• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pd/Co3O4納米顆粒負載于Al2O3納米片高效催化甲烷燃燒

    2017-11-01 17:29:19劉敬偉楊娜婷
    物理化學(xué)學(xué)報 2017年7期
    關(guān)鍵詞:上海

    劉敬偉 楊娜婷 祝 艷

    (中國科學(xué)院上海高等研究院,低碳轉(zhuǎn)化科學(xué)與工程中國科學(xué)院重點實驗室,上海 201210)

    Pd/Co3O4納米顆粒負載于Al2O3納米片高效催化甲烷燃燒

    劉敬偉 楊娜婷 祝 艷*

    (中國科學(xué)院上海高等研究院,低碳轉(zhuǎn)化科學(xué)與工程中國科學(xué)院重點實驗室,上海 201210)

    我們報道了一種Pd/Co3O4納米顆粒負載于Al2O3納米片的三元催化劑催化甲烷的高效燃燒。其中,Pd/Co3O4負載于堿性氧化鋁的復(fù)合材料活化甲烷C―H鍵的能力比SiO2、ZrO2和CeO2以及酸性和中性Al2O3為載體時更強,這是因為Pd/Co3O4/堿性Al2O3擁有更多的氧空穴和吸附氧,對催化劑催化甲烷燃燒有較好的影響。盡管在5%(體積分數(shù))的水蒸氣存在下,其催化性能有一定的失活,但在移除水蒸氣時,其催化性能可以快速恢復(fù)至最佳狀態(tài)。在模擬真實汽車尾氣的氛圍下,Pd/Co3O4/堿性Al2O3依然具有較好的催化甲烷燃燒性能,在400 °C時可以催化甲烷完全轉(zhuǎn)化。

    Pd/Co3O4;堿性;甲烷氧化;活性;穩(wěn)定性

    1 Introduction

    Natural gas, of which methane is the major component, is widely used in power generation, vehicle fuel and other heating applications1. Methane is a very stable and symmetrical molecule containing four C―H bonds2. The breaking of the C―H bond is thermodynamically unfavorable and the energyof methane activation is higher than those of higher hydrocarbons3. Therefore, the conversion of methane, such as oxidative coupling of methane for ethane and ethylene4,methane dry reforming for CO and H25, and partial oxidation of methane for methanol6, need carrying out at high temperature even if in the presence of catalysts. The catalytic combustion of methane, as one of methane conversion, cannot be happened at low temperature and the complete methane combustion is obtained below at least 400 °C in the very active catalysts7?9.However, the complete oxidation of unburned methane from exhaust streams is significant for that the greenhouse effect of methane is more than 20 times than that of carbon dioxide, and the incomplete oxidation could bring about various nitrogen oxides, carbon monoxide, and soot emissions10. With given more attention to environment and health, the high catalytically active and stable catalysts thus are highly desirable to, in principle, emission limit of methane to the atmosphere, and simultaneously reduce NOx, CO and soot emissions to ultra-low levels11. Current popular catalysts for methane catalytic combustion are noble metals and metal oxides12,13.Several crucial factors need to be considered in developing new catalysts for catalytic combustion of methane, such as high sintering rates, high cost of noble metals, water and sulfur poisoning14,15. Palladium-based catalysts are known as the very effective catalysts for catalytic methane oxidation, and unfortunately, they tend to deactivate because of sintering at high temperature14,16. Other catalysts based on oxides such as transition metal oxides, perovskite oxides and hexaaluminate oxides show low catalytic activity, with the complete conversion of methane observed only above 400 °C17?19.

    In terms of Pd-based catalysts, many efforts have been made to investigate the influence of the metal-oxide support on the activity and the stability of the palladium catalyst, the impact of the support is mainly credited to palladium dispersion, oxygen mobility, and the Pd-support interaction20,21. The metal oxides not only work as supports but also function as electronic modulators to contribution spillover and adsorption sites22,23.Co3O4with typical spinel-structure transition metal oxide is an important support for Pd-based catalysts in the activation of methane, since there is a strong interaction between the Co3O4unit cell and the PdO unit cell24,25. Aluminum oxides(especially γ-Al2O3), with high surface area, moderate chemical activity, and low cost, are also widely employed as supports for methane combustion26,27.

    In view of the virtue of Co3O4and Al2O3as supports, herein,we produce an efficient catalyst such Pd/Co3O4/Al2O3through inlaying Pd/Co3O4nanoparticles in Al2O3nanosheets for catalytic oxidation of methane. Pd/Co3O4inlaid in Al2O3catalysts exhibit higher catalytic ability compared to SiO2, ZrO2and CeO2as supports. Pd/Co3O4supported on alkaline Al2O3nanosheets is more efficient than Pd/Co3O4supported on acidic or neutral Al2O3for methane oxidation. Finally,Pd/Co3O4/alkaline Al2O3catalyst exhibited superior performance for methane oxidation in the presence of water vapor and a mixed gas similar to the exhaust of lean-burn natural gas engine, which indicates that this catalyst would be very interesting for this application.

    2 Experimental

    2.1 Chemicals and reagents

    Cobalt (II) acetate tetrahydrate (Co(Ac)2·4H2O, 99.5%),ethylene glycol (EG, 99%), sodium carbonate anhydrous(Na2CO3, 99.8%), and potassium tetrachloropalladate (K2PdCl4,98%), were purchased from Aladdin reagent Co., Ltd. Acidic Al2O3(FCP, 200?300 mesh), neutral Al2O3(FCP, 200?300 mesh), alkaline Al2O3(FCP, 200-300 mesh) (the acid-base property of these Al2O3explained by the CO2temperature-program desorption was shown in Fig.S1(Supporting Information)), SiO2(AR), ZrO2(AR), CeO2(AR),were purchased from Sinopharm Chemical Reagent Co., Ltd.All of the chemicals were used directly without further treatment except metal oxides. Metal oxides were pretreated at 900 °C for 12 h.

    2.2 Catalysts preparation

    Pd/Co3O4nanoparticals: Co(Ac)2·4H2O (5 mmol) was dissolved in ethylene glycol (15 mL) at 80 °C under vigorous stirring and argon flow. Na2CO3aqueous solution (0.2 mol·L?1,50 mL) was then added to the mixture drop-wisely and purple precipitate was gained, which was further aged for 10 min at 80 °C. After that, to maintain the metal loading on the Co3O4supported catalysts, 10 mL aqueous solution of appropriate amount of Na2PdCl4was then added to the aforementioned solution. The resulting solution was further aged at that temperature for 1.5 h. After the solution was cooled to room temperature, a dark purple solid precipitate was separated by centrifugation with successive repeated washing with water and ethanol. After the precipitate was dried at 60 °C in vacuum, the obtained Pd/cobalt hydroxycarbonate was calcined to produce Pd/Co3O4nanoparticles in air at 300 °C for 3 h.

    Pd/Co3O4and Al2O3(or SiO2, ZrO2, CeO2) were co-added into 15 mL of ethanol and the mixture stirred overnight.Solvent was then centrifugation and the powder dried at 120 °C overnight, ground to a particle size below 150 μm and calcined in air at 500 °C for 5 h.

