Matabaro Emmanuel, 柳藝石, 張慧杰, 高曉冬, 藤田盛久
(江南大學(xué) 生物工程學(xué)院,江蘇 無錫 214122)
利用PiggyBac轉(zhuǎn)座子系統(tǒng)快速控制GPI錨定蛋白的表達(dá)
Matabaro Emmanuel, 柳藝石, 張慧杰, 高曉冬, 藤田盛久*
(江南大學(xué) 生物工程學(xué)院,江蘇 無錫 214122)
GPI錨定蛋白的合成是一個(gè)發(fā)生在內(nèi)質(zhì)網(wǎng)中多步驟、多基因參與的過程。PIGK是GPI錨定蛋白轉(zhuǎn)酰胺酶復(fù)合物的一個(gè)催化亞基,負(fù)責(zé)把GPI前體轉(zhuǎn)移到蛋白質(zhì)上。作者在人體胚胎腎細(xì)胞(HEK 293)中獲得了PIGK敲除的細(xì)胞株,敲除PIGK的細(xì)胞不能表達(dá)GPI錨定蛋白。利用piggyBac(PB)轉(zhuǎn)座子系統(tǒng),在細(xì)胞中重新插入PIGK基因,細(xì)胞膜表面的GPI錨定蛋白恢復(fù)表達(dá)。實(shí)驗(yàn)成功構(gòu)建了HEK293pB-PIGK細(xì)胞株并命名為G36,通過引入PB轉(zhuǎn)座酶或FLP重組酶,可以控制GPI錨定蛋白的表達(dá)。本系統(tǒng)可以快速調(diào)控細(xì)胞表面蛋白質(zhì)的表達(dá)并能夠用于基礎(chǔ)研究和工業(yè)應(yīng)用。
GPI錨定蛋白;PiggyBac轉(zhuǎn)座子;PIGK
動(dòng)物細(xì)胞的很多膜蛋白都是通過糖基磷脂酰肌醇(GPI)錨定在細(xì)胞膜表面且GPI錨定蛋白質(zhì)的生物合成在真核細(xì)胞中高度保守[1-3]。在動(dòng)物細(xì)胞中,有超過150種蛋白質(zhì)屬于GPI錨定蛋白,包括細(xì)胞表面受體,細(xì)胞黏附分子和細(xì)胞表面水解酶等[2,4]。GPI在內(nèi)質(zhì)網(wǎng)中由22個(gè)稱作磷脂酰肌醇糖(PIG)的基因參與合成并轉(zhuǎn)移到蛋白質(zhì)上[5]。C末端含有 GPI修飾序列的蛋白質(zhì)在 PIGK、GPAA1、PIGS、PIGT和PIGU組成的GPI轉(zhuǎn)酰胺酶復(fù)合物的識(shí)別下,被剪切并轉(zhuǎn)移到GPI上[6-7]。在這個(gè)復(fù)合物中,PIGK是GPI轉(zhuǎn)酰胺酶的催化亞基。GPI蛋白轉(zhuǎn)運(yùn)過程中,GPI上的脂質(zhì)和糖鏈結(jié)構(gòu)會(huì)發(fā)生重組,該過程對(duì)GPI錨定蛋白的轉(zhuǎn)移效率和與細(xì)胞膜上脂筏的結(jié)合相當(dāng)重要。GPI合成途徑中的基因突變會(huì)導(dǎo)致細(xì)胞膜表面的GPI錨定蛋白表達(dá)水平下降和結(jié)構(gòu)缺陷[5,8]。當(dāng)把GPI修飾序列加到分泌蛋白的C端時(shí),可以把該蛋白轉(zhuǎn)變成GPI錨定蛋白。所以通過GPI修飾可以把不同的重組蛋白表達(dá)到細(xì)胞膜表面[9]。和原核生物重組蛋白表達(dá)系統(tǒng)相比,真核生物的蛋白修飾更符合藥用蛋白質(zhì)的生產(chǎn)[10]。因此,開發(fā)基于真核生物的表達(dá)系統(tǒng)具有重要意義。
發(fā)現(xiàn)于粉紋夜蛾中的piggyBac(PB)轉(zhuǎn)座子系統(tǒng)[11-12],是一種由PB介導(dǎo)的“剪切,粘貼”型基因轉(zhuǎn)移系統(tǒng)。通過激活PB(PBase),PB轉(zhuǎn)座子能夠精確的從供體DNA上切除,并且不留下任何基因印跡[13-14]。與其他轉(zhuǎn)座子系統(tǒng)相比,PB轉(zhuǎn)座子作為良好的基因篩選和基因插入工具,廣泛應(yīng)用到包括原生生物,植物,昆蟲和脊椎動(dòng)物等很多物種上[15-16]。
作者利用PB轉(zhuǎn)座子的優(yōu)點(diǎn)來研究細(xì)胞膜表面的GPI錨定蛋白。首先成功構(gòu)建了能夠控制GPI錨定蛋白表達(dá)的系統(tǒng),該系統(tǒng)不僅可以用來研究GPI的生物合成途徑,而且還能夠用于重組GPI錨定蛋白的表達(dá)生產(chǎn)。
