• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金原子簇催化碳-碳偶聯(lián)反應(yīng)的研究進(jìn)展

    2017-11-01 17:29:18
    物理化學(xué)學(xué)報(bào) 2017年7期
    關(guān)鍵詞:硫醇偶聯(lián)中國科學(xué)院

    周 洋 李 杲

    (1中國科學(xué)院大連化學(xué)物理研究所,催化基礎(chǔ)國家重點(diǎn)實(shí)驗(yàn)室,大連 116023;2中國科學(xué)院大學(xué),北京 100049)

    金原子簇催化碳-碳偶聯(lián)反應(yīng)的研究進(jìn)展

    周 洋1,2李 杲1,*

    (1中國科學(xué)院大連化學(xué)物理研究所,催化基礎(chǔ)國家重點(diǎn)實(shí)驗(yàn)室,大連 116023;2中國科學(xué)院大學(xué),北京 100049)

    近十幾年來,金原子簇(尺寸1?2 nm)逐漸發(fā)展成為一種新型的納米材料。特別在近幾年中,金原子簇催化劑廣泛地應(yīng)用于納米催化中,例如選擇性氧化還原以及碳-碳偶聯(lián)等反應(yīng)。與傳統(tǒng)的金納米顆粒(> 2 nm)顯著不同,金原子簇具有獨(dú)特的電子性質(zhì)和結(jié)構(gòu),能很好地關(guān)聯(lián)金原子簇催化劑的結(jié)構(gòu)與其催化性能,特別是對(duì)金原子簇的催化反應(yīng)機(jī)理的研究。在本綜述中,我們闡明了金原子簇催化劑在碳-碳偶聯(lián)反應(yīng)中的應(yīng)用,其中包括Ullmann、Sonogashira、Suzuki和A3-偶聯(lián)等反應(yīng)。并進(jìn)一步揭示了金原子簇表面有機(jī)配體(例如芳香烴硫醇vs脂肪烴硫醇)對(duì)催化反應(yīng)的影響,以及其它金屬在金核內(nèi)部的摻雜(例如銅、銀、鉑、鈀等)改變?cè)哟氐碾娮咏Y(jié)構(gòu)從而來調(diào)控其催化性能。最后,在原子層面上關(guān)聯(lián)金原子簇結(jié)構(gòu)和催化性能,并初步探討催化反應(yīng)機(jī)制。金原子簇催化劑的深入研究將為高效金納米催化劑的設(shè)計(jì)提供一些建設(shè)性的思路和策略。

    金原子簇;碳-碳偶聯(lián);配體效應(yīng);金屬摻雜效應(yīng);Ullmann偶聯(lián);Sonogashira交叉偶聯(lián);Suzuki交叉偶聯(lián);A3-偶聯(lián)

    1 Introduction

    Since it was discovered by Haruta et al.1, gold nanoparticles(Au NPs, size from 3 to 100 nm) occupy an important niche in heterogeneous catalysis, which have been widely applied in selective oxidation2?5and hydrogenation6?8, a few to name.These conventional gold nanocatalysts are polydisperse, which become a major issue in fundamental catalysis9. For example,the size dependent of nanoparticles are often averaged out in polydisperse catalysts, and it also is difficult to relate the catalytic properties to the structure and intrinsic properties of nanoparticles. To overcome these obstacles, nanoparticle catalysts of well-defined are highly desirable, leading to the development of bulk single crystal model catalysts with only one facet and the shape-controlled nanocrystal catalysts (e.g.,nanorod, cube, octahedron, etc)10?12.

    In recent years, remarkable advances have been achieved in solution phase synthesis of gold nanoclusters, which represents a burgeoning area with increasing application in nanotechnology and nanoscience13?16. The size of these gold nanoclusters is ultra-small, usually about 1?2 nm, with a few dozen to a few hundred gold atoms. The structure of these gold nanoclusters can be well solved by STEM or by X-ray crystallography, which may offer an opportunity to achieve atomic level understanding of the precise relationship between the active-site structure and the catalytic properties17.

    These gold nanoclusters of 1?2 nm exhibit excellent catalytic performance (e.g., in the selective oxidation and hydrogenation), sometime better than the corresponding gold complexes and gold nanoparticles18. It is mainly attributed to their high surface-to-volume ratio, surface geometric effect(e.g., precise surface atom arrangement and low-coordinated gold atoms, Auδ+(0 < δ < 1)), the distinct electronic properties,as well as the quantum size effect. Recently, these gold nanoclusters showed good catalytic behaviors in the carbon-carbon coupling reactions19. Traditionally, these carbon-carbon coupling reactions are catalyzed by copper,palladium, platinum complexes and nanoparticles in the previous literatures20,21.

    In this review, we only focus on the Au nanoclustercatalyzed carbon-carbon coupling reaction (Scheme 1),including Ullmann coupling of aromatic halides, Suzuki cross-coupling of phenylboronic acid and phenyl halides,Sonogashira cross-coupling of phenyl halides and phenylacetylene, and even A3-coupling reaction of phenylacetylene, amines and aldehydes. These carbon-carbon bond formations are one of the most important protocols in organic synthesis. These formed C―C bonds are very often observed in the natural products, such as alkaloids as well as in numerous biologically active parts of pharmaceutical and agrochemical specialities. Moreover, the catalytic mechanisms of these four carbon-carbon coupling reactions, using gold nanoclusters as calculated mode, were thorough discussed in this reviews.

    Scheme 1 Gold cluster-catalyzed C-C coupling reaction discussed in this review.

    2 Activation of Ph?B(OH)2, Ph?I, and C≡C?H bond on naked Au38 clusters: DFT simulation

    The activation of both the Ph―B(OH)2bond and C―I bond of iodobenzene (IB) on the gold clusters is the two key steps in the Suzuki cross-coupling reactions. Meanwhile, the activation of the C―I bond is the key point in the Ullmann coupling. On the other hand, in the Sonogashira cross-coupling reaction, the activation of the C≡C―H bond of Phenylacetylene (PA) also play very important role. The energy of the adsorption and activation process on the different well-defined facet and sites are distinct22?25. To detailed study on the catalytic mechanism of the activation of Ph―B(OH)2, C―I, and C≡C―H bond by gold clusters, the density functional theory calculations should be an easy and fast pathway.

    Corma et al. firstly investigated the tentative mechanism and the active sites of the activation of Ph―B(OH)2, Ph―I, and C≡C―H bond, using naked Au38cluster and partially oxidized Au38O2cluster as model in the DFT simulation26. Of note, the Au38and Au38O2nanocluster model used in the computational analysis is rather different from the real catalysts in terms of size and structure. Naked Au38cuboctahedral cluster model contain low coordinated metallic Au0atoms, Scheme 2(a). The Au38O2cluster model included low coordinated metallic Au0and cationic Auδ+species. In the Au38O2cluster model, two O atoms bonded to an Au atom adopting an oxide-like structure,and four Au atoms bonded to one O atom, Scheme 2(b). The possible role of the cationic gold species and the adsorbed oxygen on the coupling was investigated, as oxygen is one of the intriguing facts in the coupling reactions.