    2.3 Catalysts characterization

    Powder X-ray diffraction (XRD) of the samples was recorded on an Ultima IV, made in Japan, performed with Cu Kαradiation (0.15418 nm). The TEM image, HAADF and element mapping images were acquired from using the transmission electron microscope (G2 F20 S-Twin, FEI,America) equipped with energy dispersive X-ray spectroscopy(EDS) at an accelerating voltage of 200 kV. The binding energies of surface species on the catalysts were determined by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, America) using Al Kα(hv = 1486.6 eV) as the excitation source and the pass energy is 145 eV. The N2sorption experiments were done with physical adsorption analyzer (TriStar II 3020, Micromeritics, Germany). All the samples were degassed at 200 °C for 6 h under vacuum prior to measurement. The surface areas were calculated using the Brunauer-Emmett-Teller (BET) method. Methane temperature-programmed reduction (CH4-TPR) and oxygen temperature-programmed desorption (O2-TPD) experiments were carried out on a chemical adsorption analyzer (Autochem II 2920, Micromeritics, America) with a mass spectrograph(Cirrus 2). Before TPR measurement, 50 mg of catalyst was pretreated in an air flow at 300 °C for 2 h. After being cooled at the same atmosphere to 60 °C, the sample was exposed to a flow (50 mL·min?1) of 10% (volume fraction) CH490%(volume fraction) He mixture and kept at 60 °C for 1 h, finally the pretreated sample was heated from 60 to 800 °C at a ramp of 10 °C·min?1; and before TPD measurement, 200 mg of catalyst was pretreated in an He flow at 300 °C for 2 h. After being cooled at the same atmosphere to 60 °C, the sample was exposed to a flow (50 mL·min?1) of 1% (volume fraction) O299% (volume fraction) He mixture and kept at 60 °C for 2 h,and then turned to a He flow for 2 h, finally the pretreated sample was heated from 60 to 800 °C at a ramp of 10 °C·min?1.

    2.4 Catalytic evaluation

    Catalytic combustion of methane was measured using a conventional quartz tubular reactor (diameter, 6 mm; length,500 mm) at atmospheric pressure. The reagent gas mixture (1%(volume fraction) CH4, 10% (volume fraction) O2and 89%(volume fraction) N2) was led over catalysts (40?60 mesh, 0.1 g) at a flow rate of 100 mL·min?1, equivalent to a space velocity (SV) of 30000 mL·g?1·h?1. The reaction of methane combustion was heated from 20 to 450 °C at a ramp of 5 °C·min?1. The reaction products were analyzed by micro gas chromatograph (INFICON 3000) equipped with MS5A and Plot Q columns (for separation of H2, CO, N2, CO2, O2, CH4,C2H4, and C2H6) and TCD detector.

    3 Results and discussion

    Catalytic performance toward methane oxidation was evaluated by obtaining methane conversion vs temperature profiles of Pd/Co3O4nanoparticles loaded on different oxide supports (0.6% (mass fraction) Pd and 9.4% (mass fraction)Co3O4supported on alkaline Al2O3(denoted as al-Al2O3), SiO2,ZrO2or CeO2, respectively) for comparison. All the catalysts showed 100% selectivity toward CO2, and no CO was observed during the reaction. Pd/Co3O4/al-Al2O3catalyst is more effective than other three catalysts for methane oxidation. As shown in Fig.1A, methane can be lighted off at 250 °C and completely oxidized at 400 °C over Pd/Co3O4/al-Al2O3catalyst at a flow rate of 100 mL·min?1with 1% (volume fraction) CH4and 10% (volume fraction) O2balanced with N2. Although methane can be ignited over Pd/Co3O4/SiO2catalyst at 250 °C,the complete oxidation of methane cannot be obtained at 400 °C, that is, only 70% methane was oxidized at 400 °C.Methane needs higher energy to be activated and converted over Pd/Co3O4/ZrO2and Pd/Co3O4/CeO2catalysts, where methane was initially activated at above 275 °C and less than 90% methane was converted at 400 °C. The kinetics of methane oxidation at the initial stages of reaction was studied,and a good linear relation with data reveals the pseudo first-order model of methane. It is noted that the reaction rate of Pd/Co3O4/SiO2catalyst is faster than other ones at a low operating temperature (< 325 °C), while the conversion of methane over Pd/Co3O4/al-Al2O3catalyst is the highest among the four catalysts at above 325 °C (Fig.1B).

    Afterwards, we studied the influence of acidic, neutral and alkaline properties of Al2O3substrate on the catalytic behavior of Pd/Co3O4for catalytic oxidation of methane. From Fig.1C,Pd/Co3O4/acidic Al2O3and Pd/Co3O4/neutral Al2O3catalysts did not give the complete oxidation of methane at 425 °C. T90of the two catalysts are 40 °C higher than the case of Pd/Co3O4/alkaline Al2O3. The measured T10and T90temperatures follow the order of Pd/Co3O4/alkaline Al2O3

    The high efficient activity of Pd/Co3O4/al-Al2O3catalyst is partially associated with its strong redox property, which has been confirmed by the CH4temperature-program reduction studies. The CH4-TPR results are shown in Fig.2, and the consumption peaks of CH4and the formation of CO2, H2O, CO,and H2are detected. For Pd/Co3O4/al-Al2O3in Fig.2A, the first consumption peak of CH4at 232 °C is attributed to the reduction process of the PdOxwith CH4toward Pd0. The second one at 420 °C is related with the reduction reaction of Co3O4with CH4from Co3+to Co2+. The third consumption peak at 525 °C corresponds to the reduction process of Co3O4with CH4from Co2+to Co0and the reforming reaction of CH4and CO2or H2O under the catalysis of Co0or Pd0species, due to the formation of CO2, H2O, CO and H228. The fourth weak peak centered 537 °C can be attributed to the cracking of CH4.For the Pd/Co3O4/SiO2in Fig.2B, the reduction peak of Pdδ+to Pd0shifts to 281 °C and the reduction peak of Co3+to Co2+moves to 313 °C, respectively. The peak at 706 °C with the formation of H2O and trace CO2and CO might result from the reduction of Co2+to Co0. In terms of Pd/Co3O4/ZrO2in Fig.2C,the peaks of Pdδ+to Pd0and Co3+to Co2+move to 304 and 381 °C, and the peak at 393 °C is attributed to the reduction of Co2+to Co0and the reforming of methane. The peak at 669 °C is assigned to the cracking of methane. As to Pd/Co3O4/CeO2shown in Fig.2D, the four peaks are observed at 290, 415, 578 and 676 °C, respectively, due to the reduction of Pdδ+to Pd0,Co3+and Co2+to Co0, cracking of methane, and the reforming of methane. According to reduction temperatures, the redox ability of the catalysts are followed a descended sequence:Pd/Co3O4/al-Al2O3< Pd/Co3O4/SiO2< Pd/Co3O4/CeO2

    Fig.1 (A) The catalytic performance and (B) the corresponding kinetic rate data of Pd/Co3O4 nanoparticles supported on (a) alkaline Al2O3,(b) SiO2, (c) ZrO2 and (d) CeO2 for catalytic oxidation of methane, respectively; (C) the light-off profiles of catalytic oxidation of methane over (e) Pd/Co3O4/acidic Al2O3 (denoted as ac-Al2O3), (f) Pd/Co3O4/neutral Al2O3 (denoted as ne-Al2O3), and(a) Pd/Co3O4/alkaline Al2O3, respectively, (D) the corresponding kinetic rate data for methane oxidation.

