, ,,
(1.塔里木大學(xué) 機(jī)械電氣化工程學(xué)院,新疆 阿拉爾 843300; 2.蘭州大學(xué) 物理科學(xué)與技術(shù)學(xué)院,甘肅 蘭州 730000)
單分散γ-Al2O3納米顆粒制備工藝參數(shù)的調(diào)控
王海明1,王偉1,李建功2,李健1
(1.塔里木大學(xué)機(jī)械電氣化工程學(xué)院,新疆阿拉爾843300;2.蘭州大學(xué)物理科學(xué)與技術(shù)學(xué)院,甘肅蘭州730000)
采用均相沉淀法,在950℃ 煅燒堿式硫酸鋁(Al(SO4)x(OH)y)納米顆粒2h,制備出單分散的γ-Al2O3納米顆粒。研究了陰離子、濃度和沉淀劑/鋁鹽摩爾比對Al(SO4)x(OH)y顆粒的形貌、尺寸和分散性的影響。結(jié)果表明,Al(SO4)x(OH)y顆粒的最佳制備條件為:二甲胺硼烷(DMAB)作沉淀劑、Al2(SO4)3.18H2O作鋁源、[Al3+]=0.0005mol/L、n(DMAB)/n(Al2(SO4)3·18H2O)=40。制備出的Al(SO4)x(OH)y具有球形、平均顆粒尺寸為98nm、粒徑分布為75~130nm、單分散性的特點(diǎn);獲得了球形、平均顆粒尺寸為90nm、粒徑分布范圍為50~105nm、單分散的γ-Al2O3顆粒。
γ-Al2O3; 單分散性; 納米顆粒; 均相沉淀
γ-Al2O3具有高表面積、大孔體積、孔徑分布均勻、表面酸性等優(yōu)異的理化性能和良好的活性,被稱為“活性氧化鋁”,廣泛用作石油化工行業(yè)的催化劑或催化劑載體、印染行業(yè)的吸附劑及生物醫(yī)學(xué)領(lǐng)域的藥物輸送載體[1-3]。李兆等[4]采用超聲浸漬-焙燒法制備催化制氫性能良好的負(fù)載型Fe2O3/γ-Al2O3催化劑;何秋梅和曾美琴[5]采用高能球磨法研究了γ-Al2O3對 CeO2-ZrO2體系固溶體形成能力的影響以及它們的穩(wěn)定性問題,制備了性能優(yōu)良的 CeO2-ZrO2/Al2O3儲(chǔ)氧材料,可用于汽車尾氣的凈化;孫文周和陳宇紅[6]采用醇鹽水解法制備形貌為片絮狀、粒徑分布范圍為2~7μm 的γ-Al2O3顆粒,用于制備高透光性的AlON透明陶瓷。制備尺寸小、形貌規(guī)則、粒徑分布窄、分散性好的γ-Al2O3納米顆粒,對進(jìn)一步提高催化劑活性、選擇性、機(jī)械強(qiáng)度和水熱穩(wěn)定性具有重要的意義。納米顆粒常用的制備方法有模板法[7-8]、溶膠-凝膠法[9-10]、溶劑熱法[3,11]、噴霧熱解法[12]、沉淀法[2,13-15,23-25]、水解法[16]、超臨界法[17-18]。沉淀法易于獲得成本低、質(zhì)量高的產(chǎn)品,因而應(yīng)用普遍。
Maaz等[19]采用FeCl3、NiCl2、NaOH共沉淀,油酸做表面活性劑制備形狀為橢球形、粒徑分布為8~28nm、分散性良好的NiFe2O4顆粒;Chira等[20]采用均相沉淀法,以Zn(CH3COO)2、NH2CONH2為原料制備形狀為類球形、粒徑分布為20~30nm、分散性較好的ZnO顆粒;Xing等[21]采用均相沉淀法,以Y(NO3)3、Yb(NO3)3、Ho(NO3)3、NH2CONH2為原料制備形狀為球形、粒徑分布為40~200nm、分散的Y2O3:Yb,Ho顆粒;Petcharoen等[22]采用共沉淀法,以FeCl3、FeCl2、NH4OH為原料制備形狀為橢球形、粒徑分布為10~40nm、分散性良好的Fe3O4顆粒。Li,等[2]采用均相沉淀法和模板法相結(jié)合的方法,以碳球?yàn)槟0?、NaOH為沉淀劑、廢棄油頁巖灰為鋁源,制備出球形、單分散、平均顆粒尺寸為400nm的γ-Al2O3顆粒。