    Scheme 2 Optimized structures of the nanogold catalyst models used in the DFT simulation.

    Frist, Corma et al. examined the homo-coupling reactions of organoboronates, using naked Au38or partially oxidized Au38O2clusters as the quasi-molecular catalyst27. The possible role of the cationic gold species and the adsorbed oxygen on the coupling was investigated, as oxygen is one of the intriguing facts in the homo-coupling reactions. The DFT calculation suggested that the phenylboronate should be preferentially adsorbed on neutral gold atoms (naked Au38), rather than on positive Auδ+sites (Au38O2), Fig.1(a). After adsorption on gold,the Ph―B bond was dissociated with a low energy (ca. 6.5 kcal·mol?1), leading to phenylboronic acid. And, the phenyl group (Ph) strongly bonded to low-coordinated gold atom (2.46 ?, Fig.1(a), down profile). And then, the all geometries and energy prof i les of the various states have been considered(Fig.1). Two possibilities with similar high activation energy were considered for the transition state leading to biphenyl, i.e.,the two coupling phenyl groups should be ligated either on the same gold atom at a corner of the Au38cluster or on two neighbor gold atoms, Fig.1(b). However, the energy of the two transition states is some high (> 30 kcal·mol?1), and the charged gold atoms can lower the barrier at this stage. Take all together,the DFT results gave a 6.5 kcal·mol?1energy on the partially oxidized Au38O2clusters, which make the activation of Ph―B(OH)2feasible.

    Fig.1 Calculated energy prof i les for (a) dissociation of PhB(OH)3– anion and (b) coupling of two phenyl fragments giving rise to biphenyl on a naked Au38 nanoparticle and on a partially oxidized Au38O2 nanoparticle.

    Fig.2 Optimized geometries of the species involved in the Sonogashira cross-coupling reaction on a naked Au38 cluster (neutral Au0 atoms).

    At the same time, Corma and co-worker also calculated the adsorption process and possible IB dissociation to yield diphenyl (DP), using the same naked Au38cluster as the DFT model28. The DFT calculation results indicated that the iodobenzene molecule interacted strongly with the Au38clusters.The iodine atom was directly bonded to an Au atom of 2.77 nm–1, Fig.2(a). In the activation process, the C―I bond length increases to 2.48 ?. Meanwhile, the iodine atom and the phenyl group interact with two neighbor gold atoms; the optimized Au―I and Au―C distances are 2.78 and 2.21 ?, respectively,Fig.2. The activation energy of 11.3 kcal·mol–1implied that the rupture of Ph―I bond on gold cluster is also feasible.

    Further, the two catalyst models, i.e., Au38and Au38O2cluster,also have been applied to study the catalytic mechanism and the exactly the active sites for the gold cluster catalyzed Sonogashira cross-coupling reaction and the competitive homo-coupling reactions [100]. The breakage energy of the C―H bond of PA on the Au38model is some high (40 kcal·mol?1). However, the gold cluster catalyzed Sonogashira coupling is carried out in the presence of base (e.g., K2CO3),and the alkyne deprotonation is assisted by the base. Therefore,the energy of the PA deprotonation on the Au38cluster decreased to 8.9 and 7.8 kcal·mol?1at the DFT and DFT-D levels (Table 1), when a carbonate CO32?fragment was introduced. It indicated that the presence of a base can enhances the PA deprotonation.

    When the IB was approached to the Au38O2cluster, the interaction with the Auδ+sites is weaker than with neutral Au0atoms, and its dissociation energy is larger than on Au0sites(Table 1), indicating that cationic gold will not favorably compete with Au0for IB dissociation. On the other hand, PA adsorption on Auδ+atom is relatively strong, with an adsorption energy of ?9.0 kcal·mol–1(Table 1). And then the proton was transferred to O atom in the deprotonation step (Fig.3), with a low barrier of 6.7 kcal·mol–1. So, it is interesting that it required low activation energy for the surface reaction when the cross-coupling reaction occurred on the Au38O2cluster. The phenyl fragment attached to an Au0atom, and the phenylacetylenyl fragment bonded to an Auδ+site, facilitating the formation of diphenylacetylene (DPA). Of note, the cross-coupling step on the cluster surface is the rate-determining step. The activation energy on the Au38O2cluster is much lower than that on Au38(Table 1).

    3 Physical property of the gold clusters

    3.1 Framework

    Recently, lots of gold clusters’ structures can be determined and resolved by X-ray crystallography, which can be applied as the practical simulation model. In this review, the framework of the Au25(PPh3)10(SR)5X2(X = Cl/Br) and Au25(SR)18cluster are used as the catalytic model for mechanism study (vide infra). Thus, we here briefly discuss the two clusters’ structures.As shown in the Fig.4(A), the Au25(SR)18cluster comprises an icosahedral 13-Au-atom core and six Au2(SR)3staples29. Of note, there are two types of thiolate ligands on the staple motifs of Au25(SR)18= Au25(SR1)6(SR2)12, i.e., the “―SR1” ligandsbridge two exterior Au atoms and the “―SR2” bridges an exterior Au atom and one on the Au13icosahedral core.Meanwhile, the Au25(PPh3)10(SR)5X2cluster is composed of two icosahedral Au13units by sharing one common vertex, i.e.,the waist sites (Fig.(4B))30,31. Ten phosphine ligands directly bind the two Au5pentagonal rings at the end of the rod. And two halides (Cl/Br) bind to two apical Au atoms. The two Au13icosahedrons are connected by the thiolate ligands (―SR) or deprotonated alkyne (―C≡CR)32. Of note, the Au3sites and the waist sites are deemed as the catalytic active sites, and the surface atom on the Au13kernel of the Au25(PPh3)10(SR)5X2and Au25(SR)18clusters also play an important role in the catalysis33.

    Table 1 Adsorption (Eads), activation (Eact), and reaction energies (in kcal·mol–1) calculated at the DFT and dispersion corrected DFT-D levels for the three elementary steps in the Sonogashira reaction over the Au38 and Au38O2 models.

    Fig.3 Optimized geometries of the species involved in the Sonogashira cross-coupling reaction on a partially oxidized Au38O2 cluster.

    3.2 Thermal stability

    The free Au25(SR)18cluster is super stable after the 150 °C annealing treatment in a vacuum oven, evidenced by the UV-Vis, NMR, and MALDI-MS analyses32. Next respected to the oxide-supported Au25(SR)18, UV-Vis and STEM shows that the Au25clusters are still intact after the annealing process(150 °C)34, Fig.5. Further, the XPS analysis shows that the chemical state of surface Au atoms in the Au25(SR)18/oxide catalyst is positively charged (Auδ+)35, in which 0 < δ < 1.

    4 Catalytic properties of gold nanoclusters

    4.1 Ullmann homo-coupling

    Fig.4 Frameworks of (A) Au25(SR)18 and (B) Au25(PPh3)10L5X2 nanoclusters (where, L = ―SR and PA, X = Cl/Br). (A) There are two non-equivalent types of thiolate ligands on the staple motif“―(SR2)―Au―(SR1)―Au―(SR2)―”.

