• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含TEMPO配合物的合成、表征、譜學(xué)性質(zhì)及光猝滅機(jī)理

    2017-11-01 17:29:19陳可先趙琛烜李浩然
    物理化學(xué)學(xué)報 2017年7期
    關(guān)鍵詞:聯(lián)吡啶浙江大學(xué)工程學(xué)院

    尹 璐 梁 程 陳可先 趙琛烜 姚 加 李浩然,,*

    (1浙江大學(xué)化學(xué)系,浙大-新和成聯(lián)合研發(fā)中心,杭州 310027;2浙江大學(xué)化學(xué)工程與生物工程學(xué)院,杭州 310027;3浙江工商大學(xué)食品與生物工程學(xué)院,杭州 310018)

    含TEMPO配合物的合成、表征、譜學(xué)性質(zhì)及光猝滅機(jī)理

    尹 璐1梁 程2陳可先3趙琛烜1姚 加1李浩然1,2,*

    (1浙江大學(xué)化學(xué)系,浙大-新和成聯(lián)合研發(fā)中心,杭州 310027;2浙江大學(xué)化學(xué)工程與生物工程學(xué)院,杭州 310027;3浙江工商大學(xué)食品與生物工程學(xué)院,杭州 310018)

    通過由2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)自由基修飾的三聯(lián)吡啶配體與二價金屬鉑鹽反應(yīng),合成得到一種新型的金屬配合物,[Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH (terpy指2,2?:6?,2?-三聯(lián)吡啶)。此配合物由于TEMPO自由基的作用呈現(xiàn)高效率的光猝滅現(xiàn)象。X衍射單晶數(shù)據(jù)證實此配合物的分子結(jié)構(gòu)信息。利用紫外、熒光及電子順磁共振光譜等譜學(xué)手段探討了該配合物的紫外吸收、發(fā)射及電子順磁共振(EPR)光譜性質(zhì)。[Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH的室溫紫外吸收光譜表明,此配合物有兩個典型的紫外吸收波段,強(qiáng)吸收段和次強(qiáng)吸收段,分別來源于配體到配體的躍遷(MLCT),金屬到配體的躍遷(LLCT)。另外,[Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH的室溫固體熒光光譜表明,TEMPO的單電子能有效地猝滅三聯(lián)吡啶鉑的熒光發(fā)射。我們對此猝滅機(jī)理進(jìn)行了詳細(xì)合理的闡述,并通過高斯09軟件包對配合物的能隙和能帶進(jìn)行了量化計算,結(jié)果進(jìn)一步證明配合物體系中的TEMPO單電子能極大的影響最高占有分子軌道(HOMO)與最低未占分子軌道(LUMO)之間的能級差,從理論上解釋了三聯(lián)吡啶鉑配合物的光猝滅的光學(xué)性質(zhì)與分子結(jié)構(gòu)之間的關(guān)系。EPR結(jié)果表明,穩(wěn)定自由基上接上金屬配合物,不影響自由基A值和g值(A值指自由基超精細(xì)耦合常數(shù),g值指自由基的g因子),但影響自由基轉(zhuǎn)動、弛豫時間。

    三聯(lián)吡啶鉑配合物;氮氧自由基;合成;光致發(fā)光;電子順磁共振光譜

    1 Introduction

    Free radicals are important in biological1,2and environmental process3, or catalytic reaction4. 2,2,6,6-Tetramethyl-1-piperridinyloxy (TEMPO) radical, an important class of stable free radicals with one unpaired electron5, has been widely employed as a mild and selective primary catalyst. It is well known that TEMPO could catalyze the oxidation of alcohols in the presence of co-oxidants6,7. More importantly, TEMPO could be applied as a typical paramagnetic species in the quenching of photo-excited molecules. Takeuchi, Ishii and other groups demonstrated that the combination of chromophoric moieties and TEMPO could provide the direct information of spin-sublevel dependence of quenching the excited singlet state (S1) and triplet state (T1) metalloporphyrins(MPs) or metallophthalocyanines (MPcs)8,9. Recently, Blough,et al., Ishii, et al., and other groups reported the photo-induced population transfer (PIPT) in which the TEMPO was covalently coupled to a chromophore10?12.

    As a kind of luminescent material, the square-planar coordination geometry of d8Pt(II) complexes possess intriguing spectroscopic, luminescence and anticancer properties13?16. Some Pt(II) terpyridine complexes have three ordered intraligand charge transfer, ligand-to-ligand charge transfer, and metal-to-ligand charge transfer states in a single mononuclear17.The promising luminescence exhibited by these complexes was attributed mainly to the dπ(Pt) → π*(N-N-N)3MLCT excited state18,19. Diversified pendants can be attached to the central metal Pt(II)20?22or modified on the ring of terpyridine23?26to construct new structures. In these cases, the nature of the auxiliary ligand and counterion of the terpyridyl chelator would quench such3MLCT excited states in the presence of a low-lying non-emissive d-d ligand field (LF) or ligand-toligand charge transfer (LLCT) states27. Furthermore, the Lewis bases can attack the open coordination sites of Pt(II) terpyridine complex in the excited state resulting in exciplex quenching28,29,and even excimer quenching would occur in the fluid solution30,31. However, the luminescence quenching of Pt(II)terpyridine complex with the TEMPO substitution has seldom been reported. It was shown in our preliminary experiments that the ascorbic acid could turn on the luminescence in quenched luminescence of Pt(II) terpyridyl- TEMPO derivative system. To the best of our knowledge, few reports related to the synthesis of the metallobiomolecular of Pt(II) complex covalently linked with TEMPO radical have been reported. So in theory, Pt(II) terpyridine tethering TEMPO complex may act as both a transition metal catalyst and bi-functional probe,which could be applied as a precursor of photoluminescence and an EPR probe. On the analysis of the conversion of EPR signal and luminescence, more information about single electron behaviour would be achieved in the process of coordination between substrates and transition metal, which could explain the TEMPO-catalyzed oxidation or cytotoxic mechanism more clearly.

    Herein, we report the synthesis of a new kind of Pt(II)complex with the ligand of 2,2,6,6-tetramethyl-4-(2,2?:6?2?-terpyridin-4?-yloxy)piperidin-1-oxyl (L), in which the incorporation of TEMPO with the terpyridine derivative framework can significantly perturb the luminance and electron transition.Furthermore, the intramolecular paramagnetic quenching of singlet state by nitroxide radicals is found to be highly efficient.In this case of photoextinction effect, upon reaction with ascorbic acid to consume nitroxide radicals, the fluorescence would restore. The changes in fluorescence of the synthetic Pt(II) complex resemble to other “on/off sensor” analogous system, and can readily be applied to biological systems32.

    2 Experimental

    2.1 Materials and reagents

    Dimethylformamide (DMF), dimethylsulfoxide (DMSO),(purity ≥ 99%, Super Dry, water ≤ 3 × 10?5(mass fraction));ether (concentration purity ≥ 99.5%); menthol (purity ≥ 99.5%),were purchased from Aladdin. Ultra-pure water was used for the preparation of all solutions. DMF was dried by distillation from sodium wire/benzophenone. Commercial K2PtCl4(Sigma Aldrich, purity ≥ 99%), 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Sigma Aldrich, purity ≥ 98%),2,2?:6?,2?-terpyridine (Sigma Aldrich, purity ≥ 98%), and 4?-chloro-2,2?:6?,2?-terpyridine (Sigma Aldrich, purity ≥ 98%)were used as received. All manipulations involving organometallic compounds were carried out in air atmosphere without pre-purified nitrogen or welding-grade argon using standard techniques for handling air-sensitive compounds, Except for special instructions Elemental analyses (CHN) were determined using a Vario MICRO cube instrument. X-ray crystal structure analyses were performed by using a Gemini A Ultra instrument. Structure solution and refinement was accomplished using SHELXL-97. CCDC 1063015 (compound 2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road,Cambridge CB21EZ, UK; Fax: +44-1223-336-033; Email:de-posit@ccdc.cam.ac.uk). The PL and absorption spectra were measured using an Edinburgh instruments FLS 920 spectrometer and an analytic Jena S600 UV/Vis spectrophotometer. EPR spectrometer used was a computer controlled X-band (9.5 GHz)EPR spectrometer (Bruker A300) equipped with a variable temperature control unit (Bruker ER 4131VT Variable Temperature Accessory, which can command the temperature with an accuracy of ±0.1 K at the site of the sample). Typical ESR parameters were as follows: 3508 G center field; 60 G sweep width; 9.439 GHz microwave frequency; 15.99 mW power; 1.59 × 103receiver gain; modulation frequency of 100 kHz; modulation amplitude of 1 G; with the conversion time being 42 msec and time constant being 10.24 msec with 1 X-scans for each 6144 point spectrum.