Adrián等[13]以Al2(SO4)3和NH4HSO3為原料,采用均相沉淀法制備出100×10nm纖維狀γ-Al2O3。Parida,等[14]采用非均相沉淀法,以Al(NO3)3和(NH4)2CO3為原料,制備出平均粒徑300nm、形狀為球形的γ-Al2O3,但分散性較差。周曦亞,等[23]以Al(NO3)3和NH2CONH2為原料,采用共沉淀法制備出由平均尺寸為40nm的顆粒組成的絮狀γ-Al2O3。宋曉嵐,等[24]以Al(NO3)3和(NH4)2CO3為原料,制備形狀為類球形、平均顆粒尺寸為20nm、分散性良好的γ-Al2O3納米顆粒,但存在大量雜質(zhì)。王柳燕和張寧[25]以NH4HCO3和Al(NO3)3為原料,制備平均顆粒尺寸為70nm、分散性較差的絮狀γ-Al2O3??偨Y(jié)發(fā)現(xiàn),沉淀法制備其它納米顆粒取得較好的結(jié)果,但在制備γ-Al2O3顆粒時(shí)卻存在尺寸較大或團(tuán)聚嚴(yán)重的問題,其制備條件需要進(jìn)一步優(yōu)化。
在本文中,采用均相沉淀法,調(diào)控制備條件,制備出單分散Al(SO4)x(OH)y納米顆粒,通過煅燒Al(SO4)x(OH)y納米顆粒,獲得尺寸小、形貌規(guī)則、粒徑分布窄、單分散的γ-Al2O3納米顆粒。
2.1材料和方法
采用均相沉淀法制備γ-Al2O3前驅(qū)體。以Al2(SO4)3·18H2O、Al(NO3)3·9H2O及Al2(SO4)3·18H2O、Al(NO3)3·9H2O的混合物作鋁鹽,DMAB作沉淀劑,去離子水作溶劑,分別加入三口燒瓶中,置于加熱套中充分?jǐn)嚢?0min,之后開啟加熱功能,80℃恒溫加熱反應(yīng)1h,取出三口燒瓶并在流水中快速冷卻至室溫。分別使用去離子水和無水酒精洗滌三次,經(jīng)高速離心機(jī)離心即可得到氧化鋁前軀體。樣品放置在80℃烘箱內(nèi)干燥24h,取出樣品進(jìn)行研磨,在950℃下煅燒研磨樣品2h,即可獲得γ-Al2O3納米顆粒。
2.2表征
本研究中用于表征的儀器如下:Rigaku D/max-2400型X射線衍射儀(XRD),Cu Kα射線,掃描范圍(2θ)為10°~80°;Nexus 670 型紅外光譜儀(FTIR),收集400~4000cm-1范圍內(nèi)數(shù)據(jù);加速電壓為15kV 的Hitachi S-4800場發(fā)射掃描電子顯微鏡(SEM);加速電壓為300kV 的Tecnai-G2F30 型透射電子顯微鏡(TEM)。
3.1陰離子的影響
3.2濃度的影響
保持n (DMAB)/n (Al2(SO4)3.18H2O)=40不變,當(dāng)[Al3+]=0.002、0.001、0.0005、0.00025mol/L,80℃加熱反應(yīng)1h制備Al(SO4)x(OH)y。圖2顯示,當(dāng)[Al3+]=0.002mol/L時(shí),產(chǎn)物為小顆粒組成的大塊團(tuán)聚體;當(dāng)[Al3+]=0.001mol/L時(shí),產(chǎn)物呈顆粒狀與絮狀混雜狀態(tài),且顆粒尺寸明顯減??;當(dāng)[Al3+]=0.0005mol/L時(shí),產(chǎn)物呈現(xiàn)單一球形形貌,且分散性良好;當(dāng)[Al3+]=0.00025mol/L時(shí),產(chǎn)物呈少量顆粒與大量絮狀物共存狀態(tài),且顆粒尺寸進(jìn)一步減小。
圖1 不同陰離子條件下制得的Al(SO4)x(OH)y顆粒的SEM照片(a) N; (b) N/S=1.5; (c) N/S=1; (d) N/S=0.5; (e) SFig.1 SEM images of aluminum basic sulfate particles when anion is (a) N; (b) N/S=1.5; (c) N/S=1;
