 亚洲第一区二区三区不卡| 国产精品免费一区二区三区在线| 一区二区三区免费毛片| 中文字幕免费在线视频6| 国产探花极品一区二区| 深夜a级毛片| 超碰av人人做人人爽久久| 97超级碰碰碰精品色视频在线观看| av专区在线播放| ponron亚洲| 久久久久久国产a免费观看| 能在线免费观看的黄片| 99热精品在线国产| 成人毛片a级毛片在线播放| 变态另类丝袜制服| 成人av在线播放网站| 亚洲欧美日韩高清在线视频| 日本黄大片高清| 校园人妻丝袜中文字幕| 亚洲男人的天堂狠狠| 三级国产精品欧美在线观看| 舔av片在线| 欧美丝袜亚洲另类 | 日本免费一区二区三区高清不卡| 久久精品国产清高在天天线| 免费人成视频x8x8入口观看| 久久久久久久久久久丰满 | av在线观看视频网站免费| 欧美日韩乱码在线| 国内精品久久久久久久电影| 国产在线精品亚洲第一网站| 亚洲专区国产一区二区| 久久婷婷人人爽人人干人人爱| www.www免费av| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| 久久久久久国产a免费观看| 亚洲人成伊人成综合网2020| 国产精品99久久久久久久久| 91av网一区二区| 狠狠狠狠99中文字幕| 亚洲精品乱码久久久v下载方式| 精品不卡国产一区二区三区| 成年女人永久免费观看视频| 99在线视频只有这里精品首页| 精品国内亚洲2022精品成人| 精品不卡国产一区二区三区| 久久久久久伊人网av| 日本一二三区视频观看| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 最近视频中文字幕2019在线8| 欧美中文日本在线观看视频| 又黄又爽又免费观看的视频| 99久久精品热视频| 99久久精品国产国产毛片| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 亚洲久久久久久中文字幕| 99视频精品全部免费 在线| 欧美黑人欧美精品刺激| 日本欧美国产在线视频| 99久久精品一区二区三区| 2021天堂中文幕一二区在线观| 欧美成人性av电影在线观看| 别揉我奶头 嗯啊视频| 日韩,欧美,国产一区二区三区 | 精品一区二区三区视频在线观看免费| 久久久久久久久久黄片| 亚洲人成伊人成综合网2020| 亚洲欧美日韩东京热| 99久久精品热视频| 久久午夜亚洲精品久久| 午夜视频国产福利| 国产探花在线观看一区二区| av天堂中文字幕网| АⅤ资源中文在线天堂| 一级黄片播放器| 久久久久国产精品人妻aⅴ院| 久久久成人免费电影| 国产淫片久久久久久久久| 日日摸夜夜添夜夜添av毛片 | 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 2021天堂中文幕一二区在线观| 免费大片18禁| 真实男女啪啪啪动态图| av在线观看视频网站免费| 欧美xxxx黑人xx丫x性爽| 久久久久久久亚洲中文字幕| 亚洲国产高清在线一区二区三| 久久精品人妻少妇| 永久网站在线| 亚洲av一区综合| 国产在线精品亚洲第一网站| 午夜影院日韩av| 午夜福利视频1000在线观看| 国产精品亚洲美女久久久| 一进一出好大好爽视频| 国产美女午夜福利| 日韩,欧美,国产一区二区三区 | av国产免费在线观看| 中亚洲国语对白在线视频| 人妻丰满熟妇av一区二区三区| av天堂在线播放| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 精品久久久久久,| 亚洲欧美清纯卡通| 在线国产一区二区在线| 草草在线视频免费看| 亚洲国产色片| 欧美激情久久久久久爽电影| 最近视频中文字幕2019在线8| 大又大粗又爽又黄少妇毛片口| 国产私拍福利视频在线观看| 91精品国产九色| 日本-黄色视频高清免费观看| 亚洲精品国产成人久久av| 国产久久久一区二区三区| 中文字幕av成人在线电影| 免费搜索国产男女视频| 久久久精品大字幕| 亚洲成人中文字幕在线播放| 成人无遮挡网站| 亚洲不卡免费看| 1000部很黄的大片| 久久久久久大精品| 亚洲精华国产精华精| 色综合婷婷激情| 