    Dichloro (l,5-cyclooctadiene) Pt(II)[Pt(COD)Cl2] was synthesized following the literature33. Yield 99%, Anal. Calc.(%) for C8H12Cl2Pt: C, 25.67; H, 3.21. Found (%): C, 25.56; H,3.19. The dichlo-ro(l,5-cyclooctadiene) Pt(II) was used without recrystallization in the syntheses of the following Pt(II)complexes.

    [Pt(terpy)Cl]·Cl·2H2O (compound 1) (Scheme 1) was synthesized according to the method reported in the literature34.Yield 95%, ESI-MS: [M-Cl]+464.10; Anal. Calcd (%) for C15H15N3O2Cl2Pt: C, 33.62; H, 2.80; N, 7.85. Found (%): C,33.56; H, 2.81; N, 7.89.

    2.2 Experimental and synthesis procedures

    2.2.1 Synthesis of 2,2,6,6-tetramethyl-4-(2,2′:6′,2′-terpyridin-4′-yloxy)-piperidi-1-oxyl (L, terpy-TEMPO)

    Ligand L was prepared by a reported procedure35: To a suspension of freshly ground KOH (2.64 g, 47.2 mmol) in DMSO (35 mL) was added 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (2.00 g, 11.8 mmol), followed by 4?-chloro-2,2?:6?,2?-terpyridine (3.33 g, 11.8 mmol). The mixture was stirred at 50 °C for 22 h, and then quenched with an equal volume of water to afford a pink solid which was dried over under reduced pressure at 50 °C. Recrystallization from hot hexanes gave feathery pale pink needles. Yield 3.9 g, 81%. M.P.128?130 °C. ESI-MS: [M+H]+404.01, 426.13. Anal. Calcd (%)for C12H27N4O2: C, 71.44; H, 6.74; N, 13.90. Found (%): C,71.09; H, 6.72; N, 13.87.

    2.2.2 Synthesis of

    [Pt(terpy-TEMPO)Cl]·Cl·H2O·CH3OH

    (compound 2)

    Method 1: To a suspension of [Pt(COD)Cl2] (1.50 g, 4.00 mmol) in methanol (100 mL), Ligand L (1.61 g, 4.00 mmol)dissolved in 20 mL methanol was added with stirring and the mixture warmed at 50 °C on oil bath. After 15 min all the pale yellow suspension liquid turned to bright yellow, and stirred for 20 h until completion of the reaction, then was cooled at room temperature. Equal volume of ethyl ether was added, in this case, the product was precipitated from the solution, and then filtered to get filter residue, washed with methanol, diethyl ether three times (3 × 50 mL), solvent was then removed under reduced pressure leaving a bright yellow tiny needle, which was collected and vacuum oven dried overnight. Yield: 2.68 g,95%. ESI-MS: [M-Cl]+634.5. Anal. Calc. (%) for C25H33Cl2N4O5Pt: C, 41.72; H, 4.62; N, 7.79. Found (%): C,41.63; H, 4.64; N, 7.70. Method 2: to a suspension of[Pt(DMSO)2Cl2] (1.50 g, 4.00 mmol) in methanol (100 mL),Ligand L (1.68 g, 4.00 mmol) dissolved in 20 mL methanol was added (cis-[Pt(DMSO)2Cl2] was synthesized according to relevant reference36). In this case, however, except for the desired compound 2, the salt [Pt(terpy-TEMPO)Cl][Pt(DMSO)Cl3] (compound 4) was also formed. The compound 4 seems to be total if the reaction time was increased to 20 h. The failure of obtaining the only [Pt(terpy-TEMPO)Cl]+is a consequence of the almost complete insolubility of 4, which subtracts the [Pt(DMSO)Cl3]?anion formed by reaction (1). Therefore, method 2 is not as good as method 1, we employed method 1 at last.Cis-[Pt(DMSO)2Cl2] + Cl?→ [Pt(DMSO)Cl3]?+ DMSO (1)

    Scheme 1 Molecular structures of the 2,2,6,6-tetramethyl-1-piperridinyloxy (TEMPO) radical (T),complex ligand L, [Pt(terpy)Cl]+ derivatives, and the proposed reaction mechanism of compound 2 with ascorbic acid.

    2.2.3 Synthesis of [Pt(terpy-TEMPOH)Cl]·Cl·H2O·CH3OH(compound 3)

    Compound 3 was synthesized by means of “one pot process”,and all reactions were performed under an inert atmosphere of nitrogen. The ascorbic acid (0.21 g, 1.2 mmol) was added to a stirred solution of terpy-TEMPO (L, 0.16 g, 0.4 mmol) in 20 mL methanol. The resultant solution was stirred at room temperature for 3 h. Pt(COD)Cl2(0.15 g, 0.4 mmol) dissolved in methanol was dropwise added to the reaction mixture via syringe, which turned out light yellow precipitation slowly and was then stirred for another 2 h in 50 °C. The product was isolated, washed with deionized water (3 × 20 mL), methanol(3 × 20 mL), and dried in vacuum. Yield 80%. ESI-MS:[M-Cl]+635.2. Anal. Calc. for C25H34Cl2N4O5Pt: C, 41.67; H,4.76; N, 7.78. Found: C, 41.60; H, 4.69; N, 7.76.

    As a final note on the complex 3, it is a kind of unstable complex, and is more inclined to transform into complex 2, so NMR data of complex 3 is difficult to obtain.

    Complex 3 was stored in the anhydrous glove box under nitrogen atmosphere. The solid film layer of the complex 3 was prepared as follow: firstly, dissolved in degassed DMF solution(10?3mol·L?1); secondly, the homogeneous solution (about 0.1 mL) was dropped onto a glass sheet of 1 cm × 1 cm; finally, let it dry in flowing N2, forming a uniform sample spot, and then the glass sheet was transferred to the sealed vessel. Before we manipulated fluorescence spectrophotometry detection, the glass sheet was quickly transferred to the sample tank,subsequent purged air from the sample tank system to ensure that there is no oxygen or water prior to inject dry nitrogen. In this operation, we can guarantee that the data of fluorescence test and other experiments are reliable, repeatable.

    Additionally, the solid film layers of complexes 1 and 2 were prepared in a similar method to complex 3, except that rigorous conditions (no anhydrous anaerobic) were not necessary.

    3 Results and discussion

    3.1 Synthesis and characterization

    In this work, (terpy)-TEMPO (L) was prepared by the reaction of 4?-choro-2,2?:6?,2?-terpyridine (4-Cl-terpy) with 4-OH-TEMPO in the presence of KOH in DMSO solvent35.Chelation was carried out between K2PtCl4and 1,5-cyclooctadiene(COD) to afford the Pt(COD)Cl218. The reaction of Pt(COD)Cl2with L in methanol under reflux for 2 h gave compound 2, which was isolated as the red-orange solid in 95%yield (see Fig.S1, Supporting Information). Compound 2 was characterized by ESI-MS and elemental analysis. The ESI-MS showed that the [Pt(terpy-TEMPO)Cl]+molecular ion in CH3OH, revealed peak clusters centred at m/z 634.2 (M+, 100%)(Fig.S2, Supporting Information). We confirmed the composition of complex 2 by the X-ray crystallography, and further information was given by the TGA analysis (Fig.S3,Supporting Information). The X-ray structure provided evidence for the participation of one molecule of H2O and one molecule of CH3OH from the outer sphere in the crystallization of the compound 2 (see Fig.S4, Table S1, Supporting Information for details). It was found from the TGA result(Fig.S3, Supporting Information) that compound 2 lost its relative mass at about 200 °C due to the loss of a small amount of H2O and CH3OH, then lost sharply at 250?550 °C, and started to level off at high temperature (> 800 °C).