圖2 n(DMAB)/n (Al2(SO4)3·18H2O)=40時(shí),不同[Al3+]下制得的Al(SO4)x(OH)y顆粒的SEM照片(a) 0.002mol/L; (b) 0.001mol/L; (c) 0.0005mol/L; (d) 0.00025mol/LFig.2 SEM images of aluminum basic sulfate particles when n(DMAB)/n(Al2(SO4)3·18H2O) is 40, [Al3+] is (a) 0.002mol/L; (b) 0.001mol/L; (c) 0.0005mol/L; (d) 0.00025mol/L
3.3n(Al3+)/n(DMAB)摩爾比的影響
保持[Al3+]=0.0005mol/L不變,當(dāng)n(DMAB)/n(Al3+)=10、20、30,80℃加熱反應(yīng)1h制備Al(SO4)x(OH)y。圖3顯示,當(dāng)n(DMAB)/n(Al3+)=10時(shí),產(chǎn)物的形貌不規(guī)則、尺寸較大且顆粒之間存在團(tuán)聚現(xiàn)象;當(dāng)n(DMAB)/n(Al3+)=20時(shí),產(chǎn)物為單分散的球形顆粒;當(dāng)n(DMAB)/n(Al3+)=30時(shí),產(chǎn)物為小顆粒組成的大塊團(tuán)聚體。
3.4樣品的表征和分析
圖4為 [Al3+]=0.0005mol/L,n(DMAB)/n (Al2(SO4)3.18H2O)=40,80℃加熱反應(yīng)1h條件下制備Al(SO4)x(OH)y顆粒及其在不同溫度煅燒后產(chǎn)物的XRD圖譜。由XRD圖譜知,在2θ=15~35°范圍內(nèi)存在寬化的彌散衍射峰,表明室溫下前驅(qū)體以非晶相存在。當(dāng)煅燒溫度為800℃,在2θ=45.60°和66.88°處出現(xiàn)對應(yīng)于γ-Al2O3的寬化衍射峰,但2θ=15~35°范圍內(nèi)的彌散衍射峰依然存在,說明經(jīng)煅燒后產(chǎn)物主相依然為非晶相。當(dāng)煅燒溫度升高到950℃,則為典型的γ-Al2O3晶型。當(dāng)煅燒溫度升高到1000℃,γ-Al2O3依然為主晶相,但在25.48°、43.26°和57.40°處出現(xiàn)對應(yīng)于α-Al2O3的(012)、(113)和(116)晶面的衍射峰。
圖3 [Al3+]=0.0005mol/L時(shí),不同n(Al3+)/n(DMAB)摩爾比下制得的Al(SO4)x(OH)y顆粒的SEM照片 (a) 10; (b) 20; (c) 30Fig.3 SEM images of aluminum basic sulfate particles when [Al3+] is 0.0005mol/L, n(Al3+)/n(DMAB) is (a) 10; (b) 20; (c) 30
圖4 Al(SO4)x(OH)y顆粒在不同溫度下煅燒2h產(chǎn)物的XRD圖譜Fig.4 XRD patterns of aluminum basic sulfate particles calcined in air for 2h at different temperatures when [Al3+] is0.0005mol/L, n(DMAB)/n(Al2(SO4)3·18H2O) is 40
圖5 Al(SO4)x(OH)y顆粒在不同溫度下煅燒2h產(chǎn)物的FTIR圖譜Fig.5 FTIR spectra of aluminum basic sulfate particles calcined in air for 2h at different temperatures when [Al3+] is 0.0005mol/L, n(DMAB)/n(Al2(SO4)3·18H2O) is 40