    As we known, the adsorbed oxygen species are more active than the lattice oxygen for catalytic oxidation of methane. The more effective activity of alkaline Al2O3loaded by Pd/Co3O4for methane oxidation is also attributed to the more adsorbed oxygen species of this catalyst. From the analysis of O2-TPD data shown in Fig.3, the peaks below 400 °C are attributed to the desorption of surface adsorbed oxygen species (such as O2?and O?), while the peaks beyond 700 °C are assigned to the desorption of lattice oxygen species. The abroad band of Pd/Co3O4/alkaline Al2O3at about 200?400 °C points out thepresence of reactive oxygen species on the surface of this catalyst, while no obvious signal of adsorbed oxygen species were found on other five catalysts, indicating that alkaline Al2O3benefits for the formation of adsorbed oxygen species,which ultimately promotes the activation of methane on Pd/Co3O4/alkaline Al2O3catalyst.

    Table 1 BET specific surface area (SBET) from N2 absorption isotherms, the molar ratios of adsorbed oxygen/lattice oxygen (Oads/Olatt),Pdδ+/Pd0, and Co2+/Co3+ detected from XPS, the temperatures for 10%, 50% and 90% conversion of methane (T10, T50 and T90),and apparent activation energy (Ea).

    Fig.2 CH4 temperature-program reduction spectra of (A) Pd/Co3O4/ alkaline Al2O3, (B) Pd/Co3O4/SiO2,(C) Pd/Co3O4/ZrO2, (D) Pd/Co3O4/CeO2, (E) Pd/Co3O4/acidic Al2O3, and (F) Pd/Co3O4/neutral Al2O3.

    Fig.3 O2 temperature-program desorption spectra of (a) Pd/Co3O4/alkaline Al2O3, (b) Pd/Co3O4/SiO2, (c) Pd/Co3O4/ZrO2,(d) Pd/Co3O4/CeO2, (e) Pd/Co3O4/acidic Al2O3, and (f) Pd/Co3O4/neutral Al2O3.

    Besides the comparison of the redox property and active oxygen species of the catalysts, we now turn to consider the surface compositions, which were showed in Fig.S2 and Table S1. Pd 3d binding energy29,30of the five samples except Pd/Co3O4/ZrO2(note: Pd peaks are overlapped by Zr peaks)show no shift toward high or low binding energy and the cationic Pdδ+dominates the surface of samples, as shown in Fig.4A, while the presence of trace Pd0is in Pd 3d spectra of the five samples. The molar ratios of Pdδ+/Pd0of these samples were calculated and listed in Table 1. Here the ratio value of Pdδ+/Pd0seems to be not directly related with the catalytic activity, though PdO is more active than Pd for methane oxidation. Fig.4B presents the Co 2p spectra and it is found that the occurrence of satellite structure leads to the deconvolution of Co 2p1/2and 2p3/2excitations. The peaks located at 781.8 eV are attributable to Co2+, and the peaks at 779.9 eV are assigned to Co3+29,31,32, which revealed the presence of Co2+and Co3+of all samples, demonstrating that CoO and Co2O3dominated the surface of the samples. The molar ratios of Co2+/Co3+listed in Table 1 indicated that Pd/Co3O4/al-Al2O3gave the highest value of Co2+/Co3+among these samples. Co2+is considered to be the source of oxygen vacancy and raising the relative amount of Co2+on the catalysts’ surface benefits for increasing the amount of oxygen vacancy and then benefits for methane conversion7,13. Thus the high concertration of Co2+might be one reason to explain the high activity of Pd/Co3O4/al-Al2O3.However, the detailed order for Co2+/Co3+value of these catalysts follows Pd/Co3O4/al-Al2O3> Pd/Co3O4/SiO2>Pd/Co3O4/ZrO2> Pd/Co3O4/CeO2, and Pd/Co3O4/al-Al2O3>Pd/Co3O4/acidic Al2O3> Pd/Co3O4/neutral Al2O3, which is almost but no complete agreement with the experimental results obtained in methane oxidation. Actually, the activity is attributed to the collective contribution from all factors rather than only one.

    Fig.4 (A) Pd 3d and (B) Co 2p of (a) Pd/Co3O4/alkaline Al2O3, (b) Pd/Co3O4/SiO2, (c) Pd/Co3O4/ZrO2, (d) Pd/Co3O4/CeO2,(e) Pd/Co3O4/acidic Al2O3, and (f) Pd/Co3O4/neutral Al2O3.

    Fig.5 (A) Nitrogen adsorption-desorption isotherms of (a) Pd/Co3O4/alkaline Al2O3, (b) Pd/Co3O4/SiO2, (c) Pd/Co3O4/ZrO2,(d) Pd/Co3O4/CeO2, (e) Pd/Co3O4/acidic Al2O3, and (f) Pd/Co3O4/neutral Al2O3; (B) the corresponding pore size distribution.

    The BET surface areas and pore characters of these catalysts were determined from N2sorption measurements, which are shown in Fig.5 and Table 1. The BET surface area of these six catalysts (except SiO2) seems to be very close, suggesting that their catalytic activity seems to be not directly related with their specific surface area.

    We also investigated the effect of loading amount of Pd and Co3O4on alkaline Al2O3on the catalytic performance of methane oxidation. When the loading amount of Pd/Co3O4is fixed to 10% (mass fraction), it is found that as the amount of Pd loaded on Co3O4is turned into 3% (mass fraction), 5%(mass fraction), 6% (mass fraction) and 10% (mass fraction),respectively, a interesting phenomenon is observed that 0.6Pd/9.4Co3O4/Al2O3(the loading amount of Pd is 6% (mass fraction)) catalyst showed superior catalytic performance(Fig.6A) to 0.3Pd/9.7Co3O4/Al2O3, 0.5Pd/9.5Co3O4/Al2O3and 1.0Pd/9.0Co3O4/Al2O3. As shown in Fig.6B, when the amount of Pd loaded on Co3O4is fixed to 5% (mass fraction),0.75Pd/14.25Co3O4/Al2O3(15% Pd/Co3O4on Al2O3) and 1.0Pd/19.0Co3O4/Al2O3(20% Pd/Co3O4on Al2O3) are similar light-off curves of catalytic oxidation of methane, yet which are higher activity than 0.5Pd/9.5Co3O4/Al2O3(10% Pd/Co3O4on Al2O3) catalyst. When the amount of Pd loaded on Co3O4is fixed to 6% (mass fraction), for the three catalysts, such as 0.9Pd/14.1Co3O4/Al2O3(15% (mass fraction) Pd/Co3O4on Al2O3) and 1.2Pd/18.8Co3O4/Al2O3(20% (mass fraction)Pd/Co3O4on Al2O3), the temperatures of methane conversion are close over the two catalysts under same evaluation condition, which is lower than that of 0.6Pd/9.4Co3O4/Al2O310% (mass fraction) Pd/Co3O4on Al2O3) (Fig.6B). Thus, from the above results, even if the weight percent of Pd is above 0.6%, 0.6Pd/9.4Co3O4/al-Al2O3always gave the highest catalytic activity among these catalysts.