人體胚胎腎細(xì)胞HEK 293用含有10%胎牛血清(FCS)的 DMEM 培養(yǎng)基(Gibco,Life technologies,USA)培養(yǎng),培養(yǎng)條件為 37 ℃、5%CO2。
利用CRISPR/Cas9系統(tǒng)敲除[17]參與GPI錨定蛋白生物合成過程中的PIGK基因,通過E-CRISP(http://www.e-crisp.org/E-CRISP/) 網(wǎng) 站 設(shè) 計(jì) 敲 除PIGK的一對(duì)目標(biāo)序列caccGCTCTTGTCCTTCGGC AGCGTGG和aaacCCACGCTGCCGAAGGACAAGAG C,并通過Bbs I位點(diǎn)連接到pX330-EGFP質(zhì)粒上,得到pX330-EGFP-PIGK-KO.按照Lipofectamine 2000(Invitrogen,USA)的說明書,質(zhì)粒瞬時(shí)轉(zhuǎn)染到培養(yǎng)在6孔板的HEK 293細(xì)胞中,3 d后細(xì)胞分選儀收集GFP陽性細(xì)胞,分選得到的細(xì)胞培養(yǎng)8 d后做限制性稀釋獲得單克隆細(xì)胞株。
為了構(gòu)建PB轉(zhuǎn)座子介導(dǎo)的PIGK基因回補(bǔ)質(zhì)粒,以質(zhì)粒pPB-FRT-PGKp-PurodTK作為骨架質(zhì)粒,該質(zhì)粒含有一個(gè)PGK啟動(dòng)子,一個(gè)多克隆位點(diǎn),一個(gè)牛生長(zhǎng)激素(GH)聚腺苷酸信號(hào),SV40啟動(dòng)子和一個(gè)purodTK基因,兩側(cè)是PB末端重復(fù)序列和翻轉(zhuǎn)酶識(shí)別位點(diǎn)(FRT)。PCR擴(kuò)增PIGK基因。以限制性內(nèi)切酶處理并純化PCR擴(kuò)增片段,用連接酶(Ligation Mix,Takara,JP) 連接到載體 pPB-FRTPGKp-PurodTK的EcoR I和Not I位點(diǎn),構(gòu)建出pPB-FRT-PurodTK-PIGK質(zhì)粒。質(zhì)粒pCMV-hyPBase:桑格研究所Kosuke Yusa教授贈(zèng)送;pCAG-FLPe-IRES-puro:從Addgene上購(gòu)買。
用胰酶(Sangon,CN)消化處理并收集細(xì)胞,用磷 酸 鹽 緩 沖 液 (phosphate buffered saline,PBS,Sangon,CN)洗滌。取5×105個(gè)細(xì)胞重懸于流式細(xì)胞液 FACS(PBS,1%BSA 和 0.1%NaN3)中,之后用一抗 anti-CD59 或 anti-Flag(10 μg/mL)冰上孵育 25 min。之后用FACS洗滌兩次,二抗用帶有熒光信號(hào)PE共軛結(jié)合的山羊抗老鼠免疫球蛋白IGg冰上孵育25 min,然后再用FACS洗滌兩次,F(xiàn)ACS溶液重懸細(xì)胞并用BD Accuri C6(BD,USA)流式細(xì)胞分析儀分析。
質(zhì)粒pPB-FRT-PurodTK-PIGK和pCMV-hyPBase共轉(zhuǎn)到PIGK敲除細(xì)胞中,轉(zhuǎn)染2 d后,用含有嘌呤霉素(puromycin,InvivoGen,USA)的培養(yǎng)基篩選陽性細(xì)胞,之后限制性稀釋獲得單克隆,分析單克隆細(xì)胞株的PB-FRT-PurodTK-PIGK的插入位點(diǎn)和插入拷貝數(shù)。用基因組提取試劑盒(Promega)提取細(xì)胞基因組,限制性內(nèi)切酶Hae III(NEB,#R0108S)酶切降解基因組DNA,37℃酶切反應(yīng)12~16 h, 通過巢式PCR技術(shù)以引物Spl-P1,CGAATCGTAACCGTTCGTACGAGAA 和 3PB-1st,TATACAGACCGATAAAACACATGCGT做第一輪PCR反應(yīng),以Spl-P2 TCGTACGAGAATCGCTGTCC TCTCC和3PB-2nd CGCATGATTATCTTTAACGTA CGTCACAA做第二輪PCR反應(yīng)來擴(kuò)增被PB轉(zhuǎn)座子插入的位點(diǎn)[18]。獲得的PCR產(chǎn)物,通過2 g/dL的瓊脂糖凝膠電泳分析PB插入的拷貝數(shù),只有一個(gè)插入位點(diǎn)的細(xì)胞株G36用做后續(xù)試驗(yàn)的出發(fā)細(xì)胞株。