圖6 [Al3+]=0.0005mol/L,n(DMAB)/n(Al2(SO4)3·18H2O)=40時(shí),制得的Al(SO4)x(OH)y顆粒的SEM/TEM照片F(xiàn)ig.6 SEM and TEM images of aluminum basic sulfate particles when n(DMAB)/n(Al2(SO4)3·18H2O) is 40, [Al3+] concentrations is 0.0005mol/L
圖6為[Al3+]=0.0005mol/L時(shí),n(DMAB)/n-(Al2(SO4)3·18H2O)=40,80℃加熱反應(yīng)1h條件下制備Al(SO4)x(OH)y顆粒的SEM/TEM照片。圖6顯示,Al(SO4)x(OH)y顆粒為球形,平均顆粒直徑為98nm、粒徑分布為75~130nm、無團(tuán)聚。
圖7為950℃煅燒Al(SO4)x(OH)y顆粒2h后制得的γ-Al2O3顆粒的SEM/TEM照片。圖7顯示,制得的γ-Al2O3顆粒形狀為球形,平均顆粒尺寸為90nm,粒徑分布為50~105nm,呈單分散性。
3.5反應(yīng)機(jī)理
根據(jù)La Mer對酸性溶液里分解硫代硫酸鈉制備單分散硫溶膠形成機(jī)理的定性解釋[28],由于DMAB在酸性溶液里分解緩慢,持續(xù)一致增加的pH值有利于Al(SO4)x(OH)y納米顆粒的均勻形核和生長。經(jīng)高溫煅燒后,γ-Al2O3納米顆粒繼承Al(SO4)x(OH)y納米顆粒的結(jié)構(gòu)。具體反應(yīng)如下:
H2OH++OH-
(1)
(CH3)2NHBO3+3H2O+H+→
(2)
(3)
采用均相沉淀法制備得到平均顆粒尺寸為98nm、粒徑分布為75~127nm、單分散的Al(SO4)x(OH)y顆粒;經(jīng)950℃ 煅燒Al(SO4)x(OH)y顆粒2h后,獲得球形、平均顆粒尺寸90nm、粒徑分布為50~105nm、單分散的γ-Al2O3顆粒。最佳制備工藝參數(shù)為:[Al3+]=0.0005mol/L,n(DMAB)/n(Al2(SO4)3·18H2O)=40。
[1] N. Suzuki, Y. Yamauchi. One-step Synthesis of Hierarchical Porous γ-alumina with High Surface Area [J]. J. Sol-Gel Sci. Technol., 2010, 53(2): 428~433.
[2] G. H. Li, W. Z. Wang, T. Long, et al. A General and Facile Method to Prepare Uniform Gamma-Alumina Hollow Microspheres from Waste Oil Shale Ash [J]. Mater. Lett., 2014, 133(15): 143~146.
[3] L. Zhu, S. X. Pu, K. Liu, et al. Preparation and Characterizations of Porous γ-Al2O3Nanoparticles [J]. Mater. Lett., 2012, 83(15): 73~75.
[4] 李兆, 趙西成, 苗波波, 等. 負(fù)載型Fe2O3/γ-Al2O3催化劑的制備及其對煤微波熱解的催化活性 [J]. 材料科學(xué)與工程學(xué)報(bào), 2014, 32(6): 826~829.