    Since the first 70 years of the 20th century, copper were almost the only metal usable for the aryl-aryl bond formation,initially as copper metal in the reductive symmetrical coupling of aryl halides36(called as the Ullmann homo-coupling reaction). And in recent decade, the gold nanoclusters were conducted in the Ullmann homo-coupling reaction, as the C―I bond of iodide can be activated by the gold nanoclusters via a C―Aun―I intermediate.

    Fig.5 (A) UV-Vis spectra of TiO2, Au25(SR)18, and Au25(SR)18/TiO2. (B) STEM image of Au25(SR)18/TiO2 catalyst.

    Monopoli et al. reported that the gold nanoclusters of ~1 nm,with a large surface area, showed high catalytic activity in the Ullmann homo-coupling reaction of aryl iodides in the presence of ionic liquids (ILs)37. Two different reaction conditions were investigated: (i) H2O/TBAOH/glucose at 90 °C and (ii) molten TBAA/glucose at 90 °C. The ILs,tetrabutylammonium acetate (TBAA) and tetrabutylammonium hydroxide (TBAOH), played a dual role (surfactant and base species) during the coupling reactions. This reaction also can be expanded to aryl iodides, and the yield of the symmetrical biaryl products was from 40% to 98% (Scheme 3). Of noted, it was almost no reactive, when using bromobenzene as reactant.Bigger size gold nanoparticles (~20 nm in size) showed slightly lower catalytic activity than smaller gold nanoclusters due to the reduced surface area.

    Dhital et al.38described that the bimetallic Au/Pd alloy nanoclusters exhibited unique catalytic activity in Ullmann homo-coupling of chloroarenes at low temperatures (27?45 °C).It is worth note that there is unreactive when using the monometallic Au:PVP or Pd:PVP (PVP: poly(N-vinyl-2-pyrrolidone) as catalyst. Next, Au0.5Pd0.5:PVP catalyst showed much better activity than corresponding catalysts-Au0.8Pd0.2:PVP and Au0.2Pd0.8:PVP. Further,quantum chemical calculations were performed using the,as computational model for the monometallic Au:PVP nanocluster and Au0.5Pd0.5:PVP and Au0.8Pd0.2:PVP nanoclusters, respectively (Fig.6(A)). It is worthy to note that theare only computational model and are not realistic catalysts. The computational results suggested that the involvement of Au as a nearest heteroatom is crucial to initiate the reaction. On the other hand, its composition up to 50% in bimetallic catalyst enhances the catalytic activities. Thus, alloy effects39, such as“l(fā)igand effect” and “ensemble effect”, enhance the catalytic performance in the Au/Pd bimetallic system (Fig.6(B)).

    Scheme 3 Ullmann homo-coupling reaction catalyzed by Au NPs in ILs.

    Further, Li et al.40examined the catalytic activity of the oxide-supported Au25(SR)18nanoclusters in the Ullmann homo-coupling reactions of aryl iodides. The optimized conditions for the nanocluster catalyzed homo-coupling reaction were carried out at 130 °C in DMF solvent under a N2atmosphere. Under the optimized reaction conditions, the CeO2-supported Au25(SR)18clusters give the best catalytic performance, a 99.8% iodobenzene conversion. Further, the Au25(SR)18-catalyzed homo-coupling reactions was expanded to a variety of substituents with different functional groups (e.g.,nitro, methoxy, and aldehyde). It was observed that the electron-rich substrate performed better than these electron-def i cient substrates in the catalysis. No distinct oxide support ef f ect was found (e.g., CeO2, SiO2, TiO2, and Al2O3).The reactant is speculated to be adsorbed and activated on the Au3sites of the Au25(SR)18clusters, Fig.4(A). And then, these Au cluster of sub-nano size (0.8?2 nm) are explored in the another carbon-carbon coupling reactions.

    4.2 Ullmann Hetero-Coupling

    Next, the gold nanoclusters were expanded to Ullmann hetero-coupling. Jin and coworkers41investigated the catalytic property of Au25capped by different thiolate ligands (e.g.,aromatic thiolate: naphthalenethiolate (―SNap) and benzenethiolate (―SPh), and aliphatic ones: hexanethiolate and phenylethanethiolate (PET)) in the Ullmann hetero-coupling reactions. The catalytic reactions are same with the Au25-catalyzed Ullmann homo-coupling, except using 4-methyl-iodobenzene (CH3―C6H4―I) and 4-nitroiodobenzene (NO2―C6H4―I) as reactant. The catalytic results are compiled in the Table 2. Intriguingly, the aromatic thiolate ligated Au25clusters (e.g., Au25(SPh)18and Au25(SNap)18) show much better catalytic behaviors (including conversion and selectivity) than these protect ed by alkyl thiolate ligands (e.g.,Au25(SC6H13)18and Au25(PET)18). The Au25(SNap)18cluster give a very high selectivity for the hetero-coupling product (82%),which is much higher than the corresponding Cu, Pd, and Au complexes (the selectivity is < 30%). Unfortunately, the conversion and selectivity dropped to 79% and 47% (2nd cycle)and 50% and 15% (3rd cycle), due to the gradual removal of the protecting “―SNap” ligands and thus decomposition of the gold nanoclusters. These results strongly indicate that the chemical nature of the protecting ligands exerts a major influence on the catalytic properties of the gold clusters.

    Fig.6 (A) Energy profile diagram of oxidative addition of chlorobenzene (Ph-Cl) on Au20? and Au10Pd?10 clusters; (B) Tentative mechanism for Ullmann homo-coupling of chloroarenes (Ar-Cl) catalyzed by bimetallic Au-Pd catalyst.

    Table 2 The catalytic performance of Au25(SR)18/CeO2 catalysts for Ullmann hetero-coupling between 4-methyl-iodobenzene and 4-nitro-iodobenzene. Of note, the conversion (Conv.) is based on the 4-nitro-iodobenzene, and selectivity (Select.) towards the hetero-coupling product.

    Furthermore, DFT simulations were carried out to explain the catalytic results. Here, one thiolate ligand on the Au25(SR)18model is proposed to be removed under the thermal conditions,and then two gold atoms on the staple motif can expose to reactants and are deemed as the catalytic active sites41. DFT calculations also show that the interaction energy of 4-nitroiodobenzene with the exposed gold atoms of Au25(SCH3)2(SH)15and Au25(SNap)2(SH)15model is ?4.3 and?7.2 kcal·mol?1with Au―I bond length of 2.87 and 2.82 ?(Fig.7(A, B)), respectively. In the nudged elastic band (NEB)approach, the activation energy for the homo- and hetero-coupling reactions on the Au25capped by -SCH3ligands are comparable (Fig.7(C)). While, in the case of Au25capped by ―SNap ligands, intriguingly, the activation energy of hetero-coupling reaction is 2.7 kcal·mol?1less than that of homo-coupling (Fig.7(D)). It suggests that the gold cluster catalysts protected by aromatic thiolate not only can improve the conversion rate of the reaction but also can favor the formation of hetero-coupled product over the homo-coupled one.