    3.2 Crystal structure of compound 2

    Crystal structure of compound 2 was obtained by layering diethyl ether into a mixed solvent of dichloromethane and methanol. In the crystal structure (Fig.1), the platinum atom adopted an approximately square planar geometry. This structure consisted of a monomeric [PtII(terpy-TEMPO)(Cl)]+cation, a chloride anion, and co-crystallized solvent molecules.The selected interatomic distances and angles were given in the Supporting Information. The metal center in the cationic complex of compound 2 adopted a very lightly distortedsquare-planar geometry with three pyridines nitrogen of terpyridine, and the chloride anion. The N―Pt―N angle was analyzed as ~80.7° which was typical in other related complexes37. The important bond distances of heteroatoms to Pt(II) [N1―Pt1: 0.2019(5) nm, N2―Pt1: 0.1934(5) nm,N3―Pt1: 0.2012(5) nm, Cl1―Pt1: 0.2296(2) nm] all fell in the range observed from [Pt(terpy)Cl]ClO4(0.1952?0.2003 nm)37or known Pt-terpyridyl complexes38,39. The angles and torsion angles were Pt1―N1―N2, 80.71(21)°; Pt1―N1―N3,161.42(23)°; Pt1―Cl1―N1, 99.08(17)°; N2―Pt1―N1―C5,2.3(4)°; N3―Pt1―N1―C1, ?179.2(6)°; and N2―Pt1―N3―C11, 0.2(4)° from which the whole molecule could be described as approximately planar. The different stacking of[Pt(terpy-TEMPO)Cl]+were observed: the Pt1?Pt2 distance[0.35235(4) nm)] was slightly longer than that of 0.3269(1) nm in [Pt(terpy)Cl]ClO437, in which the steric effects of TEMPO probably hinder short Pt―Pt distances. In order to avoid steric repulsion, the two stacked terpyridine planes would complement each other without complete overlap (Fig.S5, Supporting Information).

    Fig.1 Perspective drawing of the complex cation of compound 2 with selected atomic numbering scheme.

    3.3 UV/Vis absorption properties

    As a representative example of this class of [Pt(4-R?-terpy)Cl]+complexes, the electronic absorption spectra of complexes 1 and 2 in methyl alcohol are shown in Fig.2. When complexes 1 and 2 are dissolved in methyl alcohol, the absorbance of each platinum complex follows Beer?s law and is consistent with dissolution into monomeric ions. Chargetransfer electronic absorptions of Pt(II) terpyridine complexes tend to occur in the wavelength range from 350 to 450 nm,along with mainly intraligand π?π* absorptions at shorterwavelengths40?43. On the whole, the absorption spectrum of the Pt(terpy)Cl+system of compounds 1 and 2 were very similar,naturally breaks into two energy regimes (Fig.2): broad moderate intense absorption band of 370?450 nm (band A, ε ≈103dm3·mol?1·cm?1) and an intense band with distinct vibronic structures at 270?350 nm (band B, ε > 104dm3·mol?1·cm?1).Che, and others have explored in considerable details of photophysical properties of a series of Pt(II) terpyridine derivatives44?46. Take into consideration all these situations, we tentatively assign the bands B in Fig.2 more likely to represent π?π*transitions. On the other hand, band A (ε = 3.90 × 103dm3·mol?1·cm?1) in Fig.2 is broad with moderately intensity,which makes it difficult to locate the maximum wavelength.But the band A appeared to be too low in energy to be π?π*transitions and too intense (ε ≥ 103dm3·mol?1·cm?1) to be d?d transitions, which it is most likely to be the metal to ligand charge-transfer (CT) transitions analogous to those identified in the spectra of Pt(II) bipyridine complexes47. We tentatively assign it to the metal-to-ligand charge-transfer (MLCT)transition Pt(5d) → terpy(π*). These bands of complex 1 generally shift to lower energy using methanol solvent (Table S2, Fig.S6, Supporting Information), which was consistent with a charge transfer character47,48.

    Fig.2 UV/Vis spectra of compounds 1(black) and 2(red) in methyl alcohol solvent at 298 K (color online).

    3.4 Solid-State photoluminescence properties

    Fig.3 Emission spectra of compounds 1 (black), 2 (red), and 3 (blue) in solid state at 298 K (color online).

    The entire solid samples were deoxygenated by vacuum-argon cycling during testing. Che and Gray49?51have reported the phosphorescence of the Pt(terpy)Cl+complexes at room temperature as well as 77 K in the solid. The[Pt(terpy)Cl]+complexes showed no detectable emission in its solution state at room temperature, which was due to the quenching of the3MLCT state by the thermally accessible3d?d exited state via non-radiative decay52. It was reported that the[Pt(terpy)Cl]+complexes would exhibit very strong luminescence, which was derived from Pt―Pt and/or π?π interaction, both in the solid state and in low temperature glass37. The emission spectrum of 1 ([Pt(terpy)Cl]+complex in our study, Fig.3) upon excitation at λ ≥ 400 nm displayed a strong emission in solid state at λmax630 nm at room temperature. This midrange luminescence (550?650 nm) in solid-state is more difficult to assign, although the low temperature solid-state luminescence of [Pt(terpy)Cl]X (X=PF6?, ClO4?, Cl?, CF3SO3?), ranging from 565 to 695 nm, is assigned to a singlet-singlet MMLCT (π*→ dσ*, metal-metalto ligand charge transfer, MMLCT) transition37. As the Fig.3 shows, the emission of complex 1 is a broad band, which is much too broad for an MMLCT transition in some cases18,19,and it is debatable for such a long ground-state Pt―Pt distance to assign the luminescence of complex 1 to a MMLCT transition, but excimeric ππ*MMLCT emission has been invoked to explain the very broad room-temperature emission of solid [Pt(terpy)Cl]+complexes more reasonable37. The similarly broad emission of solid [Pt(bpy)2]2+and [Pt(phen)2]2+(phen = 1,10-phenanthroline) salts also have ππ excimer character53. The excitation spectrum (Fig.S7, Supporting Information) of compound 1 was, however, complicated with unstructured, broad band (275?525 nm). Also, the complex 1 proves to be a very promising platform with an emission quantum yield of 0.17 and an excited-state lifetime of 0.94 μs(Figs.S8, S9, Supporting Information) in room-temperature solid-state. When TEMPO was pinched on the terpyridine of[Pt(terpy)Cl]+complex, the strong luminescence was quenched sharply (> 90%, Fig.3). So the complex 1 displays an intense orange emission at λmax630 nm, whereas the complex 2 displays very weak luminescence at λmax630 nm in solid state with little redshift in the emission of complex 2. Furthermore,the dramatically quenching also appeared in the excitation spectrum of complex 2, in contrast to complex 1 (Fig.S7,Supporting Information), which indicated TEMPO radical can extinguish excimeric π→π*excitation. The possible mechanisms could be interpreted as follows: The Pt(II) salts series in close proximity to each other are likely to form dimeric structure and yield efficiently the excimer emission in solid states54,55. In the case if photoexcitation of the complex 1 in solid states at room temperature with 406 nm light (hvex),complex 1 is mainly excited to form a singlet exciton1(complex 1)*(Eq.(1), which is smoothly transferred to the ground state of another1(complex 1) yield an singlet excimer1(complex 1. complex 1)*(Eq.(2)), then is transferred to the triplet3(complex 1. complex 1)*via ISC (Eq.(3)). Finally, the excimer emission (hvexcimer) is generated (Eq.(4)).

    In the case of the complex 2, which modified by TEMPO,although the Pt1―Pt2 distance (0.35235(4) nm) distinguished the absence of Pt―Pt interactions, π?π interactions cannot be ignored in dimers of complex 2, and the similar process is possible when excitation occurs upon 2 to generate singlet complex 21(complex 2)*(Eq.(5). In the practical case, the phosphorescence spectra are similar between complexes 1 and 3, and therefore, the strong intermolecular interactions exist not only in complex 1, but also in complexes 2 and 3 in the solid state.1(complex 2)*contribute readily to the singlet excimer formation of complex 2 [1(complex 2. complex 2)*, Eq.(6)], and then relaxed to triplet excimer3(complex 2. complex 2)*(Eq.(7)). But the quenching due to TEMPO selectively provide the excited triplet state, so the triplet excimer [3(complex 2.complex 2)*] back to the ground state via the form of thermal radiation (Eq.(8)), thus the excimer emission cannot be engender.