為了從G36細(xì)胞株中移除轉(zhuǎn)座子,當(dāng)細(xì)胞在6孔板中長(zhǎng)到 90%時(shí)分別轉(zhuǎn)染 4 μg的 pCMV-hyPBase或pCAG-FLPe-IRES-puro質(zhì)粒。轉(zhuǎn)染后2 d 加入 1 μmol/L 核苷類似物 1-(2-deoxy-2-fluoro-1-D-arabinofuranosyl)-5-iodouracil(FIAU),之后每天更換培養(yǎng)基,持續(xù)7 d[19]。之后流式分析PB元件是否移除,巢式PCR再次確認(rèn)PB轉(zhuǎn)座子被成功切除。
目前研究蛋白質(zhì)表達(dá)的熱點(diǎn)就是找到一株能夠用來研究感興趣的生物合成途徑的穩(wěn)定細(xì)胞株。為此,作者開發(fā)了一個(gè)新的系統(tǒng),該系統(tǒng)能夠很容易的控制GPI錨定蛋白的表達(dá)。首先,利用CRISPR/Cas9系統(tǒng)在HEK 293細(xì)胞中敲除PIGK基因,PIGK是GPI轉(zhuǎn)酰胺酶復(fù)合物的催化亞基,在內(nèi)質(zhì)網(wǎng)中負(fù)責(zé)GPI的轉(zhuǎn)移[20-21]。在PIGK突變的細(xì)胞中,蛋白質(zhì)不能夠被GPI修飾,直接通過內(nèi)質(zhì)網(wǎng)介導(dǎo)的蛋白質(zhì)降解途徑(ERAD)降解[5]。
和預(yù)期的結(jié)果一樣,PIGK敲除的HEK 293細(xì)胞,流式細(xì)胞分析檢測(cè)不到細(xì)胞表面大量表達(dá)的GPI錨定蛋白CD59,見圖1。通過擴(kuò)增敲除區(qū)域的DNA片段并測(cè)序分析,在第一個(gè)外顯子的切除位點(diǎn)插入了一個(gè)核苷酸堿基。插入的堿基導(dǎo)致基因發(fā)生移碼突變,同時(shí)使基因失去活性,見圖2。在整個(gè)培養(yǎng)過程中,PIGK敲除細(xì)胞沒有表現(xiàn)任何生長(zhǎng)和形態(tài)上的缺陷。
圖1 利用CRISPR/Cas9系統(tǒng)敲除PIGK基因Fig.1 PIGK KO by CRISPR/Cas9
圖2 PIGK敲除細(xì)胞的性狀Fig.2 Genotype of PIGK-KO cells
PIGK基因的回補(bǔ)通過攜帶PB轉(zhuǎn)座子的質(zhì)粒實(shí)現(xiàn)。質(zhì)粒pPB-FRT-PurodTK-PIGK由PB和FRT序列包含的PIGK基因和purodTK篩選標(biāo)簽構(gòu)成,見圖3(a)。細(xì)胞共轉(zhuǎn)染表達(dá)PB轉(zhuǎn)座酶的質(zhì)粒pCMV-hyPBase和 pPB-FRT-PurodTK-PIGK,將PIGK插入基因組中,2 d后流式分析轉(zhuǎn)染效率,見圖3(b)。隨后,嘌呤霉素培養(yǎng)基篩選8 d獲得PIGK回補(bǔ)細(xì)胞株。流式分析經(jīng)過篩選后的細(xì)胞,流式峰圖明顯的從左側(cè)移到右側(cè),說明很多細(xì)胞的GPI錨定蛋白CD59表達(dá)得以恢復(fù),見圖3(c)。
圖3 PB系統(tǒng)介導(dǎo)的PIGK回補(bǔ)Fig.3 PIGK rescued by PB system