    Fig.6 (A, B) Catalytic results of methane oxidation over Pd/Co3O4/al-Al2O3 with different loading amount of Pd and Co3O4; (C) cycle of heating and cooling cycle profiles of methane conversion against the temperature for 0.6Pd/9.4Co3O4/al-Al2O3; (D) catalytic stability of 0.6Pd/9.4Co3O4/al-Al2O3 at 380 °C for 50 h (the upper panel), and 500 °C for 50 h (the lower panel); (E) 5% (volume fraction) vapor water effect on the catalytic performance of 0.6Pd/9.4Co3O4/al-Al2O3 at 380 °C.

    Hence 0.6Pd/9.4Co3O4/al-Al2O3catalyst holds promising in its utility as a type of Pd-based catalysts that offer high activity for methane oxidation. Especially, this catalyst displayed a long-term stability without an obvious decline in activity whatever cycles and time-on-stream experiments. When the temperature was ramped from 250 to 400 °C and then cooled back to 250 °C, the light off curve for upward ramp was virtually identical to one for downward ramp (Fig.6C). The second heating and cooling cycle test showed no significant deactivation compared to the first cycle (Fig.6C). Moreover,0.6Pd/9.4Co3O4/al-Al2O3catalyst exhibited a high sintering resistance at high temperature. When the temperature was kept at 380 °C, noted that the conversion of methane is not complete, the conversion of methane can always be maintained about 97% for at least 50 hours (the upper panel of Fig.6D).Even if the temperature was fixed at high temperature such 500 °C, the 100% conversion of methane over 0.6Pd/9.4Co3O4/al-Al2O3can be obtained when the reaction time was up to 50 hours (the lower panel of Fig.6D).Especially, the effect of moisture on the catalytic performance of this catalyst for methane oxidation was examined. To investigate the catalytic performance of the catalysts for wet methane combustion, 5% (volume fraction) of water vapor was introduced by a calibrated water pump and vaporized in the heated gas feed line before entering the reactor. It is found that Pd/Co3O4/alkaline Al2O3catalyst can almost restore to its initial value in the absence of water when 5% (volume fraction) water was cut off and the reaction temperature was at 380 °C,although a decrease from 97% to 80% in activity occurred when water was introduced to the reaction system (Fig.6E).

    Interestingly, the structure of Pd/Co3O4/al-Al2O3catalyst has very little change and no significant aggregation after catalytic reaction when compared to the fresh one (Fig.7). For fresh catalyst with the average PdO particle size of 6 nm, we can see the (220) and (222) lattice fringe with interplanar spacing of 0.199 and 0.163 nm (calculated from the fast Fourier transformed pattern of the red circled area shown in Fig.7B and 7E) on the PdO (Fig.7B). The lattice spacing of 0.232 nm can be assigned to the (111) lattice fringe of Co3O4. The energy-dispersive X-ray spectroscopy (EDS) mapping analysis(Fig.7C) clearly points to the distribution ranges of Pd (red) and Co (blue) in the nanoparticle, revealing the homogenous distribution of Pd and Co in Al2O3support. After catalytic test,TEM studies offer further insight into the structural information of spent catalyst. For spent catalyst with the average PdO particle size of 10 nm in Fig.7(D?F), Pd and Co are coexisted on the support and the contact of PdO and Co3O4is still intimate, which indeed ensures a high resistance to sintering of active sites at thermal condition.

    Fig.7 (A) TEM and (B) HRTEM images (inset: the fast Fourier transformed pattern of the red circled area, spots 1, 2 and 3 represent the Co3O4(111), PdO (220) and PdO (222), respectively) of fresh 0.6Pd/9.4Co3O4/al-Al2O3 catalyst and (C) corresponding EDS elemental mapping.(D) TEM and (E) HRTEM images (inset: the fast Fourier transformed pattern of the red circled area, spots 1, 2 and 3 represent the Co3O4 (111),PdO (220) and PdO (220), respectively) of spent 0.6Pd/9.4Co3O4/al-Al2O3 catalyst and (F) corresponding EDS elemental mapping.

    Fig.8 Catalytic performance of 0.6Pd/9.4Co3O4/al-Al2O3 under conditions simulating the mixture gases of exhaust of engines of natural gas vehicles.

    Further, to evaluate the catalytic performance of 0.6Pd/9.4Co3O4/al-Al2O3catalyst in methane oxidation of gas exhaust of an engine of natural gas, two different mixed gases similar to the exhaust of lean-burn natural gas engine were used32: one is composed with CH4: 0.20%, O2: 10%, CO2: 15%,H2O: 5% and N2as the balance at space velocity of 30000 mL·g?1·h?1, and the other is mixed with CH4: 0.20%, O2: 10%,NO: 0.15%, H2O: 5% balanced with N2. In the case of CH4:0.20%, O2: 10%, CO2: 15%, H2O: 5%, and N2: 69.80%,0.6Pd/9.4Co3O4/al-Al2O3catalyst gave rise to a complete conversion of methane at 400 °C. From Fig.8, in the mixture of CH4: 0.20%, O2: 10%, NO: 0.15%, H2O: 5%, and N2: 84.65%,100% conversion of methane can be achieved over 0.6Pd/9.4Co3O4/al-Al2O3catalyst at 425 °C. The results reflect that Pd/Co3O4/Al2O3catalyst shows higher activity than Pd/Al2O3reported above 500 °C under the conditions simulating the typical gas composition of the exhaust of engines of natural gas33.

    4 Conclusions

    In summary, we report an efficient catalyst composed of ternary components via Pd/Co3O4nanoparticles inlaid in alkaline Al2O3nanosheets for catalytic oxidation of methane.The high adsorbed oxygen species concentration and strong redox properties appear to enhance the oxidation activity of Pd/Co3O4/al-Al2O3. The intimate contact of Pd/Co3O4with Al2O3ensures a high resistance toward sintering at thermal condition. The addition of 5% (volume fraction) water did not seriously affect the catalytic activity of Pd/Co3O4/al-Al2O3and the activity can restore to its initial value in the absence of water when the water was cut off. The excellent catalytic behavior for methane oxidation of Pd/Co3O4/al-Al2O3highlights the importance of pursuing the ternary recipes for real-world application.