    In comparison with the emission spectra peaks of complexes 1 and 2, manganic effect of TEMPO on the emission wavelength was not obvious. The maximum emission wavelength of complex 2 slightly moved to ~640 nm compared with complex 1 (λem630 nm). Moreover, the luminescence lifetimes of complexes 1 and 2 were almost the same, 945 and 957 ns, respectively. Interestingly, for solid sample of complex 2, the emission lifetimes under the temperatures from 33 to 290 K were virtually the same (Figs.S10, S11; Table S3, Supporting Information). While the emission peaks of compound 2 were shifted slightly to longer wavelengths with the rising of temperature. We postulate this significant temperature independent for emission lifetimes and emission λmaxof complex 2 is consistent with excimeric ππ*excited state, which was responsible for the radiative decay of the emission.Consequently, the nitroxide radical provided efficient luminescence quenching and this radical could preferably react with ascorbic acid (Scheme 1), thus, as a result of the reaction with ascorbic acid, complex 2 became the luminous-reduced form without radical spins (complex 3, Fig.3).

    Fig.4 Diagrams of singlet states molecular orbitals,energy band gap (eV), HOMO and LUMO under TD-DFT caculations for compelxes 1, 2, 3.

    The frontier molecular orbitals (FMOs) were essential to describe of the electronic and spectroscopic properties of complexes. In view of obtaining the convincible energy band gap and the energy level diagram, the HOMO and LUMO orbital of complexes 1?3 were calculated within Gaussian-09 program at hybrid B3LYP-DFT level. Full geometric optimizations were carried out using basis set 6-31+G(d,p),followed by frequency analysis to insure all local minima with real frequencies. The corresponding FMOs and energy gap (eV)were shown in Fig.4. The calculated compositions of FMOs were very different with the substituent groups (R) changed (R = H,TEMPO, TEMPOH) for Pt(II) terpyridine. The LUMO of complexes 1, 3 were almost at the same level except complex 2 gradually increased slightly, but the differences of level and distribution between three kinds of HOMO were more obvious.In Fig.4, the band gap changes in the order of 2 (2.08 eV) < 1(2.65 eV) ≈ 3 (2.66 eV), in which complex 2 possessed minimal band gap because of the nitroxide radical of terpridine.The partial frontier orbitals compositions of 1?3 were listed in Fig.4. When there was no substituent, e.g., complex 1, the HOMO orbital was mainly contributed by Cl, Pt, and pyridine.With respect to complexes 2 and 3, HOMO orbitals were localized mainly on the TEMPO or TEMPOH. And most impressively, we have noticed that the energy levels of HOMO for complex 2 raised much compared to complexes 1, 3.Obviously, the nitroxide radical (TEMPO) on the terpyridyl ligand effectively raised the energy level of HOMO and slightly lowered LUMO, thus, the energy gap between the HOMO-LUMO became the lowest among the three complexes.Accordingly, the FMOs were the intrinsic reason for the absorption and emission properties of complexes 1?3,especially the emissive performance. As it was showed in Fig.3,the luminescence of complex 1 was strong, and complex 2 decreased slightly, while the complex 3 was almost nonluminous. Hence the evidence strongly suggests that the energy levels of HOMO and LUMO were sensitive to the substituent of nitroxide radical (TEMPO), which should be responsible for the emission of complexes.

    The emission intensity of complex 3 was less than that of complex 2 from the Fig.3, reasons for the difference maybe as follow: solid fluorescence intensity is related to many factors,such as the temperature, the nature of the sample itself, the amount (thickness), the integration time, the surface roughness,the degree of focus, the sample location or something else.Especially for two different samples, this difference is more significant. Therefore, we speculated this difference of fluorescence intensity in Fig.3 is caused by a combination of many factor, such as the sample roughness, the degree of micro-focus, the location and so on.

    The thickness of those samples was about 10?100 μm. In addition, the luminescence property of complex 3 was similar with complex 1, which exhibit strong luminescence in the solid state and in low-temperature glass49?51, while no detectable emission was observed in their solution state at room temperature52. The potential biological applications of complex 3 is very attractive, however, those experiments need harsh experimental conditions (low temperature, no water and no oxygen). So the unstable and non-emission in solution properties of complex 3 is restrictive to its application, and our follow-up work will modify these complexes in order to apply in broader fields.

    3.5 Properties of electron paramagnetic resonance spectroscopy

    Fig.5 EPR spectra of T (black), L (red), and compound 2(green) in DMF at 298 K, 1 × 10?3 mol·L?1 (color online).

    As the luminescence was quenched in [Pt(terpy-TEMPO)]+system, the EPR signal started to be activated. Steady-state EPR spectrum of 4-OH-TEMPO, L, and complex 2 were observed at 298 K in DMF solvent. The spectra demonstrated that fluorophores would drastically influence the rotational correlation coefficients (τR), which can be obtained via analysis of the EPR line widths and relative intensities (As detailed in literature56.57). The τR(Eq.(1), Fig.S12, Table S4, Supporting Information) of 4-OH-TEMPO, L, and complex 2 followed the order: 2.9 × 10?11s < 1.3 × 10?10s < 2.0 × 10?10s, which were all located in fast-motion region58.

    As an evident difference in the Fig.5, the larger substituent group of TEMPO was introduced, the greater asymmetry of the EPR spectra of TEMPO derivatives came out. We supposed that the increasing steric hindrance of the 4-substituent groups,rotation of the TEMPO molecule becomes increasing restricted,thereby prolonging the rotational correlation time, as well as the anisotropies in the hyperfine coupling constant (A value)and g value are less effectively averaged out. Approximate calculation of rotational correlation coefficients (τR) could be obtained via analysis of the EPR line widths and relative intensities. As detailed in Ref.59, within this regime the relation between τRand the spectral parameters are given to a good approximation by the expressions in supporting information(Eq.(1), Fig.S12, Supporting Information).

    4 Conclusions

    In summary, we reported the synthesis and structural characterization of a novel square-planar Pt(II) complex with a terpyridine ligand decorated with TEMPO radical derivative.The complex 2 is sensitive to ascorbic acid, thus it could develop to be a luminescence and EPR bi-functional probe in detecting ascorbic acid for clarifying the biological roles.Moreover, more information about cytotoxic mechanism would be got once terpyridine Pt(II) complexes is used due to its DNA-intercalating activity60.

    By the incorporation of TEMPO moiety, the3MMLCT emissive excited states of [Pt(terpy)Cl]+unit was significantly affected, leading to a new type of highly efficient quenching luminescence [Pt(terpy-TEMPO)Cl]+complex, in turn triggering the EPR signal. Last but not least, this novel[Pt(terpy-TEMPO)Cl]+complex shows promising prospect for metal-TEMPO communication and could possibly be employed as structural elements in new solid state lighting, sensing applications, or organometallic catalyst system. Simultaneously,the development of these chromophore-nitroxide sensors opened the possibilities of obtaining new “off-on”photoluminescence chemosensors, which would be designed as a kind of logic gate switch, or to monitor the process in oxidation reaction. On the analysis of the conversion of EPR signal and luminescence, more information about single electron behavior would be achieved in the process of coordination between substrates and transition metal, which could explain the TEMPO-catalyzed oxidation or cytotoxic mechanism more clearly.

    The new synthetic route of [Pt(terpy-TEMPO)Cl]+could further be used to concatenate terpy-TEMPO ligand to different transient metals, generating a diverse array of transition metal-TEMPO complexes.

    Acknowledgment: The authors sincerely acknowledge Dr.QIN Haiyan (Department of Chemistry, Zhejiang University,Hangzhou 310027, P. R. China) and Dr. WANG Bingjie(Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China) for helpful discussions.

    Supporting Information: Details of X-ray structural analysis, experimental procedures, temperature dependence of emission spectra, UV/Vis spectra, and ESI-MS data of complexes were given. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Ames, B. N.; Shigenaga, M. K.; Hagen, T. M. Proc. Natl. Acad. Sci.1993, 90 (17), 7915. doi: 10.1073/pnas.90.17.7915

    (2) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258 (5090),1898. doi: 10.1126/science.128192

    (3) Church, D. F. Anal. Chem. 1994, 66 (7), A418.

    (4) Di, L.; Hua, Z. Adv. Synth. Catal. 2011, 353 (8), 1253.doi: 10.1002/adsc.201000876

    (5) Rozantse, E.; Sholle, V. D. Synthesis. 1971, (4), 190.