作者試圖獲得一株像野生型HEK293表達(dá)GPI錨定蛋白的回補(bǔ)細(xì)胞株,為此,經(jīng)過嘌呤霉素篩選,限制性稀釋獲得一些單克隆細(xì)胞。在這些細(xì)胞中,CD59表達(dá)水平與野生型相似。然而,當(dāng)PB轉(zhuǎn)座子插入時(shí),同一克隆細(xì)胞有可能有多個(gè)插入基因[22-23]。為了后續(xù)實(shí)驗(yàn),需要獲得只有一個(gè)PB插入位點(diǎn)的細(xì)胞。巢式PCR確定插入拷貝數(shù)和插入基因[18],在這些細(xì)胞株中,成功找到一株能夠正常表達(dá)CD59且只有一個(gè)PB拷貝的細(xì)胞株,并命名為HEK293pB-PIGK-G36,見圖4。測(cè)序結(jié)果顯示,含有PIGK的PB元件插入位于13號(hào)染色體上的kelch類似(KLHL1)基因的內(nèi)含子TTAA序列中。
圖4 G36細(xì)胞株中PB轉(zhuǎn)座子的插入位點(diǎn)Fig.4 PB transposon insertion site in G36 cells
PB轉(zhuǎn)座子系統(tǒng)的在基因工程中的優(yōu)點(diǎn)就是可以通過表達(dá)PB轉(zhuǎn)座酶很容易的將PB轉(zhuǎn)座子移除,因此把插入位點(diǎn)恢復(fù)到起始狀態(tài)并不留任何痕跡。一開始插入基因組的PIGK兩側(cè)的包含了FRT和PB轉(zhuǎn)座子序列,所以PIGK可以被FLP重組酶和PB 轉(zhuǎn)座酶再次切除,見圖 5(a)。 除此之外,puroΔTK可以用來作為基因插入或移除的篩選標(biāo)簽。PIGK和puroΔTK移除的細(xì)胞對(duì)核苷類似物1-(2-deoxy-2-fluoro-1-D-arabinofuranosyl)-5-iodouracil(FIAU)具有抗性。當(dāng)FLP重組酶或PB轉(zhuǎn)座酶轉(zhuǎn)染G36細(xì)胞,緊接著用FIAU處理,流式分析細(xì)胞表面的CD59,結(jié)果顯示處理后的細(xì)胞又恢復(fù)到PIGK敲除狀態(tài),說明PIGK被準(zhǔn)確的切除,見圖5(b)。這些數(shù)據(jù)表明,G36細(xì)胞可以很容易的從GPI錨定蛋白表達(dá)狀態(tài)轉(zhuǎn)化到GPI錨定蛋白非表達(dá)的狀態(tài),見圖6。
圖5 PB轉(zhuǎn)座酶或FLP重組酶調(diào)控GPI錨定蛋白的表達(dá)或不表達(dá)Fig.5 Conversion of GPI-positive to GPI-negative cells by induction of PBase or FLP recombinase
圖6 GPI錨定蛋白的免疫印跡結(jié)果Fig.6 Western-blot results of GPI-anchored protein CD59
作者開發(fā)了一個(gè)基于PB轉(zhuǎn)座子系統(tǒng)調(diào)控細(xì)胞膜表面GPI錨定蛋白表達(dá)的系統(tǒng)。利用CRISPR/Cas9,成功獲得PIGK敲除細(xì)胞。由于PIGK負(fù)責(zé)在內(nèi)質(zhì)網(wǎng)中把GPI轉(zhuǎn)移到新生蛋白質(zhì)上面[21],所以PIGK敲除細(xì)胞表面不能表達(dá)GPI錨定蛋白。通過PB轉(zhuǎn)座子系統(tǒng),PIGK恢復(fù)表達(dá)。獲得了一株P(guān)B回補(bǔ)的PIGK突變細(xì)胞株HEK293pB-PIGK-G36,該細(xì)胞株可以很容易的從GPI錨定蛋白表達(dá)細(xì)胞到不表達(dá)的轉(zhuǎn)化。在這個(gè)細(xì)胞株中,過表達(dá)PB轉(zhuǎn)座酶和FLP重組酶可以再次把PIGK移除。當(dāng)細(xì)胞表達(dá)PB轉(zhuǎn)座酶時(shí),整個(gè)PB轉(zhuǎn)座子都能夠被移除,然而表達(dá)FLP重組酶時(shí),來自于質(zhì)粒上的部分片段仍會(huì)殘留[24]。本研究構(gòu)建的細(xì)胞株可以調(diào)控GPI錨定蛋白的表達(dá),該系統(tǒng)可以用來研究GPI錨定蛋白的生理功能,如結(jié)合并響應(yīng)病原微生物、毒素的感染。通常情況下細(xì)胞就是通過細(xì)胞膜表面的GPI錨定蛋白識(shí)別一些細(xì)菌和毒素。除此之外,該系統(tǒng)還可以通過依賴于PIGK基因,將感興趣的蛋白以GPI錨定蛋白的形式表達(dá)到細(xì)胞膜表面,也可以再次從細(xì)胞膜表面移除。該系統(tǒng)將會(huì)有很高的應(yīng)用價(jià)值。