    4.3 Suzuki cross-coupling

    Au25clusters are expanded to the Suzuki cross-coupling reaction in the presence of imidazolium-based ILs42. The Suzuki cross-coupling was carried out at 90 °C. The most salient feature is that imidazolium-based ILs exerted a major influence on the conversion of p-iodoanisole to the desire products. The Au25(SR)18/TiO2exhibits very low catalytic activity in the common organic solvents such as ethanol,toluene, o-xylene, and dimethylformamide, Table 3.Interestingly, the catalytic activity of the Au25cluster drastically increase to 89%–99% when BMIM·X is added to the reaction system, Table 3. The imidazolium-based ILs acts as an excellent catalytic promoter for the coupling reactions. Of note,anions of BMIM·X only have a minor effect, and the BMIM cation play a key role in the catalysis. No activity is found when using BDiMIM·BF4as solvent, indicating that the acidic proton at position 2 of the imidazolium ions plays an important role.

    Fig.7 Interaction of 4-nitro-iodobenzene with the exposed gold atoms of (A) Au25(SCH3)2(SH)15 and (B) Au25(SNap)2(SH)15.Energy vs reaction coordinate of the hetero- and homo-coupling reactions with (C) “―SCH3” and (D) “―SNap” ligands.The “―SNap” and “―SCH3” stand for the aromatic and alkyl thiolate.

    To gain insight into the possible active species during the catalysis, the free [Au25(PET)18]?reacted with the BMIM·BF4IL under the reaction conditions41. Some new mass peaks are found in the MALDI mass spectrum, and these peaks are assigned to Au25?n(SR)18?n(n = 1?4) species, Fig.8. Of note,these new formed species are not the fragments caused by MALDI method, and these species were detected by ESI-MS in the case of Au25(PET)18with Lewis acid (e.g., Cu+, Co2+, etc)43.It implies that the imidazolium-based ILs may assist the formation of Au21(SR)14species during the catalysis, and these species maybe associated with the catalytic sites for the reactions.

    Further, the DFT calculations are performed to study and simulate the possible mechanism of the consecutive removal of the “Au-SR” units with the help of imidazolium-based ILs. Two mechanisms were proposed42, Fig.9. In mechanism 1, the removal of thiolate fragments of Au25cluster and “SR-Au” units via imidazolium cations, thereby producing low-coordinated gold atoms for iodobenzene adsorption. The first step is the DMI-H2+adsorption on ―SR2 through the interaction between H2 of the former and S of the latter. And then the thiolate group was protonated and detached from the nanoclusters to give a gold atom site (G1, Fig.9), which can be deemed as an active site for the coupling reactions. Au24(SCH3)species (Im4) was formed, when the –SR2 on the same staple motif was attacked by a hydroxide (e.g., CO). On the other hand, the surface ligand removal via N-heterocyclic carbine was also considered.The carbine directly bond with gold atoms, and one“DMI-Au-SCH3” unit eventually detaches from the nanoclusters to yield active site G2. The “-SR-Au” units were sequentially removed with aid of DMI-H2+. The Au24(SCH3)?17species can undergo a structural change via ligand exchange to yield active site G3. Thus, the low-coordinated gold atoms (G1, G2, G3, and G4) on the gold clusters are proposed to be the catalytic sites for the coupling reactions42.

    Table 3 Catalytic performance of thiolate-capped Au25 cluster supported on TiO2 as catalysts for Suzuki cross-coupling reaction of iodoanisole and phenylboronic acid in the imidazoliumbased ionic liquids.

    4.4 Sonogashira cross-coupling

    Fig.8 (a) Positive mode MALDI mass spectra of the initial [Au25(PET)18]? (in dichloromethane) and samples after the treatment with BMIM·BF4 or with BMIM·BF4 and K2CO3; (b) Zoom-in of the MALDI mass spectrum of the sample after the treatment of[Au25(PET)18]? with BMIM·BF4.

    Fig.9 (Left panel) Proposed reaction Mechanism 1 for formation of catalytic active site on Au25 cluster promoted by imidazolium-based ionic liquids.

    As the gold clusters can activate both the iodobenzene and alkyne molecules, thus, the catalytic application of the cluster may expand to Sonogashira cross-coupling reactions. Li et al.44investigated the catalytic application of the oxide-supported Au25(PET)18cluster to the Sonogashira cross-coupling reaction of iodobenzene and phenylacetylene. The supported catalyst was made by impregnation of oxide powders (including CeO2,TiO2, MgO, and SiO2) in a CH2Cl2solution of Au25(PET)18(~1% (w) loading), and then annealed at 150 °C (1 h) in a vacuum oven. STEM and TG analysis confirmed that the protecting thiolate ligands were remained on the surface of gold clusters after the annealing. The Au25(PET)18/oxide catalysts after thermal treatment was applied in the Sonogashira cross-coupling reaction of iodobenzene and phenylacetylene;the optimized condition was carried out under N2atmosphere at 160 °C using DMF as solvent and K2CO3as base. A high conversionof p-iodoanisole (up to 96.1%) with excellent selectivity for cross-coupling product (up to 88.1%) was obtained when it was catalyzed by Au25(PET)18/CeO2catalyst(Fig.10). The smaller size Au25(PET)18cluster catalyst performed much better than the larger sized 2?3 nm Au clusters and CeO2-supported Au nanoparticles (bare, ~20 nm). Support effects were also investigated in the coupling, and no distinct effect of the oxide supports was observed (i.e., CeO2, SiO2,TiO2, and MgO). The conversion of p-iodoanisole exhibited no significant loss, while the selectivity was decreased from 88.1% to 64.5% after 5 cycles. Of note, the TEM analysis showed that the Au cluster grew up to big nanoparticles of > 3 nm, meaning that the organic ligand capped gold nanoclusters cannot be intact under the harsh reaction conditions. The drop in selectivity should be caused the gradual degradation of clusters in the multiple recycling tests, as larger Au clusters gave a much lower selectivity.

    Fig.10 (Left panel) The catalytic performance of oxide-supported Au25(PET)18 cluster catalysts for Sonogashira cross-coupling reaction of p-iodoanisole and phenylacetylene. (Right panel) Top view of the co-adsorption of phenylacetylene and iodobenzene on the Au3 site of the Au25(PET)18 nanoclusters.

    Moreover, density functional theory (DFT) calculation of the reactant adsorption shows that both reactants (i.e., iodobenzene and phenylacetylene) prefer to adsorb on the open facet with the phenyl ring facing a surface gold atom (Fig.10). A total adsorption energy reaches ?0.90 eV when the two reactants co-adsorb on the Au25(SR)18catalyst44. The DFT results suggest that the catalytic active sites is associated with the Au25(SR)18,which is consistent with the experimental results.