    (6) Dijksman, A.; Marino-Gonzalez, A.; Payeras, A. M. I. J. Am. Chem.Soc. 2001, 123 (28), 6826. doi: 10.1021/Ja0103804

    (7) Karimi, B.; Biglari, A.; Clark, J. H.; Budarin, V. Angew. Chem. Int.Ed. 2007, 46 (38), 7210. doi: 10.1002/anie.200701918

    (8) Ishii, K.; Takayanagi, A.; Shimizu, S.; Abe, H.; Sogawa, K.;Kobayashi, N. Free Radical Bio. Med. 2005, 38 (7), 920.doi: 10.1016/j.freeradbiomed.2004.12.017

    (9) Ishii, K.; Takeuchi, S.; Shimizu, S.; Kobayashi, N. J. Am. Chem. Soc.2004, 126 (7), 2082. doi: 10.1021/Ja035352v

    (10) Blough, N. V.; Simpson, D. J. J. Am. Chem. Soc. 1988, 110 (6), 1915.doi: 10.1021/Ja00214a041

    (11) Ishii, K.; Hirose, Y.; Kobayashi, N. J. Phys. Chem. A 1999, 103 (13),1986. doi: 10.1021/Jp983624o

    (12) Green, S. A.; Simpson, D. J.; Zhou, G.; Ho, P. S.; Blough, N. V. J.Am. Chem. Soc. 1990, 112 (20), 7337. doi: 10.1021/Ja00176a038

    (13) Camerel, F.; Ziessel, R.; Donnio, B.; Bourgogne, C.; Guillon, D.;Schmutz, M.; Iacovita, C.; Bucher, J. P. Angew. Chem. Int. Ed. 2007,46 (15), 2659. doi: 10.1002/anie.200604012

    (14) Tam, A. Y. Y.; Wong, K. M. C.; Wang, G. X.; Yam, V. W. W. Chem.Commun. 2007, No. 20, 2028. doi: 10.1039/B705062c

    (15) Lu, W.; Law, Y. C.; Han, J.; Chui, S. S. Y.; Ma, D. L.; Zhu, N. Y.;Che, C. M. Chem. Asian J. 2008, 3 (1), 59. doi:10.1002/asia.200700265

    (16) Ou, Z. Z.; Ju, B. L.; Gao, Y. Y.; Wang, Z. C.; Huang, G.; Qian, Y. M.Acta Phys. -Chim. Sin. 2015, 31 (12), 2386. [歐植澤, 句寶龍, 高云燕, 王子超, 黃 干, 錢一夢. 物理化學(xué)學(xué)報, 2015, 31 (12): 2386.]doi: 10.3866/PKU.WHXB201510137

    (17) Liu, X. Y.; Han, X.; Zhang, L. P.; Tung, C. H.; Wu, L. Z. Phys. Chem.Chem. Phys. 2010, 12 (40), 13026. doi: 10.1039/c0cp00100g

    (18) Bailey, J. A.; Miskowski, V. M.; Gray, H. B. Inorg. Chem. 1993, 32(4), 369. doi: 10.1021/Ic00056a001

    (19) Aldridge, T. K.; Stacy, E. M. Inorg. Chem. 1994, 33 (4), 722.doi: 10.1021/Ic00082a017

    (20) Lai, S. W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. Inorg. Chem.1999, 38 (19), 4262. doi: 10.1021/Ic990446k

    (21) Chung, C. Y. S.; Yam, V. W. W. J. Am. Chem. Soc. 2011, 133 (46),18775. doi: 10.1021/Ja205996e

    (22) Xu, P.; Wu, H. T.; Jia, H. X.; Ye, S. F.; Du, P. W. Organometallics.2014, 33 (11), 2738. doi: 10.1021/Om500115s

    (23) Yam, V. W. W.; Chan, K. H. Y.; Wong, K. M. C.; Chu, B. W. K.Angew. Chem. Int. Ed. 2006, 45 (37), 6169. doi:10.1002/anie.200600962

    (24) Wu, D.; Deng, K.; He, M.; Zeng, Q.; Wang, C. Chem. Phys. Chem.2007, 8 (10), 1519. doi: 10.1002/cphc.200700096

    (25) Siebert, R.; Akimov, D.; Schmitt, M.; Winter, A.; Schubert, U. S.;Dietzek, B.; Popp, J. ChemPhysChem 2009, 10 (6), 910.doi: 10.1002/cphc.200800847

    (26) Park, J.; Lee, J. H.; Jaworski, J.; Shinkai, S.; Jung, J. H. Inorg. Chem.2014, 53 (14), 7181. doi: 10.1021/Ic500266f

    (27) Yam, V. W. W.; Tang, R. P. L.; Wong, K. M. C.; Ko, C. C.; Cheung,K. K. Inorg. Chem. 2001, 40 (3), 571. doi: 10.1021/Ic000586q

    (28) Kunkely, H.; Vogler, A. J. Am. Chem. Soc. 1990, 112 (14), 5625.doi: 10.1021/Ja00170a029

    (29) Connick, W. B.; Geiger, D.; Eisenberg, R. Inorg. Chem. 1999, 38(14), 3264. doi: 10.1021/Ic981387y

    (30) Chan, C. W.; Cheng, L. K.; Che, C. M. Coordin. Chem. Rev. 1994,132, 87. doi: 10.1016/0010-8545(94)80027-8

    (31) Tears, D. K. C.; McMillin, D. R. Coordin. Chem. Rev. 2001, 211, 195

    (32) Olia, M. B. A.; Schiesser, C. H.; Taylor, M. K. Org. Biomol. Chem.2014, 12 (35), 6757. doi: 10.1039/c4ob01172d

    (33) Mcdermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem. Soc.1976, 98 (21), 6521. doi: 10.1021/Ja00437a018

    (34) Morgan, G. T.; Burstall, F. H. J. Chem. Soc. 1934, 1498.doi: 10.1039/Jr9340001498

    (35) Halcrow, M. A.; Brechin, E. K.; McInnes, E. J. L.; Mabbs, F. E.;Davies, J. E. J. Chem. Soc. Dalton Trans. 1998, (15), 2477.doi: 10.1039/A803793k

    (36) Price, J. H.; Schramm, R. F.; Wayland, B. B.; Williams, A. Inorg.Chem. 1972, 11 (6), 1280. doi: 10.1021/Ic50112a025

    (37) Bailey, J. A.; Hill, M. G.; Marsh, R. E.; Miskowski, V. M.; Schaefer,W. P.; Gray, H. B. Inorg. Chem. 1995, 34 (18), 4591.doi: 10.1021/Ic00122a015

    (38) Tang, W. S.; Lu, X. X.; Wong, K. M. C.; Yam, V. W. W. J. Mater.Chem. 2005, 15 (27?28), 2714. doi: 10.1039/B501644d

    (39) Wong, K. M. C.; Tang, W. S.; Lu, X. X.; Zhu, N. Y.; Yam, V. W. W.Inorg. Chem. 2005, 44 (5), 1492. doi: 10.1021/Ic049079p

    (40) McMillin, D. R.; Moore, J. J. Coordin. Chem. Rev. 2002, 229 (1?2),113. doi: 10.1016/S0010-8545(02)00041-3

    (41) Yam, V. W. W.; Wong, K. M. C.; Zhu, N. Y. Angew. Chem. Int. Ed.2003, 42 (12), 1400. doi: 10.1002/anie.200390360

    (42) Yam, V. W. W.; Chan, K. H. Y.; Wong, K. M. C.; Zhu, N. Y. Chem.-Eur. J. 2005, 11 (15), 4535. doi: 10.1002/chem.200500106

    (43) Yu, C.; Wong, K. M. C.; Chan, K. H. Y.; Yam, V. W. W. Angew.Chem. Int. Ed. 2005, 44 (5), 791. doi: 10.1002/anie.200461261

    (44) Che, C. M.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1981, 103(26), 7796. doi: 10.1021/Ja00416a021

    (45) Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105 (14), 4571.doi: 10.1021/Ja00352a011

    (46) Lu, W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. Organometallics 2001, 20 (12), 2477. doi: 10.1021/Om0009839

    (47) Gidney, P. M.; Gillard, R. D.; Heaton, B. T. J. Chem. Soc. Dalton Trans. 1973, (2), 132. doi: 10.1039/Dt9730000132

    (48) Benedix, R.; Vogler, A. Inorg. Chim. Acta 1993, 204 (2), 189.doi: 10.1016/S0020-1693(00)82924-2

    (49) Yip, H. K.; Cheng, L. K.; Cheung, K. K.; Che, C. M. J. Chem. Soc.Dalton Trans. 1993, (19), 2933. doi: 10.1039/Dt9930002933

    (50) Lai, S. W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M.Organometallics 1999, 18 (17), 3327. doi: 10.1021/Om990256h