[5] 何秋梅, 曾美琴. γ-Al2O3對CeO2-ZrO2固溶體形成能力的影響及其穩(wěn)定性 [J]. 材料科學(xué)與工程學(xué)報(bào), 2010, 28(4): 613~616.
[6] 孫文周, 陳宇紅. 熱壓燒結(jié)AlON透明陶瓷的燒結(jié)行為及性能 [J]. 材料科學(xué)與工程學(xué)報(bào),2015,33(6): 918~922.
[7] L. Martins, M. A. Alves Rosa, S. H. Pulcinelli, et al. Preparation Of Hierarchically Structured Porous Aluminas by A Dual Soft Template Method [J]. Microporous Mesoporous Mater., 2010, 132(1~2): 268~275.
[8] M. B. Yue, T Xue,W.Q.Jiao, et al. CTAB-Directed Synthesis of Mesoporous γ-Alumina Promoted by Hydroxyl Carboxylate: the Interplay of Tartrate and CTAB [J]. Solid-State Sci., 2011, 13(2): 409~416.
[9] M. Sasani Ghamsaria, Z. Ashor Said Mahzar, S. Radiman, et al. Facile Route for Preparation of Highly Crystalline γ-Al2O3Nanopowder [J]. Mater. Lett., 2012, 72(1): 32~35.
[10] B. F. Hu, M. W. Yao, et al. Preparation and Dielectric Properties of Dense And Amorphous Alumina Film by Sol-Gel Technology [J]. Ceram. Int., 2013, 39(7): 7613~7618.
[11] Y. Liu, D. Ma, X. W. Han, et al. Hydrothermal Synthesis of Microscale Boehmite and Gamma Nanoleaves Alumina [J]. Mater. Lett., 2008, 62(8~9): 1297~1301.
[12] C. Liu, Y. C. Liu, et al. Mesoporous Transition Alumina with Uniform Pore Structure Synthesized by Alumisol Spray Pyrolysis [J]. Chem. Eng. J., 2010, 163(1~2): 133~142.
[13] A. Zamorategui, S. Sugita, et al. Evaluation of Dispersability of Gamma Alumina Prepared by Homogeneous Precipitation [J]. J. Ceram. Soc. Jpn., 2012, 120(7): 290~294.
[14] K. M. Parida, A. C. Pradhan, J. Das, N. Sahu. Synthesis and Characterization of Nano-Sized Porous Gamma-Alumina by Control Precipitation Method [J]. Mater. Chem. Phys., 2009, 113(1): 244~248.
[15] S. Lan, N. Guo, L. Liu, et al. Facile Preparation of Hierarchical Hollow Structure Gamma Alumina and a Study of its Adsorption Capacity [J]. Appl. Surf. Sci., 2013, 283(15): 1032~1040.
[16] Y. H. Wang, J. Wang, M. Q. Shen, W. L. Wang. Synthesis and Properties of Thermostable γ-Alumina Prepared by Hydrolysis of Phosphide Aluminum [J]. J. Alloys Compd., 2009, 467(1): 405~412.
[17] T. Noguchi, K. Matsui, N. M. Islam, et al. Rapid Synthesis of γ-Al2O3Nanoparticles in Supercritical Water by Continuous Hydrothermal Flow Reaction System [J]. J. Supercrit Fluid, 2008, 46(2): 129~136.
[18] M. S. Bono Jr, A. M. Anderson, M. K. Carroll. Alumina Aerogels Prepared Via Rapid Supercritical Extraction [J]. J. Sol-Gel Sci. Technol., 2010, 53(2): 216~226.
[19] K. Maaz, S. Karim, A. Mumtaz, et al. Synthesis and Magnetic Characterization of Nickel Ferrite Nanoparticles Prepared By Co-Precipitation Route [J]. J. Magn. Magn. Mater., 2009, 321(12): 1838~1842.