    Although the framework of the 25-atom cluster is similar45,46,the electronic property and the catalytic behavior of the bimetallic clusters can be largely modified by the foreign dopants47?51. Very recently, Li et al.52investigated the doping effects of the Au25(SR)18nanoclusters in Sonogashira cross-coupling reactions. The experiment and DFT simulations suggest that the copper and silver dopants are preferentially located occupy sites at the cl uster kernel instead of the staple motif of nanoclusters. While, the Pt atom only can singly dopes and locates at the center of the cluster. The AgxAu25?x(SR)18gave an overall performance comparable to Au25(SR)18, and Pt1Au24(SR)18causes a drop in catalytic activity. The catalytic activity of the titania-supported catalysts follows a decreasing order: AgxAu25?x(SR)18≈ Au25(SR)18> CuxAu25?x(SR)18>Pt1Au24(SR)18. Intriguingly, the CuxAu25?x(SR)18prefer the Ullmann homo-coupling pathway and give rise to homo-coupling product, which is in opposite to the other three cluster catalysts. Overall, the catalytic activity is largely affected by the electronic effect in the bimetallic clusters’ core(i.e., Pt1Au12, CuxAu13?x, and Au13), and the product selectivity is primarily determined by the type of atoms on the MxAu12?xshell47.

    4.5 A3-coupling

    One-pot multicomponent coupling reactions (MCRs), where several reactants come together in one vessel to yield one product, have gained overwhelming interest over the last decade due to the environmental and economic perspectives;they are more efficient, cost effective and less wasteful than traditional methods53?55. The three-component coupling of aldehydes, amines and alkynes, commonly known as A3-coupling, is an example of MCRs to yield propargylamine56.This reaction involves the formation of new C―C and C―N bonds in a one-pot procedure. The activation of the terminal alkynes is the key step for the A3-coupling. Thus the gold clusters should have capability in this reaction, as the cluster catalyst has exhibited good activity in the semi-hydrogenation of terminal alkynes32.

    First, the catalytic efficiency of the Au25(PPh3)10(PA)5X2/TiO2was evaluated in different solvents and reaction temperatures57. The most salient feature is that the conversion highly affected by the solvent polarity; the catalyst showed better activity in the polar solvents (e.g., water). The catalyst also showed good recyclability. It is interesting that the cluster catalyst gave no conversion when the reactant aldehyde changed to ketone (Scheme 4), which is totally different with the catalytic behaviors of the Au complexes and naked gold nanoparticles. It strongly suggests that the electronic factors and steric hindrance increase from the substituents significantly influence the conversion rate of the reaction.

    It was found that the conversion slightly increased during the induction period (0 to 3 h), and then it dramatically improved in the time evolution of the reaction conversion for the gold cluster catalyzed A3-coupling57. It meant that some phosphine ligands are removed during induction period and the gold atoms are exposed to the reactants. The phosphine removal was also observed in the case of Au11(PPh3)7X3with the aid of base(e.g., pyridine), evidenced by UV-Vis and ESI-MS analyses58.

    Finally, the catalytic mechanism was explored. One phenylacetylene was adsorbed onto the M1 site, Fig.11. And then a deprotonation of the terminal H was detached in the presence of amine (e.g., HN(CH3)2). The formed iminium ion(H++ HCHO + HN(CH3)2H2C=N(CH3)2++ H2O) may interact with the “PhC≡C―” on site M1 and gave the propargylamine product.

    Further, Jin and coworkers also reported the A3-coupling reaction catalyzed by Au38(PET)24nanoclusters59. They argued that the synergistic effect of the ligand protected Auδ+surface(0 < δ < 1) and the electron-rich 23-Au-atom core were responsible for for high catalytic performance. And very recently, Li et al. reported that cadmium doped gold nanocluster ([Au13Cd2(PPh3)6(PET)6(NO3)2]2Cd(NO3)4)showed good catalytic behaviors in the A3-coupling60. The active sites are associated to the cooperation between the exerted cadmium atoms and the neighbor gold atoms on the surface of Au13icosahedron.

    Scheme 4 The catalytic performances of the TiO2-supported Au25(PPh3)10(PA)5X2 ([Au25]/TiO2) catalyst for A3-coupling reaction.n.r. = no reaction

    Fig.11 Possible removal of one phosphine ligand provides a gold atom (M1) from the [Au25(PH3)10(PA)5Cl2]2+ cluster, and proposed mechanism for the catalyzed A3-coupling reaction over the Au25(PH3)10(PA)5Cl2 cluster.Color code: Au, yellow; P, purple; X, green; N, blue; C, grey; H, white.

    5 Summary and outlook

    Over the last decade years, the outstanding catalytic application s of the gold nanoclusters have been observed,leading to a novelty perspective for gold nanocatalysis,especially in the carbon-carbon coupling reactions, such as Ullmann coupling of halides, Suzuki cross-coupling of phenylboronic acid and iodobenzene, Sonogashira cross-coupling of iodobenzene and phenylacetylene, and A3-coupling reaction of alkynes, amines, and aldehydes. These gold nanoclusters, with well-defined atomic frameworks and the sizes of from 1 to 2 nm, performed more efficient in the carbon-carbon coupling reaction in this review. The high catalytic activity, especially the excellent, is mainly due to the unique framework and electronic property of the gold nanoclusters and the functional protecting ligands. However,these thiolate/phosphine protected Au nanoclusters cannot keep intact during the catalysis processes, and the catalytic performance decrease or disappear with the increasing size of formed particles. Thus, how to maintain the gold nanoclusters becomes a big challenge in the further study.

    The oxide-supports in this review are mainly focused on the ceria and titanium oxide (P25). CeO2-supported Au clusters gave rise to better performance than these supported on the TiO2, which may be owing to its basic nature and redox property (CeO2with Ce3+and Ce4+species). The other metal oxides (e.g., SiO2, Al2O3, Fe2O3, MgO, BaO, ZrO2, etc) are few examined. Expansion of new type supports also is another important direction, such as about high surface area materials(e.g., zeolite, activated carbon, graphene or graphite oxide and MOFs61). For example, the porous materials, e.g., MOFs and zeolite, exhibit regular tunnels and cages, which can hold the Au clusters and enhance their stability during the catalysis processes. The concentration enrichment of the reactants in the tunnels and cages of MOFs and zeolite also can increase the catalytic activity. And steric effects of organic linker of MOFs may improve the product selectivity. Furthermore, the Lewis and Bronsted acid sites of zeolite can turn the catalytic performance.

    Finally, we expect gold cluster catalysts can be further developed to carbon-heteratom coupling reactions to form C―O62and C―N63bonds, which are very useful drug intermediates. These carbon-heteratom coupling reactions are found to be easy catalyzed by homogeneous AuIand goldIIIcomplex catalysts. Beyond the carbon-carbon coupling, these well-defined gold nanoclusters can be explored as a good model in the selective oxidation and hydrogenation and electrocatalysis64?66, as the reaction condition is milder and the Au cluster can be intact during the catalysis. Future research on the gold nanoclusters will contribute to the fundamental catalysis and give cue to the new design of highly efficient catalysts for other specific chemical processes.