    Acknowledgment: We thank Dr. Andrew Haslett from ETI and Prof. Graham J. Hutchings from Cardiff University for helpful discussions.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Choudhary, T. V.; Banerjee, S.; Choudhary, V. R. Appl. Catal. A 2002,234, 1. doi: 10.1016/S0926-860X(02)00231-4

    (2) Gélin, P.; Primet, M. Appl. Catal.: B 2002, 39, 1.doi: 10.1016/S0926-3373(02)00076-0

    (3) Tang, P.; Zhu, Q.; Wu, Z.; Ma, D. Energy Environ Sci. 2014, 7, 2580.doi: 10.1039/C4EE00604F

    (4) Song, J.; Sun, Y.; Ba, R.; Huang, S.; Zhao, Y.; Zhang, J.; Sun, Y.;Zhu, Y. Nanoscale 2015, 7, 2260. doi: 10.1039/c4nr06660j

    (5) Yuan, K.; Zhong, J.; Zhou, X.; Xu, L.; Bergman, S. L.; Wu, K.; Xu,G.; Bernasek, S. L.; Li, H.; Chen, W. ACS Catal. 2016, 6, 4330. doi:10.1021/acscatal.6b00357

    (6) Chen, L.; Zhang, X.; Huang, L.; Lei, L. Chem. Eng. Process 2009,48, 1333. doi:10.1016/j.cep.2009.06.007

    (7) Wang, Q.; Peng, Y.; Fu, J.; Kyzas, G. Z.; Billah, S. M. R.; An, S.Appl. Catal. B 2015, 168?169, 42. doi: 10.1016/j.apcatb.2014.12.016

    (8) Najjar, H.; Batis, H.; Lamonier, J. F.; Mentré, O.; Giraudon, J. M.Appl. Catal. A 2014, 469, 98. doi: 10.1016/j.apcata.2013.09.014

    (9) Okal, J.; Zawadzki, M. Appl. Catal. A 2013, 453, 349.doi: 10.1016/j.apcata.2012.12.040

    (10) Massias, A.; Diamantis, D.; Mastorakos, E.; Goussis, D. Combust.Theor. Model. 1999, 3, 233. doi: 10.1088/1364-7830/3/2/002

    (11) Ciuparu, D.; Lyubovsky, M. R.; Altman, E.; Pfefferle, L. D.; Datye,A. Catal. Rev. 2002, 44, 593. doi: 10.1081/CR-120015482

    (12) Zou, X.; Rui, Z.; Song, S.; Ji, H. J. Catal. 2016, 338, 192. doi:10.1016/j.jcat.2015.12.031

    (13) Sun, Y.; Liu, J.; Song, J.; Huang, S.; Yang, N.; Zhang, J.; Sun, Y.;Zhu, Y. ChemCatChem 2016, 8, 540. doi: 10.1002/cctc.201000407

    (14) Niu, F.; Li, S.; Zong, Y.; Yao, Q. J. Phys. Chem. C 2014, 118, 19165.doi: 10.1021/jp504859d

    (15) Di, G.; Melaet, G.; Kruse, N.; Liotta, L. F.; Pantaleo, G.; Venezia, A.M. Chem. Commun. 2010, 46, 6317. doi: 10.1039/C0CC00723D

    (16) Hoffmann, M.; Kreft, S.; Georgi, G.; Fulda, G.; Pohl, M. M.;Seeburg, D.; Berger-Karin, C.; Kondratenko, E. V.; Wohlrab, S. Appl.Catal. B 2015, 179, 313. doi: 10.1016/j.apcatb.2015.05.028

    (17) Li, H.; Lu, G.; Qiao, D.; Wang, Y.; Guo, Y. Catal. Lett. 2011, 141,452. doi: 10.1007/s10562-010-0513-y

    (18) Cimino, S.; Lisi, L.; Pirone, R.; Russo, G.; Turco, M. Catal. Today 2000, 59, 19. doi: 10.1016/S0920-5861(00)00269-8

    (19) Li, S.; Wang, X. Catal. Commun. 2007, 8, 410.doi:10.1016/j.catcom.2006.07.011

    (20) Kucharczyk, B.; Tylus, W. Catal. Today 2008, 137, 324.doi: 10.1016/j.cattod.2008.05.018

    (21) Wang, X.; Guo, Y.; Lu, G.; Hu, Y.; Jiang, L.; Guo, Y.; Zhang, Z.Catal. Today 2007, 126, 369. doi: 10.1016/j.cattod.2007.06.011

    (22) Yoshida, H.; Nakajima, T.; Yazawa, Y.; Hattori, T. Appl. Catal. B 2007, 71, 70. doi:10.1016/j.apcatb.2006.08.010

    (23) Ercolino, G.; Grodzka, A.; Grzybek, G.; Stelmachowski, P.;Specchia, S.; Kotarba, A. Top. Catal. 2017, 3, 333.doi: 10.1007/s11244-016-0620-0

    (24) Ercolino, G.; Grzybek, G.; Stelmachowski, P.; Specchia, S.; Kotarba,A.; Specchia, V. Catal. Today 2015, 257, 66.doi: 10.1016/j.cattod.2015.03.006

    (25) Hu, L.; Peng, Q.; Li, Y. ChemCatChem 2011, 3, 868.doi: 10.1002/cctc.201000407

    (26) Xu, J.; Ouyang, L.; Mao, W.; Yang, X.; Xu, X.; Su, J.; Zhuang, T.;Li, H.; Han, Y. ACS Catal. 2012, 2, 261.doi: 10.1021/acscatal.6b00357

    (27) Cargnello, M.; Delgado, J. J.; Hernandez, J. C.; Bakhmutsky, K.;Montini, T.; Calvino, J. J.; Gorte, R. J.; Fornasiero, P. Science 2012,337, 713. doi: 10.1126/science.1222887

    (28) Wu, Z.; Deng, J.; Liu, Y.; Xie, S.; Jiang, Y.; Zhao, X.; Yang, J.;Arandiyan, H.; Guo, G.; Dai, H. J. Catal. 2015, 332, 13.doi: 10.1016/j.jcat.2015.09.008

    (29) Giraudon, J. M.; Elhachimi, A.; Leclercq, G. Appl. Catal. B 2008, 84,251. doi: 10.1016/j.apcatb.2008.04.023

    (30) Liu, Y.; Dai, H.; Deng, J.; Xie, S.; Yang, H.; Tan, W.; Han, W.;Jiang, Y.; Guo, G. J. Catal. 2014, 309, 408.doi: 10.1016/j.jcat.2013.10.019

    (31) Xie, S.; Deng, J.; Zang, S.; Yang, H.; Guo, G.; Arandiyan, H.; Dai, H.J. Catal. 2014, 322, 38. doi: 10.1016/j.jcat.2014.09.024

    (32) Tao, F. F.; Shan, J.; Nguyen, L.; Wang, Z.; Zhang, S.; Zhang, L.; Wu,Z.; Huang, W.; Zeng, S.; Hu, P. Nat. Commun. 2015, 6, 1.doi: 10.1038/ncomms8798

    (33) Gelin, P.; Urfels, L.; Primet, M.; Tena, E. Catal. Today 2003, 83, 45.doi: 10.1016/S0920-5861(03)00215-3

    Pd/Co3O4Nanoparticles Inlaid in Alkaline Al2O3Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane

    LIU Jing-Wei YANG Na-Ting ZHU Yan*
    (CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute,Chinese Academy of Sciences, Shanghai 201210, P. R. China)

    We report an efficient catalyst composed of ternary components prepared by inlaying Pd/Co3O4nanoparticles in alkaline Al2O3nanosheets for catalytic oxidation of methane. Pd/Co3O4inlaid in alkaline Al2O3exhibited a higher ability to break the C―H bond of methane than Pd/Co3O4supported on SiO2, ZrO2, CeO2, and acidic or neutral Al2O3. Our results show more oxygen vacancies and higher amounts of surface adsorbed oxygen on the surface of Pd/Co3O4/alkaline Al2O3than on other catalysts,which is responsible for methane activation and conversion. Further, the Pd/Co3O4/alkaline Al2O3catalyst can almost restore to its initial value in the absence of water when 5% (volume fraction) vapor water was cut off, although a decrease in activity occurred when water vapor was introduced to the reaction system.Even under a condition similar to the exhaust of a lean-burn natural gas engine, the catalytic performance of the Pd/Co3O4/alkaline Al2O3catalyst is excellent, that is, methane could be completely converted when the sample temperature in the reaction atmosphere was ramped to 400 °C.