亚洲av.av天堂| 少妇人妻精品综合一区二区 | 亚洲综合色惰| 精品日产1卡2卡| 午夜免费成人在线视频| 在线观看午夜福利视频| 国内精品一区二区在线观看| 久久人人爽人人爽人人片va| 成人鲁丝片一二三区免费| 国产高潮美女av| 成人无遮挡网站| 国产毛片a区久久久久| 国产国拍精品亚洲av在线观看| 亚洲avbb在线观看| 波多野结衣高清无吗| 看免费成人av毛片| 十八禁网站免费在线| 精品99又大又爽又粗少妇毛片 | 国产精品久久视频播放| 91在线观看av| 日本精品一区二区三区蜜桃| 亚洲人成网站在线播| 亚洲真实伦在线观看| 国产精品嫩草影院av在线观看 | 精品久久久久久,| 国产人妻一区二区三区在| 九九在线视频观看精品| 一夜夜www| 国产亚洲精品av在线| 十八禁网站免费在线| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 亚洲欧美日韩高清专用| 国产白丝娇喘喷水9色精品| 亚洲性夜色夜夜综合| 日韩大尺度精品在线看网址| 日本 av在线| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站 | 国产人妻一区二区三区在| av福利片在线观看| 欧美日韩乱码在线| 国产伦精品一区二区三区四那| 高清日韩中文字幕在线| 特大巨黑吊av在线直播| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 国语自产精品视频在线第100页| 舔av片在线| 亚洲欧美日韩高清在线视频| 日韩精品有码人妻一区| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 日韩欧美精品免费久久| 亚洲av五月六月丁香网| 99九九线精品视频在线观看视频| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 成熟少妇高潮喷水视频| 99久久久亚洲精品蜜臀av| 午夜福利在线观看吧| 免费无遮挡裸体视频| 偷拍熟女少妇极品色| 别揉我奶头 嗯啊视频| 国产一区二区在线观看日韩| 美女高潮的动态| 精品人妻偷拍中文字幕| 一本久久中文字幕| 亚洲经典国产精华液单| 毛片一级片免费看久久久久 | 国产毛片a区久久久久| 亚洲最大成人av| 国产精品人妻久久久久久| 少妇的逼好多水| 精品久久久久久久久久免费视频| 日本 av在线| 人妻久久中文字幕网| 成人三级黄色视频| 亚洲成a人片在线一区二区| 日韩一本色道免费dvd| 别揉我奶头~嗯~啊~动态视频| 免费观看在线日韩| www.www免费av| 日本成人三级电影网站| 欧美成人a在线观看| 色综合色国产| 一区二区三区四区激情视频 | 久久精品国产自在天天线| 蜜桃亚洲精品一区二区三区| 欧美又色又爽又黄视频| 午夜精品久久久久久毛片777| 成人特级黄色片久久久久久久| 天天躁日日操中文字幕| 少妇高潮的动态图| 亚洲aⅴ乱码一区二区在线播放| 国产探花极品一区二区| 午夜亚洲福利在线播放| 欧美人与善性xxx| av在线天堂中文字幕| 国产伦精品一区二区三区四那| 99久久中文字幕三级久久日本| 色尼玛亚洲综合影院| 午夜福利欧美成人| 成熟少妇高潮喷水视频| 国产一区二区在线观看日韩| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av在线| 日本欧美国产在线视频| 欧美三级亚洲精品| 免费观看的影片在线观看| 欧美三级亚洲精品| 日本欧美国产在线视频| 两个人的视频大全免费| 简卡轻食公司| 大型黄色视频在线免费观看| 免费在线观看成人毛片| 自拍偷自拍亚洲精品老妇| 91精品国产九色| 亚洲精品成人久久久久久| 国产v大片淫在线免费观看| 国产不卡一卡二| 黄色丝袜av网址大全| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩瑟瑟在线播放| 色播亚洲综合网| 国产亚洲精品久久久久久毛片| 久久九九热精品免费| 欧美一区二区精品小视频在线| 非洲黑人性xxxx精品又粗又长| 亚洲乱码一区二区免费版| 精品日产1卡2卡|