    (1) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989,115, 301. doi: 10.1016/0021-9517(89)90034-1

    (2) Tsukuda, T.; Tsunoyama, H.; Sakurai, H. Chem. Asian J. 2011, 6, 736.doi: 10.1002/asia.201000611

    (3) Della, P. C.; Falletta, E.; Rossi, M. Chem. Soc. Rev. 2012, 41, 350.doi: 10.1039/c1cs15089h

    (4) Li, G.; Qian, H.; Jin, R. Nanoscale 2012, 4, 6714.doi: 10.1039/c2nr32171h

    (5) Liu, C.; Yan, C.; Lin, J.; Yu, C.; Huang, J.; Li, G. J. Mater. Chem. A 2015, 3, 20167. doi: 10.1039/c5ta05747g

    (6) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2006, 45,7896. doi: 10.1002/anie.200602454

    (7) Li, G.; Zeng, C. Jin, R. J. Am. Chem. Soc. 2014, 136, 3673.doi: 10.1021/ja500121v

    (8) Li, G.; Jiang, D.; Kumar, S.; Chen, Y.; Jin, R. ACS Catal. 2014, 4,2463. doi: 10.1021/cs500533h

    (9) Taketoshi, A.; Haruta, M. Chem. Lett. 2014, 43, 380.doi: 10.1246/cl.131232

    (10) Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2008, 64, 3047.doi: 10.1016/j.tet.2007.12.036

    (11) Seechurn, C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew.Chem. Int. Ed. 2012, 51, 5062. doi: 10.1002/anie.201107017

    (12) Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Polshettiwar, V. Chem.Soc. Rev. 2011, 40, 5181. doi: 10.1039/c1cs15079k

    (13) Chen, Y.; Wang, J.; Liu, C.; Li, Z.; Li, G. Nanoscale 2016, 8, 10059.doi: 10.1039/c5nr08338a

    (14) Goswami, N.; Yao, Q.; Chen, T.; Xie, J. Coord. Chem. Rev. 2016,329, 1. doi: 10.1016/j.ccr.2016.09.001

    (15) Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. X. Chem. Rev. 2016, 116,10346. doi: 10.1021/acs.chemrev.5b00703

    (16) Liu, C.; Li, T.; Li, G.; Nobusada, K.; Zeng, C.; Pang, G.; Rosi, N. L.;Jin, R. Angew. Chem. Int. Ed. 2015, 127, 9826.doi: 10.1002/anie.201502667

    (17) Li, G.; Jin, R. Acc. Chem. Res. 2013, 46, 1749.doi: 10.1021/ar300213z

    (18) Li, Z.; Abroshan, H.; Liu, C.; Li, G. Curr. Org. Chem. 2017, 21, 476.doi: 10.2174/1385272820666161020152707

    (19) Li, G.; Jin, R. Nanotechnol. Rev. 2013, 5, 529.doi: 10.1515/ntrev-2013-0020.

    (20) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.Rev. 2002, 102, 1359. doi: 10.1021/cr000664r

    (21) Daugulis, O.; Do, H. -Q.; Shabashov, D. Acc. Chem. Res. 2009, 42,1074. doi: 10.1021/ar9000058

    (22) Kanuru, V. K.; Kyriakou, G.; Beaumont, S. K.; Papageorgiou, A. C.;Watson, D. J.; Lambert, R. M. J. Am. Chem. Soc. 2010, 132, 8081.doi: 10.1021/ja1011542

    (23) González-Arellano, C.; Abad, A.; Corma, A.; García, H.; Iglesias, M.;Sánchez, F. Angew. Chem., Int. Ed. 2007, 46, 1536.doi: 10.1002/anie.200604746

    (24) Lin, J.; Abroshan, H.; Liu, C.; Zhu, M.; Li, G.; Haruta, M. J. Catal.2015, 330, 354. doi: 10.1016/j.jcat.2015.07.020

    (25) Li, G.; Zeng, C.; Jin, R. J. Phys. Chem. C 2015, 119, 11143.doi: 10.1021/jp511930n

    (26) Boronat, M.; Combita, D.; Concepción, P.; Corma, A.; García, H.;Juárez, R.; Laursen, S.; López-Castro, J. D. J. Phys. Chem. C 2012,116, 24855. doi: 10.1021/jp3071585

    (27) Boronat, M.; Corma, A. J. Catal. 2011, 284, 138.doi: 10.1016/j.jcat.2011.09.010

    (28) Corma, A.; Juárez, R.; Boronat, M.; Sánchez, F.; Iglesiasc, M.;García, H. Chem. Commun. 2011, 47, 1446.doi: 10.1039/c0cc04564k

    (29) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am.Chem. Soc. 2008, 130, 5883. doi: 10.1021/ja801173r

    (30) Qian, H.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R. Inorg.Chem. 2011, 50, 10735. doi: 10.1021/ic2012292

    (31) Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.;Tsukuda, T. J. Phys. Chem. C. 2007, 111, 7845.doi: 10.1021/jp073101t

    (32) Li, G.; Jin, R. J. Am. Chem. Soc. 2014, 136, 11347.doi: 10.1021/ja503724j

    (33) Kauffman, D. R.; Alfonso, D.; Matranga, C.; Li, G.; Jin, R. J. Phys.Chem. Lett. 2013, 4, 195. doi: 10.1021/jz302056q

    (34) Yu, C.; Li, G.; Kumar, S.; Kawasaki, H.; Jin, R. J. Phys. Chem. Lett.2013, 4, 2847. doi: 10.1021/jz401447w

    (35) Chen, H.; Liu, C.; Wang, M.; Zhang, C.; Li, G.; Wang, F. Chin. J.Catal. 2016, 37, 1787. doi: 10.1016/S1872-2067(16)62478-6

    (36) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096.doi: 10.1002/anie.200703209

    (37) Monopoli, A.; Cotugno, P.; Palazzo, G.; Ditaranto, N.; Mariano, B.;Cioffi, N.; Ciminale, F.; Nacci, A. Adv. Synth. Catal. 2012, 354,2777. doi: 10.1002/adsc.201200422

    (38) Dhital, R. N.; Kamonsatikul, C.; Somsook, E.; Bobuatong, K.; Ehara,M.; Karanjit, S.; Sakurai, H. J. Am. Chem. Soc. 2012, 134, 20250.doi: 10.1021/ja309606k

    (39) Gao, F.; Goodman, D. W. Chem. Soc. Rev. 2012, 41, 8009.doi: 10.1039/c2cs35160a

    (40) Li, G.; Liu, C.; Lei, Y.; Jin, R. Chem. Commun. 2012, 48, 12005.doi: 10.1039/c2cc34765b

    (41) Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z.; Xie, Y.; Kim, H. J.;Rosi, N. L.; Jin, R. ACS Nano 2016, 10, 7998.doi: 10.1021/acsnano.6b03964

    (42) Abroshan, H.; Li, G.; Lin, J.; Kim, H. J.; Jin, R. J. Catal. 2016, 337,72. doi: 10.1016/j.jcat.2016.01.011

    (43) Li, G.; Abroshan, H.; Chen, Y.; Jin, R.; Kim, H. J. J. Am. Chem. Soc.2015, 137, 14295. doi: 10.1021/jacs.5b07716