    Pd/Co3O4; Alkaline Al2O3; Methane oxidation; Activity; Stability

    February 6, 2017; Revised: March 28, 2017; Published online: April 10, 2017.

    O643

    10.3866/PKU.WHXB201704104 www.whxb.pku.edu.cn

    *Corresponding author. Email: zhuy@sari.ac.cn.

    The project was supported by the National Natural Science Foundation of China (21273151) and Energy Technologies Institute LLP, England.國家自然科學(xué)基金(21273151)和英國能源化學(xué)研究所研究基金資助項目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    上海
    上海電力大學(xué)
    我去上海參加“四大”啦
    上海,及上海以南
    散文詩(2021年24期)2021-12-05 09:11:54
    上海城投
    上海之巔
    少先隊活動(2021年5期)2021-07-22 09:00:02
    上海城投
    上海城投
    上海諦霖鄒杰 Hi-Fi是“慢熱”的生意,但會越來越好
    上海的新使命
    上海“進博”開創(chuàng)未來
    小主人報(2018年24期)2018-12-13 14:13:50
    亚洲,欧美,日韩| 男女做爰动态图高潮gif福利片| 有码 亚洲区| 一区二区三区免费毛片| 极品教师在线视频| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 欧美精品国产亚洲| 国产精华一区二区三区| 国产精品一区二区免费欧美| 亚洲中文字幕日韩| 久久久久久伊人网av| 欧美zozozo另类| 麻豆av噜噜一区二区三区| 成人美女网站在线观看视频| 日本-黄色视频高清免费观看| 国产三级在线视频| 在线观看美女被高潮喷水网站| 久99久视频精品免费| 亚洲天堂国产精品一区在线| .国产精品久久| 五月伊人婷婷丁香| 丝袜美腿在线中文| 亚洲不卡免费看| 天天一区二区日本电影三级| 美女免费视频网站| 国产伦人伦偷精品视频| 女人被狂操c到高潮| 欧美高清成人免费视频www| 国产精品一区二区性色av| 草草在线视频免费看| 嫩草影院新地址| 久久久久性生活片| 内射极品少妇av片p| 97碰自拍视频| 香蕉av资源在线| 九色成人免费人妻av| 亚洲av美国av| 色综合站精品国产| 在线免费十八禁| 精品一区二区三区av网在线观看| 色哟哟哟哟哟哟| 亚洲av免费在线观看| 桃红色精品国产亚洲av| 亚洲在线观看片| 国产精品久久久久久久电影| 亚洲熟妇中文字幕五十中出| 18禁黄网站禁片午夜丰满| 联通29元200g的流量卡| 亚洲精品亚洲一区二区| 欧美性感艳星| 性欧美人与动物交配| 久久久久免费精品人妻一区二区| 97人妻精品一区二区三区麻豆| a级毛片a级免费在线| 可以在线观看的亚洲视频| av专区在线播放| 12—13女人毛片做爰片一| 五月玫瑰六月丁香| 男插女下体视频免费在线播放| 精品人妻视频免费看| 久久精品综合一区二区三区| 久久99热6这里只有精品| 韩国av一区二区三区四区| 日韩精品青青久久久久久| 女生性感内裤真人,穿戴方法视频| 久9热在线精品视频| 精品一区二区三区av网在线观看| 亚洲av中文av极速乱 | 老师上课跳d突然被开到最大视频| 国语自产精品视频在线第100页| 日韩精品有码人妻一区| 中国美女看黄片| 欧美国产日韩亚洲一区| 国产精品亚洲一级av第二区| 欧美精品国产亚洲| 桃色一区二区三区在线观看| 亚洲精华国产精华液的使用体验 | 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久精品电影| 色精品久久人妻99蜜桃| 中文字幕人妻熟人妻熟丝袜美| 亚洲专区国产一区二区| 国产精品一区二区三区四区久久| 国产中年淑女户外野战色| 久久久精品大字幕| 久久精品人妻少妇| 色综合站精品国产| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 热99在线观看视频| 禁无遮挡网站| 日韩大尺度精品在线看网址| 免费看a级黄色片| 国产精品女同一区二区软件 | 亚洲av.av天堂| 俺也久久电影网| 精品久久久久久久久久久久久| 麻豆成人av在线观看| 免费av毛片视频| 亚洲va在线va天堂va国产| 男女那种视频在线观看| 此物有八面人人有两片| 69av精品久久久久久| 亚洲男人的天堂狠狠| 国产精品1区2区在线观看.| 99久久中文字幕三级久久日本| 久久久久九九精品影院| 中文字幕av在线有码专区| 91久久精品电影网| 校园人妻丝袜中文字幕| 成人av在线播放网站| 精品无人区乱码1区二区| 午夜a级毛片| 国产高清视频在线观看网站| 最近中文字幕高清免费大全6 | 高清在线国产一区| 日韩欧美国产在线观看| 久久国产精品人妻蜜桃| 99热这里只有是精品50| 内射极品少妇av片p| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av香蕉五月| 成人特级av手机在线观看| 久久天躁狠狠躁夜夜2o2o| 国产人妻一区二区三区在| 日韩欧美在线二视频| 亚洲无线观看免费| 三级国产精品欧美在线观看| 午夜a级毛片| 偷拍熟女少妇极品色| 精品人妻熟女av久视频| 国产精品一区二区免费欧美| 国产黄片美女视频| 一级a爱片免费观看的视频| АⅤ资源中文在线天堂| 久久久国产成人精品二区| 99久久九九国产精品国产免费| 日韩欧美一区二区三区在线观看| 一进一出抽搐动态| 国产乱人伦免费视频| 国产成年人精品一区二区| 乱系列少妇在线播放| 欧美日本视频| 免费av毛片视频| 成人性生交大片免费视频hd| 人妻制服诱惑在线中文字幕| 91av网一区二区| 久久中文看片网| 啪啪无遮挡十八禁网站| bbb黄色大片| 欧美日韩亚洲国产一区二区在线观看| 中文字幕av在线有码专区| 特级一级黄色大片| 国产高清视频在线播放一区| 一个人免费在线观看电影| 亚洲男人的天堂狠狠| 999久久久精品免费观看国产| 欧美日韩中文字幕国产精品一区二区三区| 内地一区二区视频在线| 97碰自拍视频| 亚洲欧美日韩卡通动漫| 久久久久精品国产欧美久久久| 少妇高潮的动态图| 全区人妻精品视频| 亚洲av电影不卡..