    (51) Connick, W. B.; Henling, L. M.; Marsh, R. E.; Gray, H. B. Inorg.Chem. 1996, 35 (21), 6261. doi: 10.1021/Ic960511f

    (52) Houlding, V. H.; Miskowski, V. M. Coordin. Chem. Rev. 1991, 111,145. doi: 10.1016/0010-8545(91)84019-2

    (53) Miskowski, V. M.; Houlding, V. H. Inorg. Chem. 1989, 28 (8), 1529.doi: 10.1021/Ic00307a021

    (54) Xu, H.; Lv, Y. F.; Zhu, W. Q.; Xu, F.; Long, L.; Yu, F. F.; Wang, Z.X.; Wei, B. J. Phys. D: Appl. Phys. 2011, 44 (41), 1.doi: 10.1088/0022-3727/44/41/415102

    (55) Shigehiro, T.; Yagi, S.; Maeda, T.; Nakazumi, H.; Fujiwara, H.;Sakurai, Y. J. Phys. Chem. C 2013, 117 (1), 532.doi: 10.1021/jp307853t

    (56) Robinson, B. H.; Schurr, J. M.; Kwiram, A. L.; Thomann, H.; Kim,H.; Morrobelsosa, A.; Bryson, P.; Dalton, L. R. J. Phys. Chem. 1985,89 (23), 4994. doi: 10.1021/J100269a022

    (57) Thomann, H.; Cline, J. F.; Hoffman, B. M.; Kim, H.; Morrobelsosa,A.; Robinson, B. H.; Dalton, L. R. J. Phys. Chem. 1985, 89 (10),1994. doi: 10.1021/J100256a037

    (58) Evans, R. G.; Wain, A. J.; Hardacre, C.; Compton, R. G. Chem. Phys.Chem. 2005, 6 (6), 1035. doi: 10.1002/cphc.200500157

    (59) Arewgoda, C. M.; Bond, A. M.; Dickson, R. S.; Mann, T. F.; Moir, J.E.; Rieger, P. H.; Robinson, B. H.; Simpson, J. Organometallics.1985, 4 (6), 1077. doi: 10.1021/Om00125a022

    (60) Wang, B. L.; Wang, Z. G.; Ai, F. J.; Tang, W. K.; Zhu, G. Y. J. Inorg.Biochem. 2015, 142, 118. doi: 10.1016/j.jinorgbio.2014.10.003

    Synthesis, Characterization, Spectroscopic Properties, and Luminescence Quenching Mechanism of a Pt(II) Complex Decorated with a π-Conjugated TEMPO-Terpyridine Ligand System

    YIN Lu1LIANG Cheng2CHEN Ke-Xian3ZHAO Chen-Xuan1YAO Jia1LI Hao-Ran1,*
    (1ZJU-NHU United R&D Center, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China;2College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China;3School of Food Science and Biotechnology, Zhejiang Gongshang University Hangzhou, Hangzhou 310018, P. R. China)

    A novel Pt(II)-based metallointercalator terpyridine complex linked with a 2,2,6,6-tetramethyl-1-piperidinyl N-oxide (TEMPO) derivative was prepared by a reaction between 4?-TEMPO-terpyridine (L) and a Pt(II) salt. This complex presented unusual luminescence quenching owing to the effect of the stable nitroxide radical. The crystal structure of [Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH (terpy =2,2?:6?,2?-terpyridine) was elucidated by X-ray crystallography. Additionally, the effect of TEMPO on the photophysical properties of [Pt(terpy-TEMPO)Cl] Cl·H2O·CH3OH was investigated by UV-Vis, fluorescence emission, and electron paramagnetic resonance (EPR) spectroscopy. Data from the absorption and luminescence properties (298 K) of the [Pt(terpy-TEMPO)Cl]+complex indicated the presence of two groups of typical bands: an intense band B with distinct vibronic structures (270?350 nm, ε > 104dm3·mol?1·cm?1) and a less intense band A (370?450 nm, ε ~103dm3·mol?1·cm?1). These two bands are generally assigned to ligand-to-ligand charge transfer (LLCT) and metal-to-ligand charge transfer (MLCT)excited states, respectively. Furthermore, efficient photoluminescent quenching behavior was observed in the emission spectra of this complex system. Quantum calculations of the molecular energy gaps and bands were performed by Gaussian 09 software. The calculated results verified that TEMPO greatly affects the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Thus, the relationship between efficient photoquenching and molecular structure was theoretically interpreted. EPR results indicated that when TEMPO is attached to a macrocyclic terpyridine platinum complex, e.g., [Pt(terpy)Cl]+, the terpyridine platinum complex does not affect the hyperfine coupling constant (A value) and g factor (g values) but the rotation and relaxation times of the TEMPO radical.

    Terpyridine Pt(II) complex; Nitroxide radical; Synthesis; Photoluminescence;Electron paramagnetic resonance

    January 11, 2017; Revised: March 17, 2017; Published online: April 11, 2017.

    O641

    10.3866/PKU.WHXB201704111 www.whxb.pku.edu.cn

    *Corresponding author. Email: lihr@zju.edu.cn; Tel: +86-571-87952424.

    The project was supported by the National Natural Science Foundation of China (21573196, J1210042), Program for Zhejiang Leading Team of S&T

    Innovation (2011R50007), National High Technology Research and Development Program of China (863) (SS2015AA020601), and Fundamental Research

    Funds of the Central Universities, China.

    國家自然科學(xué)基金(21573196, J1210042),浙江科技創(chuàng)新團(tuán)隊項目(2011R50007),國家高技術(shù)研究發(fā)展計劃項目(863) (SS2015AA020601)和中央高?;究蒲袠I(yè)務(wù)費專項資金資助