    (44) Li, G.; Jiang, D.; Liu, C.; Yu, C.; Jin, R. J. Catal. 2013, 306, 177.doi: 10.1016/j.jcat.2013.06.017

    (45) Kumara, C.; Aikens, C. M.; Dass, A. J. Phys. Chem. Lett. 2014, 5,461. doi: 10.1021/jz402441d

    (46) Jin, R.; Nobusada, K. Nano Res. 2014, 7, 285.doi: 10.1007/s12274-014-0403-5

    (47) Li, W.; Liu, C.; Abroshan, H.; Ge, Q.; Yang, X.; Xu, H.; Li, G.J. Phys. Chem. C 2016, 120, 10261. doi: 10.1021/acs.jpcc.6b00793

    (48) Jiang, D.; Whetten, R. L. Phys. Rev. B 2009, 80, 115402.doi: 10.1103/PhysRevB.80.115402

    (49) Qian, H.; Jiang, D.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R.J. Am. Chem. Soc. 2012, 134, 16159. doi: 10.1021/jacs.5b07716

    (50) Xie, S.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T.ACS Catal. 2012, 2, 1519. doi: 10.1021/cs300252g

    (51) Li, G.; Jin, R. Catal. Today 2016, 278, 187.doi: 10.1016/j.cattod.2015.11.019

    (52) Li, Z.; Yang, X.; Liu, C.; Wang, J.; Li, G. Prog. Nat. Sci.: Mater. Int.2016, 26, 477. doi: 10.1016/j.pnsc.2016.09.007

    (54) Ganem, B. Acc. Chem. Res. 2009, 42, 463. doi: 10.1021/ar800214s

    (55) Climent, M. J.; Corma, A.; Iborra, S. RSC Adv. 2012, 2, 16.doi: 10.1039/c1ra00807b

    (56) Wei, C.; Li, C. -J. J. Am. Chem. Soc. 2003, 125, 9584.doi: 10.1021/ja0359299

    (57) Chen, Y.; Liu, C.; Abroshan, H.; Wang, J.; Li, Z.; Li, G.; Haruta, M.J. Catal. 2016, 337, 287. doi: 10.1016/j.jcat.2016.05.023

    (58) Liu, C.; Abroshan, H.; Yan, C.; Li, G.; Haruta, M. ACS Catal. 2016,6, 92. doi: 10.1021/acscatal.5b02116

    (59) Li, Q.; Das, A.; Wang, S.; Chen, Y.; Jin, R. Chem. Commun. 2016,52, 14298. doi: 10.1039/c6cc07825g

    (60) Li, M.; Tian, S.; Wu, Z. Chin. J. Chem. 2017,doi: 10.1002/cjoc.201600526 60

    (61) Vilhelmsen, L. B.; Walton, K. S.; Sholl, D. S. J. Am. Chem. Soc.2012, 134, 12807. doi: 10.1021/ja305004a

    (62) Aguilar, D.; Contel, M.; Navarro, R.; Soler, T.; Urriolabeitia, E. P.J. Organomet. Chem. 2009, 694, 486.doi: 10.1016/j.jorganchem.2008.09.058

    (63) Ciobanu, M.; Cojocaru, B.; Teodorescu, C.; Vasiliu, F.; Coman, S.M.; Leitner, W.; Parvulescu, V. I. J. Catal. 2012, 296, 43.doi: 10.1016/j.jcat.2012.09.002

    (64) Yan, C.; Liu, C.; Abroshan, H.; Li, Z.; Qiu, R.; Li, G. Phys. Chem.Chem. Phys. 2016, 18, 23358. doi: 10.1039/c6cp04569c

    (65) Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C.; Kauffman, D. R.;Yoshimoto, J.; Iwasaki, Y.; Jin, R. Chem. Mater. 2014, 26, 2777.doi: 10.1021/cm500260z

    (66) Liu, C.; Zhang, J.; Huang, J.; Zhang, C.; Hong, F.; Zhou, Y.; Li, G.;Haruta, M. ChemSusChem 2017, doi: 10.1002/cssc.20170040

    A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters

    ZHOU Yang1,2LI Gao1,*
    (1Gold Catalysis Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China;2University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

    Well-defined gold nanoclusters have been documented as new and promising materials in the field of nanoscience. They have been well explored for the nanocatalysis of reactions like selective oxidation and hydrogenation, carbon-carbon coupling, etc. These Au nanoclusters possess unique electronic properties and crystal structure, which provide an excellent opportunity to correlate atomic structure with intrinsic catalytic property and to investigate the mechanisms of reactions over Au nanoclusters. In this review, we generalize the catalytic application of gold nanoclusters in carbon?carbon coupling reactions, including Ullmann, Sonogashira, Suzuki, and A3-coupling reactions. Herein, we have discussed ligand engineering (e.g., aromatic and aliphatic thiolate) as well as the effect of metal dopants(e.g., Cu, Ag, Pt, and Pd). Finally, the tentative catalytic mechanisms and the structure?performance relationships were discussed at the atomic level, which will give some clue for the design of efficient gold cluster catalysts.

    Gold cluster; Carbon-carbon coupling; Ligand engineering; Doping effect; Ullmanncoupling; Sonogashira cross-coupling; Suzuki cross-coupling; A3-coupling

    March 3, 2017; Revised: March 29, 2017; Published online: April 10, 2017.

    her B.S. from Hebei Normal University in 2015. She is a graduate student at State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.Her current research interests are preparation and catalytic application of gold nanoclusters.

    LI Gao, received his B.S. from Hunan Normal University in 2004, and Ph.D.(2011) from Shanghai Jiao Tong University. After his postdoctoral research in Carnegie Mellon University(2011?2014), he joined State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences as a professor in 2014. His current research interests focus on the preparation and catalytic application of metal nanoclusters.

    O643

    10.1021/cr0505728

    [Feature Article]

    10.3866/PKU.WHXB201704101 www.whxb.pku.edu.cn

    *Corresponding author. Email: gaoli@dicp.ac.cn; Tel: +86-411-8246-3017.