[20] C.R.Bhattacharjee, D.D.Purkayastha, S.Bhattacharjee, et al. Homogeneous Chemical Precipitation Route to Zno Nanosphericals [J]. Phys. Sci. Technol., 2011, 7(2): 122~127.
[21] M. M. Xing, W. H. Cao, H. Y. Zhong, et al. Synthesis and Upconversion Luminescence Properties of Monodisperse Y2O3:Yb, Ho Spherical Particles [J]. J. Alloys Compd., 2011, 509(19):5725~5730.
[22] K. Petcharoena, A. Sirivat. Synthesis and Characterization of Magnetite Nanoparticles Via the Chemical Co-Precipitation Method [J]. Mater. Sci. Eng., B, 2012, 177(5): 421~427.
[23] 周曦亞, 歐陽世翕, 程吉平. 液相共沉淀法制Al2O3超細(xì)粉過程及防團(tuán)聚措施 [J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 1996, 24(7): 78~82.
[24] 宋曉嵐, 鄧冠周, 等. 高純活性納米γ型氧化鋁的化學(xué)沉淀法合成及其性能表征 [J].材料導(dǎo)報(bào), 2004,18(8): 64~67.
[25] 王柳燕, 張 寧. 超細(xì)γ-Al2O3粉體化學(xué)沉淀法的合成及表征 [J]. 粉末冶金技術(shù), 2014, 32(1): 23~29.
[26] M. D. Sacks, T. Y. Tseng, S. Y. Lee. Thermal Decomposition of Spherical Hydrated Basic Aluminium Sulfate [J]. Am. Ceram. Soc. Bull., 1984, 63(2), 301~310.
[27] S. A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj. Economical Synthesis of Al2O3Nanopowder Using A Precipitation Method [J]. Mater. Lett., 2009, 63(27): 2274~2276.
[28] E. Matijevic. Monodispersed Metal (Hydrous) Oxides - A Fascinating Field of Colloid Science [J]. Acc. Chem. Res., 1981, 14(1): 22~29.
ControllablePreparationConditionsofMonodisperseγ-Al2O3Nanoparticles
WANGHaiming1,WANGWei1,LIJiangong2,LIJian1
(1.CollegeofMechanicalandElectronicEngineering,TarimUniversity,Alaer843300,China;2.SchoolofPhysicalScienceandTechnology,LanzhouUniversity,LanZhou730000,China)
A homogeneous precipitation route was used to prepare aluminum basic sulfate nanoparticles. Monodisperse γ-Al2O3nanoparticles were then obtained by 2 hrs calcining the aluminum basic sulfate nanoparticles at 950℃. Effects of anion, concentration and molar ratio of precipitator/aluminium salt on the shape, size and dispersibility of aluminum basic sulfate particles were studied. Results show that the optimal preparation condition of aluminum basic sulfate particles is as follows: dimethylamine broane as precipitator and aluminium sulphate ocatadecahydrate as aluminum source, molar ratio of both is 40, and concentration of aluminium ion is 0.0005mol/L. Spherical aluminum basic sulfate particles have an average diameter of about 98nm, a narrow size distribution from 75 to 130nm and no agglomeration. γ-Al2O3nanoparticles with a spherical shape, an average size of 90nm, a narrow size distribution from 50 to 105nm and monodispersity have been obtained.
γ-Al2O3; monodispersity; nanoparticle; homogeneous precipitation
A
10.14136/j.cnki.issn1673-2812.2017.05.027
2016-05-20;
2016-07-25
國家自然科學(xué)基金資助項(xiàng)目(51272098),塔里木大學(xué)校長基金青年創(chuàng)新資金專項(xiàng)資助項(xiàng)目(TDZKQN201609)
王海明(1988-),講師,研究方向?yàn)樾滦图{米材料,E-mail: wanghaiming23@163.com。
李 健(1985-),講師,研究方向?yàn)榇判约{米顆粒制備與表征,E-mail: hmwang16@163.com。
1673-2812(2017)05-0826-06