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    聯(lián)吡啶浙江大學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    浙江大學(xué)農(nóng)業(yè)試驗站簡介
    浙江大學(xué)作物科學(xué)研究所簡介
    福建工程學(xué)院
    歡迎訂閱《浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版)》
    La jeunesse chinoise d'aujourd'hui
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    青青草视频在线视频观看| 秋霞伦理黄片| 免费观看人在逋| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费鲁丝| 亚洲精品国产av蜜桃| 一区二区日韩欧美中文字幕| av网站免费在线观看视频| 日本一区二区免费在线视频| 精品少妇久久久久久888优播| a 毛片基地| 无遮挡黄片免费观看| 国产精品一区二区在线观看99| 午夜日本视频在线| 丰满迷人的少妇在线观看| 成年人午夜在线观看视频| 91成人精品电影| 在线天堂中文资源库| 街头女战士在线观看网站| 男女国产视频网站| 少妇人妻精品综合一区二区| 宅男免费午夜| 国产 一区精品| 久久久久久久久免费视频了| 欧美成人精品欧美一级黄| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 啦啦啦在线观看免费高清www| 一区二区三区乱码不卡18| 免费黄网站久久成人精品| 99re6热这里在线精品视频| 最新的欧美精品一区二区| 国产激情久久老熟女| 老司机亚洲免费影院| 在线观看人妻少妇| 人成视频在线观看免费观看| 精品午夜福利在线看| 人妻人人澡人人爽人人| 天天躁狠狠躁夜夜躁狠狠躁| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 美国免费a级毛片| 97在线人人人人妻| 最近最新中文字幕大全免费视频 | 国产人伦9x9x在线观看| 亚洲色图综合在线观看| 色播在线永久视频| 精品国产国语对白av| 99九九在线精品视频| 热re99久久国产66热| 99久久99久久久精品蜜桃| av国产久精品久网站免费入址| 色播在线永久视频| 我要看黄色一级片免费的| 亚洲四区av| 不卡av一区二区三区| 啦啦啦啦在线视频资源| 欧美激情极品国产一区二区三区| 精品久久久久久电影网| 国产精品嫩草影院av在线观看| 无遮挡黄片免费观看| 黄频高清免费视频| 欧美另类一区| 狂野欧美激情性bbbbbb| 亚洲久久久国产精品| 国产精品成人在线| 国产成人免费无遮挡视频| 热re99久久精品国产66热6| 一本一本久久a久久精品综合妖精| 欧美日韩成人在线一区二区| 亚洲色图综合在线观看| 丝袜喷水一区| a级毛片在线看网站| svipshipincom国产片| 97人妻天天添夜夜摸| 在线观看免费视频网站a站| 亚洲精品aⅴ在线观看| 高清av免费在线| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 一区在线观看完整版| av国产精品久久久久影院| 在线观看www视频免费| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 亚洲av福利一区| 欧美 亚洲 国产 日韩一| 99久久人妻综合| 久久鲁丝午夜福利片| 成人手机av| 国产高清国产精品国产三级| 日韩中文字幕欧美一区二区 | 国产一区二区激情短视频 | 国产成人午夜福利电影在线观看| 天堂中文最新版在线下载| 中国三级夫妇交换| 色婷婷久久久亚洲欧美| 男女午夜视频在线观看| 51午夜福利影视在线观看| 可以免费在线观看a视频的电影网站 | 极品少妇高潮喷水抽搐| 精品国产乱码久久久久久男人| 国产一区二区在线观看av| 9191精品国产免费久久| 国产亚洲精品第一综合不卡| 51午夜福利影视在线观看| 大码成人一级视频| 9热在线视频观看99| 精品国产一区二区三区四区第35| 久久久久久久久久久久大奶| 大片电影免费在线观看免费| a级毛片黄视频| 国产xxxxx性猛交| 亚洲欧美精品自产自拍| 亚洲欧洲日产国产| 麻豆精品久久久久久蜜桃| 国产伦理片在线播放av一区| 精品国产一区二区久久| 一边摸一边抽搐一进一出视频| 亚洲人成网站在线观看播放| 亚洲一卡2卡3卡4卡5卡精品中文| 免费日韩欧美在线观看| 欧美黄色片欧美黄色片| 亚洲国产av影院在线观看| 中文字幕精品免费在线观看视频| 国产成人午夜福利电影在线观看| 亚洲国产av新网站| 美女国产高潮福利片在线看| 亚洲国产日韩一区二区| 午夜激情久久久久久久| 999精品在线视频| 国产成人精品在线电影| 国产精品欧美亚洲77777| 亚洲精品在线美女| 一级毛片黄色毛片免费观看视频| 久久热在线av| 精品亚洲成国产av| 亚洲精品自拍成人| 亚洲 欧美一区二区三区| 亚洲伊人色综图| av.在线天堂| 亚洲国产中文字幕在线视频| 中文字幕制服av| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| 亚洲精品第二区| 亚洲精品美女久久久久99蜜臀 | av电影中文网址| 国产精品香港三级国产av潘金莲 | 中文精品一卡2卡3卡4更新| 国产视频首页在线观看| 蜜桃在线观看..| 韩国高清视频一区二区三区| 在线观看www视频免费| 国产一区有黄有色的免费视频| 不卡视频在线观看欧美| 男女免费视频国产| 最黄视频免费看| 国产精品 欧美亚洲| 欧美人与性动交α欧美软件| 悠悠久久av| 成人午夜精彩视频在线观看| 看十八女毛片水多多多| 91国产中文字幕| 国产亚洲午夜精品一区二区久久| 午夜91福利影院| 飞空精品影院首页| 免费女性裸体啪啪无遮挡网站| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 另类亚洲欧美激情| 国产精品.久久久| 日韩制服丝袜自拍偷拍| 久久久欧美国产精品| 成人毛片60女人毛片免费| 亚洲伊人久久精品综合| 丰满迷人的少妇在线观看| 水蜜桃什么品种好| 国产爽快片一区二区三区| 91精品三级在线观看| 电影成人av| 18禁裸乳无遮挡动漫免费视频| 丝袜美足系列| 啦啦啦啦在线视频资源| 国产av一区二区精品久久| 亚洲国产欧美一区二区综合| 午夜日韩欧美国产| 一区二区日韩欧美中文字幕| 日日撸夜夜添| 久久久久久久大尺度免费视频| 免费观看人在逋| 欧美久久黑人一区二区| 国产精品香港三级国产av潘金莲 | 狂野欧美激情性xxxx| 亚洲三区欧美一区| 人成视频在线观看免费观看| 一级毛片我不卡| 另类亚洲欧美激情| 精品午夜福利在线看| 婷婷成人精品国产| 一级,二级,三级黄色视频| 嫩草影院入口| 深夜精品福利| 美女扒开内裤让男人捅视频| 极品少妇高潮喷水抽搐| av福利片在线| 麻豆乱淫一区二区| 在线看a的网站| 一区二区三区四区激情视频| 久久天堂一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲三区欧美一区| 欧美在线一区亚洲| 啦啦啦中文免费视频观看日本| 巨乳人妻的诱惑在线观看| 男人操女人黄网站| 亚洲五月色婷婷综合| 90打野战视频偷拍视频| 日本爱情动作片www.在线观看| 日韩视频在线欧美| 精品久久久久久电影网| 如何舔出高潮| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 91精品三级在线观看| 国产男人的电影天堂91| 999久久久国产精品视频| 日韩一本色道免费dvd| 午夜日韩欧美国产| 19禁男女啪啪无遮挡网站| 国产精品免费大片| 久久人人97超碰香蕉20202| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线| 国产极品天堂在线| 一本大道久久a久久精品| 十八禁网站网址无遮挡| 伦理电影免费视频| 国产xxxxx性猛交| 免费在线观看黄色视频的| 一级a爱视频在线免费观看| 久久精品人人爽人人爽视色| 日本爱情动作片www.在线观看| 久久精品熟女亚洲av麻豆精品| 视频区图区小说| 国产乱来视频区| 精品国产乱码久久久久久男人| 校园人妻丝袜中文字幕| 亚洲视频免费观看视频| 中文精品一卡2卡3卡4更新| 18禁观看日本| 国产黄频视频在线观看| 水蜜桃什么品种好| 国产熟女欧美一区二区| 嫩草影院入口| 九草在线视频观看| 欧美日韩视频高清一区二区三区二| 涩涩av久久男人的天堂| 国产国语露脸激情在线看| 一二三四在线观看免费中文在| 国产高清不卡午夜福利| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 又粗又硬又长又爽又黄的视频| 嫩草影视91久久| 欧美日韩成人在线一区二区| 少妇 在线观看| 在线天堂最新版资源| 久久青草综合色| 一区二区日韩欧美中文字幕| 高清av免费在线| 亚洲国产精品国产精品| 日韩伦理黄色片| 秋霞在线观看毛片| 亚洲精品视频女| 99久国产av精品国产电影| videosex国产| 亚洲,一卡二卡三卡| 少妇被粗大的猛进出69影院| 又粗又硬又长又爽又黄的视频| 亚洲精品一区蜜桃| 日本一区二区免费在线视频| 晚上一个人看的免费电影| 又大又爽又粗| 国产精品一区二区精品视频观看| 精品福利永久在线观看| 欧美国产精品va在线观看不卡| 女性生殖器流出的白浆| 国产1区2区3区精品| 国产成人一区二区在线| 亚洲情色 制服丝袜| 精品一品国产午夜福利视频| 大片电影免费在线观看免费| 精品一区二区三卡| 少妇的丰满在线观看| 亚洲图色成人| 又大又黄又爽视频免费| 亚洲专区中文字幕在线 | 人人妻,人人澡人人爽秒播 | www.