在线观看| 国产精品电影一区二区三区| 我的老师免费观看完整版| 露出奶头的视频| 特大巨黑吊av在线直播| 国产高潮美女av| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 午夜福利欧美成人| 99热6这里只有精品| 少妇高潮的动态图| 床上黄色一级片| 成年免费大片在线观看| 国产午夜福利久久久久久| 淫秽高清视频在线观看| 国产精品一区二区免费欧美| 欧美bdsm另类| 可以在线观看的亚洲视频| 成人高潮视频无遮挡免费网站| 亚洲一级一片aⅴ在线观看| 国产美女午夜福利| 欧美日韩综合久久久久久 | 少妇人妻精品综合一区二区 | 极品教师在线视频| 亚洲专区国产一区二区| 欧美一区二区亚洲| 大又大粗又爽又黄少妇毛片口| 日本与韩国留学比较| 男女视频在线观看网站免费| 欧美一级a爱片免费观看看| av在线观看视频网站免费| 日本 欧美在线| 天堂网av新在线| 国产精品福利在线免费观看| 99久久无色码亚洲精品果冻| 久久久久久久久中文| 黄色女人牲交| 免费在线观看成人毛片| 国产熟女欧美一区二区| 观看美女的网站| 国产大屁股一区二区在线视频| 91午夜精品亚洲一区二区三区 | 老熟妇仑乱视频hdxx| 欧美激情在线99| 国内精品久久久久精免费| 村上凉子中文字幕在线| 一本一本综合久久| 国产乱人伦免费视频| 国国产精品蜜臀av免费| 别揉我奶头 嗯啊视频| 久久热精品热| 嫁个100分男人电影在线观看| 午夜日韩欧美国产| 国产精品国产三级国产av玫瑰| 日本撒尿小便嘘嘘汇集6| 欧美最新免费一区二区三区| 俄罗斯特黄特色一大片| 午夜精品一区二区三区免费看| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩高清专用| h日本视频在线播放| 亚洲国产欧美人成| 亚洲人成网站高清观看| 久久亚洲精品不卡| 国产单亲对白刺激| 精品人妻偷拍中文字幕| 一边摸一边抽搐一进一小说| 两性午夜刺激爽爽歪歪视频在线观看| 有码 亚洲区| 日本三级黄在线观看| 国产乱人视频| 国产亚洲av嫩草精品影院| 伦精品一区二区三区| 美女高潮喷水抽搐中文字幕| 国产久久久一区二区三区| 亚洲精品亚洲一区二区| 久9热在线精品视频| 精品福利观看| 一个人免费在线观看电影| 免费观看精品视频网站| 日韩欧美三级三区| 久久久久精品国产欧美久久久| 国产三级在线视频| 午夜激情欧美在线| 动漫黄色视频在线观看| 毛片一级片免费看久久久久 | 深夜精品福利| 欧美高清性xxxxhd video| 欧美+亚洲+日韩+国产| 久久午夜福利片| 国产亚洲精品av在线| 亚洲精品色激情综合| 老司机福利观看| 久久热精品热| 99在线视频只有这里精品首页| 亚洲色图av天堂| 乱人视频在线观看| a级一级毛片免费在线观看| 婷婷六月久久综合丁香| 成人二区视频| 日本五十路高清| 真人一进一出gif抽搐免费| 又黄又爽又免费观看的视频| 俄罗斯特黄特色一大片| 亚洲精华国产精华液的使用体验 | 日本色播在线视频| 色精品久久人妻99蜜桃| 中文字幕人妻熟人妻熟丝袜美| 99国产精品一区二区蜜桃av| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 九九热线精品视视频播放| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 亚洲精品粉嫩美女一区| 亚洲成a人片在线一区二区| 黄色一级大片看看| 亚洲熟妇中文字幕五十中出| 又爽又黄无遮挡网站| 国产白丝娇喘喷水9色精品| avwww免费| 亚洲aⅴ乱码一区二区在线播放| 极品教师在线视频| 99久久九九国产精品国产免费| 精品一区二区免费观看| 毛片女人毛片| 中文字幕av在线有码专区| 美女免费视频网站| 在线观看午夜福利视频| 免费观看精品视频网站| 日日啪夜夜撸| 日本免费a在线| 亚洲av不卡在线观看| 白带黄色成豆腐渣| 欧美丝袜亚洲另类 | 亚洲无线在线观看| av专区在线播放| 97超视频在线观看视频| 一本精品99久久精品77| 久久精品国产亚洲av香蕉五月| 男人狂女人下面高潮的视频| 午夜福利18| 精品人妻熟女av久视频| 又黄又爽又免费观看的视频| 精品乱码久久久久久99久播| 国产欧美日韩精品亚洲av| 国产精品女同一区二区软件 | 三级国产精品欧美在线观看| 色哟哟·www| 亚洲一区高清亚洲精品| 此物有八面人人有两片| 日韩 亚洲 欧美在线| 国产一区二区三区视频了| 亚洲五月天丁香| 国产探花极品一区二区| 欧美日韩乱码在线| 日韩国内少妇激情av| av在线天堂中文字幕| 免费人成在线观看视频色| 国产私拍福利视频在线观看| 又爽又黄a免费视频| 久久亚洲精品不卡| 久久精品国产鲁丝片午夜精品 | 日本一本二区三区精品| 深夜精品福利| 亚洲三级黄色毛片| АⅤ资源中文在线天堂| 国产色婷婷99| 亚洲av成人av| 欧美潮喷喷水| 免费高清视频大片| 国产av麻豆久久久久久久| 免费高清视频大片| 国产欧美日韩精品一区二区| 国产成人福利小说| 中文字幕高清在线视频| 精品午夜福利在线看| 九九爱精品视频在线观看| 欧美日韩精品成人综合77777| 女人被狂操c到高潮| 国产男靠女视频免费网站| 国产中年淑女户外野战色| 日韩人妻高清精品专区| 免费在线观看成人毛片| 村上凉子中文字幕在线| 麻豆av噜噜一区二区三区| 国产av在哪里看| 一级黄片播放器| 亚洲专区中文字幕在线| 亚洲人与动物交配视频| 国产三级中文精品| 韩国av在线不卡| 日韩一本色道免费dvd| 精品一区二区三区视频在线| 成年女人看的毛片在线观看| 日本欧美国产在线视频| 精品一区二区三区人妻视频| 国产真实乱freesex| 不卡一级毛片| av女优亚洲男人天堂| 12—13女人毛片做爰片一| 国产淫片久久久久久久久| 免费在线观看影片大全网站| 国产麻豆成人av免费视频| 在线天堂最新版资源| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| 国产亚洲av嫩草精品影院| 日本-黄色视频高清免费观看| 给我免费播放毛片高清在线观看| 国产高潮美女av| 能在线免费观看的黄片| 99国产极品粉嫩在线观看| 麻豆精品久久久久久蜜桃| 99久久久亚洲精品蜜臀av| 99国产精品一区二区蜜桃av| 蜜桃久久精品国产亚洲av| 女人被狂操c到高潮| 看免费成人av毛片| 国产精品免费一区二区三区在线| 99热这里只有是精品在线观看| 亚洲经典国产精华液单| АⅤ资源中文在线天堂| 欧美色欧美亚洲另类二区| av福利片在线观看| 亚洲无线在线观看| 日本三级黄在线观看| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 日本熟妇午夜| 长腿黑丝高跟| 在线播放国产精品三级| 村上凉子中文字幕在线| 午夜精品久久久久久毛片777| 欧美激情久久久久久爽电影| 欧美性猛交黑人性爽| 观看免费一级毛片| 久久国产乱子免费精品| 精品人妻熟女av久视频| 三级男女做爰猛烈吃奶摸视频| 我要看日韩黄色一级片| 大又大粗又爽又黄少妇毛片口| 久久这里只有精品中国| 国产日本99.