[1]EISENHABER B,BORK P,EISENHABER F.Post-translational GPI lipid anchor modification of proteins in kingdoms of life:analysis of protein sequence data from complete genomes[J].Protein Engineering,2001,14(1):17-25.
[2]FUJITA M,KINOSHITA T.Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins[J].FEBS Letters,2010,584(9):1670-1677.
[3]PALADINO S,LEBRETON S,ZURZOLO C.Trafficking and membrane organization of GPI-Anchored proteins in health and diseases[J].Current Topics in Membranes,2015,75(269.
[4]ZURZOLO C,SIMONS K.Glycosylphosphatidylinositol-anchored proteins:Membrane organization and transport[J].Bba-Biomembranes,2016,1858(4):632-639.
[5]KINOSHITA T.Biosynthesis and deficiencies of glycosylphosphatidylinositol[J].P Jpn Acad B-Phys,2014,90(4):130-143.
[6]MENON A K.Glycosylphosphatidylinositol Anchors[J].Encyclopedia of Biological Chemistry,2013,476-478.
[7]MAEDA Y,KINOSHITA T.Structural remodeling,trafficking and functions of glycosylphosphatidylinositol-anchored proteins[J].Prog Lipid Res,2011,50(4):411-424.
[8]NG B G,F(xiàn)REEZE H H.Human genetic disorders involving glycosylphosphatidylinositol (GPI) anchors and glycosphingolipids(GSL)[J].Journal of Inherited Metabolic Disease,2015,38(1):171-178.
[9]FENG H,ZHANG H,DENG J S,et al.Incorporation of a GPI-anchored engineered cytokine as a molecular adjuvant enhances the immunogenicity of HIV VLPs[J].Scientific Reports,2015,5:17-21.
[10]HE Bingfang,MI Lan,CHEN Wenhua.Research advances in mechanisms of protein secretion and secretory expression of recombinant protein in E.coli[J].Journal of Food Science and Biotechnology,2012,31(6):561-569.(in Chinese)
[11]ELICK T A,BAUSER C A,F(xiàn)RASER M J.Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase[J].Genetica,1996,98(1):33-41.