精华液| 国产一区有黄有色的免费视频| 亚洲欧洲国产日韩| 丝瓜视频免费看黄片| 哪个播放器可以免费观看大片| 狂野欧美激情性bbbbbb| 日韩一本色道免费dvd| 老司机亚洲免费影院| 精品国产露脸久久av麻豆| 国精品久久久久久国模美| 国产成人一区二区在线| 两个人看的免费小视频| 国产一卡二卡三卡精品 | 一个人免费看片子| 中国三级夫妇交换| 亚洲精品一区蜜桃| 操美女的视频在线观看| 极品少妇高潮喷水抽搐| 女人精品久久久久毛片| 波多野结衣av一区二区av| 日韩制服骚丝袜av| 亚洲国产精品国产精品| av片东京热男人的天堂| 日本91视频免费播放| 又大又黄又爽视频免费| 国产深夜福利视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 女的被弄到高潮叫床怎么办| 日本午夜av视频| 国产亚洲一区二区精品| 如日韩欧美国产精品一区二区三区| 国产乱来视频区| 亚洲精品日韩在线中文字幕| 午夜激情av网站| 纵有疾风起免费观看全集完整版| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区大全| 王馨瑶露胸无遮挡在线观看| 久久毛片免费看一区二区三区| 精品国产一区二区久久| 超碰成人久久| 国产精品国产av在线观看| 欧美日韩视频精品一区| 国语对白做爰xxxⅹ性视频网站| 精品一品国产午夜福利视频| 国产一区二区三区av在线| 99九九在线精品视频| 午夜福利乱码中文字幕| av在线观看视频网站免费| 久久 成人 亚洲| 韩国精品一区二区三区| 国产精品久久久久久人妻精品电影 | 久久久久视频综合| 超碰97精品在线观看| 90打野战视频偷拍视频| 国产亚洲最大av| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久| 久久久欧美国产精品| 国产片内射在线| 欧美变态另类bdsm刘玥| 青春草亚洲视频在线观看| 午夜免费男女啪啪视频观看| 国产精品欧美亚洲77777| 一区二区日韩欧美中文字幕| 久久久久人妻精品一区果冻| 99国产精品免费福利视频| 午夜免费鲁丝| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 在线天堂中文资源库| 国产av国产精品国产| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 国产精品.久久久| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 热re99久久国产66热| 久久女婷五月综合色啪小说| 无限看片的www在线观看| 男女之事视频高清在线观看 | 韩国高清视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| av线在线观看网站| 十分钟在线观看高清视频www| 91成人精品电影| 亚洲一级一片aⅴ在线观看| 欧美av亚洲av综合av国产av | 黄片小视频在线播放| 久久久久久久久免费视频了| 黄色一级大片看看| 国产免费一区二区三区四区乱码| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲 | 日本91视频免费播放| 久久久久视频综合| 一区二区日韩欧美中文字幕| 两个人看的免费小视频| 国产成人精品福利久久| 国产免费一区二区三区四区乱码| 亚洲七黄色美女视频| 在线 av 中文字幕| 最新的欧美精品一区二区| 啦啦啦啦在线视频资源| 成人国产麻豆网| 久久精品国产a三级三级三级| 女人精品久久久久毛片| 亚洲精品久久成人aⅴ小说| 国产亚洲午夜精品一区二区久久| 欧美黄色片欧美黄色片| 日韩av在线免费看完整版不卡| 国产亚洲av高清不卡| 久久精品亚洲av国产电影网| 亚洲专区中文字幕在线 | 赤兔流量卡办理| 国产日韩一区二区三区精品不卡| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区久久| 亚洲一码二码三码区别大吗| 亚洲精品第二区| 青草久久国产| 18禁观看日本| 成年女人毛片免费观看观看9 | 亚洲中文av在线| netflix在线观看网站| 成年美女黄网站色视频大全免费| 亚洲av电影在线进入| 大片免费播放器 马上看| 国产av码专区亚洲av| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 在线观看www视频免费| 精品国产乱码久久久久久小说| 人人妻,人人澡人人爽秒播 | 看免费av毛片| 国产男女超爽视频在线观看| 中文字幕高清在线视频| 肉色欧美久久久久久久蜜桃| 少妇人妻精品综合一区二区| 亚洲精品,欧美精品| 飞空精品影院首页| 日韩大片免费观看网站| 国产午夜精品一二区理论片| 久久韩国三级中文字幕| 最近中文字幕2019免费版| 日本欧美国产在线视频| 亚洲精品aⅴ在线观看| 韩国av在线不卡| 免费观看a级毛片全部| 人人妻,人人澡人人爽秒播 | 久久青草综合色| 成人亚洲欧美一区二区av| 久久久久网色| 91国产中文字幕| 免费黄网站久久成人精品| 少妇的丰满在线观看| 赤兔流量卡办理| 日韩成人av中文字幕在线观看| 久久久国产精品麻豆| 超碰成人久久| 国产黄色免费在线视频| 在线亚洲精品国产二区图片欧美| 一级毛片 在线播放| 成年动漫av网址| 天堂8中文在线网| 成人亚洲精品一区在线观看| 国产精品熟女久久久久浪| 汤姆久久久久久久影院中文字幕| 999久久久国产精品视频| 久久久久视频综合| kizo精华| 高清不卡的av网站| 精品免费久久久久久久清纯 | 免费在线观看完整版高清| 91精品国产国语对白视频| 欧美激情高清一区二区三区 | 国产极品粉嫩免费观看在线| 天天影视国产精品| 搡老乐熟女国产| 黄色视频不卡| 日本欧美国产在线视频| 只有这里有精品99| av线在线观看网站| 欧美中文综合在线视频| 在线精品无人区一区二区三| av国产久精品久网站免费入址| 欧美精品一区二区大全| 国产成人欧美| 少妇的丰满在线观看| 亚洲成人国产一区在线观看 | 精品亚洲成国产av| 亚洲精品国产色婷婷电影| 五月开心婷婷网| 老司机影院成人| 久久精品亚洲av国产电影网| 国产乱人偷精品视频| 午夜久久久在线观看| 日韩,欧美,国产一区二区三区| 美国免费a级毛片| 亚洲av中文av极速乱| 自线自在国产av| 亚洲国产欧美在线一区| 国产毛片在线视频| 人妻人人澡人人爽人人| 国产极品天堂在线| 高清在线视频一区二区三区| 精品一区在线观看国产| 久久久久久久久久久免费av| a级毛片黄视频| 欧美人与性动交α欧美精品济南到| 久久久久久人人人人人| 99精品久久久久人妻精品| www.熟女人妻精品国产| 亚洲精品国产区一区二| 国产片内射在线| 亚洲国产中文字幕在线视频| 欧美成人精品欧美一级黄| 美女大奶头黄色视频| 91老司机精品| 亚洲欧美成人精品一区二区| 美女扒开内裤让男人捅视频| tube8黄色片| 少妇人妻 视频| 老司机靠b影院| 只有这里有精品99| 日韩一区二区三区影片| 亚洲一区二区三区欧美精品| 男人爽女人下面视频在线观看| 性高湖久久久久久久久免费观看| 99九九在线精品视频| 视频在线观看一区二区三区| 亚洲伊人色综图| 男女国产视频网站| 亚洲成人av在线免费| 亚洲五月色婷婷综合| 极品人妻少妇av视频| 久久久欧美国产精品| netflix在线观看网站| 国产黄色免费在线视频| 97在线人人人人妻| 成人漫画全彩无遮挡| 国产熟女欧美一区二区| 另类精品久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产探花极品一区二区| 久久精品国产综合久久久| 最新的欧美精品一区二区| 男女午夜视频在线观看| 9色porny在线观看| 制服丝袜香蕉在线| 中文字幕亚洲精品专区| 夫妻午夜视频| 午夜福利在线免费观看网站| 麻豆乱淫一区二区| 亚洲成国产人片在线观看| 欧美人与善性xxx| 日本欧美国产在线视频| 99精品久久久久人妻精品| 成年动漫av网址| 中文字幕高清在线视频| 日韩大码丰满熟妇| 涩涩av久久男人的天堂| 观看美女的网站| 51午夜福利影视在线观看| 黄色 视频免费看| 亚洲综合色网址| 女性生殖器流出的白浆| 一级黄片播放器| 日日撸夜夜添| 99re6热这里在线精品视频| 女性被躁到高潮视频| 中文字幕人妻熟女乱码| 赤兔流量卡办理| av电影中文网址| 国产 一区精品| 精品一品国产午夜福利视频| 王馨瑶露胸无遮挡在线观看| 91国产中文字幕| 精品一区二区三卡| av卡一久久| 在线观看免费日韩欧美大片| 亚洲国产毛片av蜜桃av| 一区二区三区四区激情视频| 一级,二级,三级黄色视频| 丁香六月天网| 国产成人av激情在线播放| 亚洲七黄色美女视频| 免费黄网站久久成人精品| 在线观看国产h片| 中文字幕人妻丝袜制服| 中文字幕亚洲精品专区| 国产视频首页在线观看| 黄频高清免费视频| 天天躁夜夜躁狠狠躁躁| 中国国产av一级| 最近最新中文字幕大全免费视频 | 成年人免费黄色播放视频| 国产 精品1| 桃花免费在线播放| 看免费成人av毛片| 亚洲五月色婷婷综合| 国产精品人妻久久久影院| 性高湖久久久久久久久免费观看| 亚洲三区欧美一区| av网站在线播放免费| 免费高清在线观看日韩| 亚洲av综合色区一区| √禁漫天堂资源中文www| 国产av码专区亚洲av| 久久久久久久大尺度免费视频| 伦理电影免费视频| 国产免费福利视频在线观看| 九九爱精品视频在线观看| 青青草视频在线视频观看| 老鸭窝网址在线观看| 天天躁狠狠躁夜夜躁狠狠躁|