免费观看| 国产一区二区三区视频了| 少妇猛男粗大的猛烈进出视频 | 国产 一区 欧美 日韩| 在线免费观看的www视频| 国产在线精品亚洲第一网站| 久久精品综合一区二区三区| 欧美日本视频| 91久久精品国产一区二区成人| 亚洲专区国产一区二区| 日韩亚洲欧美综合| 婷婷精品国产亚洲av在线| 女人被狂操c到高潮| 欧美bdsm另类| 国产 一区 欧美 日韩| 国产欧美日韩精品亚洲av| 波多野结衣巨乳人妻| 噜噜噜噜噜久久久久久91| 国产精品99久久久久久久久| 欧美在线一区亚洲| 99视频精品全部免费 在线| 桃红色精品国产亚洲av| 大型黄色视频在线免费观看| 国产精品伦人一区二区| 草草在线视频免费看| 日本一本二区三区精品| a级毛片a级免费在线| 欧美+日韩+精品| 亚洲欧美日韩卡通动漫| 亚洲电影在线观看av| 久99久视频精品免费| 最好的美女福利视频网| 国产久久久一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 久久精品国产亚洲网站| 亚洲成人中文字幕在线播放| 尤物成人国产欧美一区二区三区| 国产欧美日韩精品亚洲av| 人人妻人人看人人澡| 日本a在线网址| 国产高清不卡午夜福利| 午夜爱爱视频在线播放| 亚洲精品日韩av片在线观看| 日本在线视频免费播放| 国产黄a三级三级三级人| 中文字幕熟女人妻在线| 亚洲av五月六月丁香网| 两个人视频免费观看高清| 成人高潮视频无遮挡免费网站| 亚洲av第一区精品v没综合| 午夜日韩欧美国产| 嫩草影院精品99| 亚洲精华国产精华液的使用体验 | 亚洲无线观看免费| 热99在线观看视频| 亚洲avbb在线观看| 3wmmmm亚洲av在线观看| 精品午夜福利视频在线观看一区| 日韩欧美精品v在线| 干丝袜人妻中文字幕| 少妇人妻一区二区三区视频| 中文字幕精品亚洲无线码一区| 久久久久久九九精品二区国产| 国产淫片久久久久久久久| 日本黄大片高清| 美女cb高潮喷水在线观看| 全区人妻精品视频| 午夜免费激情av| 老熟妇乱子伦视频在线观看| 欧美zozozo另类| 老熟妇乱子伦视频在线观看| 一个人免费在线观看电影| 国产免费男女视频| 精品免费久久久久久久清纯| 国产免费男女视频| 国产精品三级大全| 亚洲在线自拍视频| 天堂√8在线中文| 成人欧美大片| 麻豆国产97在线/欧美| 免费人成在线观看视频色| 精品久久国产蜜桃| 看片在线看免费视频| 欧美一区二区国产精品久久精品| 波多野结衣巨乳人妻| 乱人视频在线观看| 日韩一区二区视频免费看| 国产黄a三级三级三级人| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 国产色婷婷99| 九色成人免费人妻av| 免费观看精品视频网站| 亚洲av美国av| 九色国产91popny在线| 国产精品免费一区二区三区在线| 老女人水多毛片| 亚洲18禁久久av| 大又大粗又爽又黄少妇毛片口| 午夜福利在线在线| 给我免费播放毛片高清在线观看| 国内精品一区二区在线观看| 日韩精品有码人妻一区| 久久精品国产99精品国产亚洲性色| 美女大奶头视频| 美女 人体艺术 gogo| 国产精品国产高清国产av| 亚洲国产精品成人综合色| av天堂中文字幕网| 亚洲精华国产精华精| 亚洲中文字幕日韩| 春色校园在线视频观看| 亚洲一区二区三区色噜噜| 国产欧美日韩一区二区精品| 国产精品综合久久久久久久免费| 最近在线观看免费完整版| 成人国产一区最新在线观看| 久久精品国产亚洲网站| 日韩欧美精品v在线| 欧美极品一区二区三区四区| 91av网一区二区| 九九爱精品视频在线观看| 少妇人妻一区二区三区视频| 成年女人毛片免费观看观看9| av中文乱码字幕在线| 性欧美人与动物交配| 无遮挡黄片免费观看| 亚洲精品456在线播放app | 两人在一起打扑克的视频| 少妇人妻一区二区三区视频| 一卡2卡三卡四卡精品乱码亚洲| 国产高清激情床上av| 蜜桃久久精品国产亚洲av| 精品乱码久久久久久99久播| 久久人妻av系列| 久久99热这里只有精品18| 精品日产1卡2卡| 91麻豆精品激情在线观看国产| 国产aⅴ精品一区二区三区波| 97超视频在线观看视频| 国产色婷婷99| 日韩强制内射视频| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 三级男女做爰猛烈吃奶摸视频| 欧美xxxx黑人xx丫x性爽| 国产女主播在线喷水免费视频网站 | 精品人妻1区二区| 蜜桃亚洲精品一区二区三区| 97人妻精品一区二区三区麻豆| 精品99又大又爽又粗少妇毛片 | av黄色大香蕉| 波多野结衣高清作品| 国产精品野战在线观看| 欧美日韩乱码在线| 99视频精品全部免费 在线| 成人av在线播放网站| 国产午夜精品久久久久久一区二区三区 | 日韩精品有码人妻一区| av在线老鸭窝| 国产一区二区激情短视频| 国产探花极品一区二区| 最后的刺客免费高清国语| 麻豆久久精品国产亚洲av| 在线免费观看不下载黄p国产 | 老司机午夜福利在线观看视频| 久久这里只有精品中国| 国产综合懂色| 国产亚洲91精品色在线| 国产在线男女| 日本免费a在线| 女同久久另类99精品国产91| 美女cb高潮喷水在线观看| 91午夜精品亚洲一区二区三区 | 午夜a级毛片| 久久国产精品人妻蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 特级一级黄色大片| 成人无遮挡网站| 国产精品综合久久久久久久免费| 成年免费大片在线观看| 日韩精品有码人妻一区| 亚洲av成人精品一区久久| 欧美一区二区国产精品久久精品| 老司机深夜福利视频在线观看| 一区二区三区免费毛片| 动漫黄色视频在线观看| 麻豆成人午夜福利视频| 97超视频在线观看视频| 内射极品少妇av片p| 亚洲成人久久爱视频| 久久久久久久久大av| 亚洲va日本ⅴa欧美va伊人久久| av女优亚洲男人天堂| 色综合亚洲欧美另类图片| 搞女人的毛片| 在线免费十八禁| 一进一出好大好爽视频| 国产精品亚洲美女久久久| 99精品久久久久人妻精品| 一进一出好大好爽视频| 亚洲欧美日韩东京热| 国产美女午夜福利| 国产精品国产三级国产av玫瑰| 国内精品一区二区在线观看| 中文字幕精品亚洲无线码一区| 88av欧美|