[12]FRASER M J,COSZCZON T,ELICK T,et al.Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong(TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera[J].Insect Mol Biol,1996,5(2):141-151.
[13]LI X H,BURNIGHT E R,COONEY A L,et al.piggyBac transposase tools for genome engineering[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(25):2279-2287.
[14]YUSA K.piggyBac Transposon[J].Microbiology Spectrum,2015,3(2):MDNA3.
[15]WOODARD,LAUREN E,WILSON,et al.piggyBac-ing models and new therapeutic strategies[J].Trends in Biotechnology,2015,33(9):525.
[16]DING S,WU X,LI G,et al.Efficient transposition of the piggyBac(PB) transposon in mammalian cells and mice[J].Cell,2005,122(3):473.
[17]MALI P,ESVELT K M,CHURCH G M.Cas9 as a versatile tool for engineering biology[J].Nature Methods,2013,10(10):957-963.
[18]POTTER C J,LUO L.Splinkerette PCR for mapping transposable elements in Drosophila[J].PloS One,2012,5(4):e10168.
[19]XIE F,YE L,CHANG J C,et al.Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac[J].Genome Research,2014,24(9):1526-1533.
[20]CHEN R,UDENFRIEND S,PRINCE G M,et al.A defect in glycosylphosphatidylinositol (GPI) transamidase activity in mutant K cells is responsible for their inability to display GPI surface proteins[J].Proceedings of the National Academy of Sciences,1996,93(6):2280.
[21]YU J,NAGARAJAN S,KNEZ J J,et al.The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(23):12580.
[22]WANG W,BRADLEY A,HUANG Y.A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells[J].Genome Research,2009,19(4):667-673.
[23]LIX,BURNIGHT E R,COONEY A L,etal.piggyBac transposase toolsforgenome engineering[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(25):E2279.
[24]TAKEUCHI T,NOMURA T,TSUJITA M,et al.Flp recombinase transgenic mice of C57BL/6 strain for conditional gene targeting[J].Biochemical&Biophysical Research Communications,2002,293(3):953-957.
Quick Conversion From GPI-Positive to GPI-Negative Cells Using piggyBac Transposon System
Matabaro Emmanuel, LIU Yishi, ZHANG Huijie, GAO Xiaodong, Morihisa Fujita*
(School of Biotechnology,Jiangnan University,Wuxi 214122,China)
The biosynthesis of GPI is carried out in the endoplasmic reticulum (ER) through multiple steps and many genes are involved in the reactions.PIGK is one of the subunits of the catalytic domain of the GPI transmidase complex,responsible for the transfer of GPI moiety on protein.In this study,we generated a PIGK-knockout (KO) HEK 293 cell line,which showed no surface expression of GPI-anchored proteins(GPI-APs).By mediation of piggyBac(PB) transposon system,we rescued the PIGK gene in PIGK-KO cells,which showed the recovery of the surface expression of GPI-APs.We successfully established a HEK 293 cell line,HEK293pB-PIGK,named G36,which can be converted from GPI-AP positive to negative cells by the introduction of PB transposase or FLP recombinase.Our system is useful to modulate surface proteins quickly and canbe applied for both basic and applied researches.
GPI-anchor proteins,piggyBac(PB),PIGK
Q 786
A
1673—1689(2017)09—0927—06
2016-03-10
國(guó)家自然科學(xué)基金項(xiàng)目(31400693);江蘇省自然科學(xué)基金項(xiàng)目(BK20140141);中央高?;究蒲袠I(yè)務(wù)費(fèi)(JUSRP51508)。
*通信作者:藤田盛久(1979—),男,日本人,理學(xué)/農(nóng)學(xué)博士,教授,博士研究生導(dǎo)師,主要從事細(xì)胞分子生物學(xué)及細(xì)胞糖生物學(xué)方面的研究。E-mail:fujita@jiangnan.edu.cn
Matabaro Emmanuel,柳藝石,張慧杰,等.利用PiggyBac轉(zhuǎn)座子系統(tǒng)快速控制GPI錨定蛋白的表達(dá)[J].食品與生物技術(shù)學(xué)報(bào),2017,36(09):927-932.