    ? Editorial office of Acta Physico-Chimica Sinica

    ZHOU Yang,

    猜你喜歡
    硫醇偶聯(lián)中國科學(xué)院
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    解偶聯(lián)蛋白2在低氧性肺動(dòng)脈高壓小鼠肺組織的動(dòng)態(tài)表達(dá)
    液化氣催化氧化脫硫醇的新一代催化劑
    硫醇(酚)對(duì)PVC的熱穩(wěn)定作用——性能遞變規(guī)律與機(jī)理
    中國塑料(2016年8期)2016-06-27 06:35:02
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    過渡金屬催化的碳-氮鍵偶聯(lián)反應(yīng)的研究
    淺析液化氣脫硫醇技術(shù)
    環(huán)氧樹脂偶聯(lián)納米顆粒制備超疏水表面
    中國塑料(2015年8期)2015-10-14 01:10:49
    亚洲人成77777在线视频| 高清黄色对白视频在线免费看| 最近最新中文字幕大全免费视频 | 国产精品不卡视频一区二区| 不卡视频在线观看欧美| 成人免费观看视频高清| 美女脱内裤让男人舔精品视频| 天天操日日干夜夜撸| 亚洲激情五月婷婷啪啪| 99香蕉大伊视频| www.色视频.com| 日韩大片免费观看网站| 亚洲av电影在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 男女边吃奶边做爰视频| 少妇猛男粗大的猛烈进出视频| 咕卡用的链子| 日韩一区二区三区影片| 亚洲精品国产av蜜桃| 97人妻天天添夜夜摸| 97精品久久久久久久久久精品| 青春草国产在线视频| 美女视频免费永久观看网站| 成人综合一区亚洲| 欧美激情极品国产一区二区三区 | 久久久久人妻精品一区果冻| 亚洲精品av麻豆狂野| 一级毛片我不卡| 最近的中文字幕免费完整| 丝袜在线中文字幕| 18禁观看日本| 两个人免费观看高清视频| 在线精品无人区一区二区三| 99国产综合亚洲精品| 在线看a的网站| 香蕉国产在线看| 精品国产一区二区久久| 丰满迷人的少妇在线观看| 国产免费视频播放在线视频| 又黄又粗又硬又大视频| 国产一级毛片在线| 日韩精品免费视频一区二区三区 | 久久鲁丝午夜福利片| 精品国产一区二区三区久久久樱花| 欧美精品人与动牲交sv欧美| 日韩伦理黄色片| 亚洲精品乱码久久久久久按摩| 国产熟女午夜一区二区三区| 国产亚洲午夜精品一区二区久久| 啦啦啦视频在线资源免费观看| 国产av国产精品国产| 好男人视频免费观看在线| 精品一区二区三区视频在线| 亚洲五月色婷婷综合| 国产欧美日韩一区二区三区在线| 久久久精品免费免费高清| 亚洲精品美女久久久久99蜜臀 | 婷婷色av中文字幕| 少妇高潮的动态图| 国产熟女午夜一区二区三区| 日韩欧美精品免费久久| av在线老鸭窝| 交换朋友夫妻互换小说| 成人影院久久| 两个人看的免费小视频| 大香蕉97超碰在线| 自线自在国产av| 成年女人在线观看亚洲视频| 久久精品人人爽人人爽视色| 制服诱惑二区| 亚洲欧洲日产国产| 王馨瑶露胸无遮挡在线观看| 久久人人爽人人片av| 亚洲美女搞黄在线观看| 日韩欧美一区视频在线观看| 亚洲成人av在线免费| freevideosex欧美| 亚洲欧美成人综合另类久久久| 欧美精品国产亚洲| 最后的刺客免费高清国语| 免费大片18禁| 午夜91福利影院| 色视频在线一区二区三区| 卡戴珊不雅视频在线播放| 曰老女人黄片| 免费看av在线观看网站| 国产淫语在线视频| 精品国产一区二区三区久久久樱花| 视频在线观看一区二区三区| 99香蕉大伊视频| 九色成人免费人妻av| 久久97久久精品| 欧美国产精品va在线观看不卡| 婷婷成人精品国产| 亚洲国产看品久久| 亚洲经典国产精华液单| 日韩av在线免费看完整版不卡| 亚洲欧美成人综合另类久久久| 国产片内射在线| 黄色毛片三级朝国网站| 免费黄色在线免费观看| 新久久久久国产一级毛片| a级片在线免费高清观看视频| 欧美xxⅹ黑人| 精品国产乱码久久久久久小说| 国产激情久久老熟女| 国产成人免费无遮挡视频| 亚洲精品第二区| 午夜福利视频在线观看免费| 夫妻性生交免费视频一级片| 五月伊人婷婷丁香| 有码 亚洲区| 国产1区2区3区精品| 9色porny在线观看| 成年人午夜在线观看视频| 国产一级毛片在线| 尾随美女入室| 在线观看免费日韩欧美大片| 欧美精品av麻豆av| 9热在线视频观看99| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 免费人妻精品一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 三级国产精品片| 丁香六月天网| 交换朋友夫妻互换小说| 日本猛色少妇xxxxx猛交久久| 日韩欧美精品免费久久| 国产亚洲av片在线观看秒播厂| 精品视频人人做人人爽| 欧美97在线视频| 女的被弄到高潮叫床怎么办| 女的被弄到高潮叫床怎么办| 九九爱精品视频在线观看| 成年av动漫网址| 久久狼人影院| 永久免费av网站大全| 国产精品国产三级国产av玫瑰| 亚洲,一卡二卡三卡| 亚洲,一卡二卡三卡| 国产亚洲一区二区精品| 色5月婷婷丁香| 肉色欧美久久久久久久蜜桃| 人人妻人人澡人人看| 精品一区在线观看国产| 春色校园在线视频观看| 亚洲国产欧美日韩在线播放| 免费看光身美女| 国产极品天堂在线| 亚洲精品国产色婷婷电影| 日本欧美国产在线视频| 十八禁高潮呻吟视频| 久久精品国产亚洲av涩爱| 亚洲精品久久久久久婷婷小说| 午夜激情久久久久久久| 咕卡用的链子| 久久精品国产a三级三级三级| 亚洲成av片中文字幕在线观看 | 在线精品无人区一区二区三| 两性夫妻黄色片 | 亚洲人与动物交配视频| 精品国产一区二区三区四区第35| 纵有疾风起免费观看全集完整版| 九色成人免费人妻av| 热99国产精品久久久久久7| 亚洲国产精品国产精品| 99视频精品全部免费 在线| 日韩伦理黄色片| 亚洲,一卡二卡三卡| 成人二区视频| 看免费成人av毛片| 日韩中字成人| 久久精品久久精品一区二区三区| 老熟女久久久| 免费av不卡在线播放| 看非洲黑人一级黄片| 色视频在线一区二区三区| 91成人精品电影| 国产白丝娇喘喷水9色精品| av福利片在线| av在线播放精品| 另类精品久久| 亚洲欧美色中文字幕在线| 波野结衣二区三区在线| 视频区图区小说| 国产精品一区二区在线不卡| 秋霞在线观看毛片| 国产免费又黄又爽又色| 欧美xxⅹ黑人| 这个男人来自地球电影免费观看 | 深夜精品福利| 2022亚洲国产成人精品| 美女xxoo啪啪120秒动态图| 免费黄色在线免费观看| 深夜精品福利| 观看av在线不卡| 成人18禁高潮啪啪吃奶动态图| 9热在线视频观看99| 国产xxxxx性猛交| 欧美+日韩+精品| 这个男人来自地球电影免费观看 | 国产av一区二区精品久久| 永久网站在线| 自拍欧美九色日韩亚洲蝌蚪91| 成人无遮挡网站| 国产精品蜜桃在线观看| 亚洲经典国产精华液单| 亚洲成国产人片在线观看| 18禁在线无遮挡免费观看视频| 香蕉精品网在线| 人人妻人人爽人人添夜夜欢视频| 两性夫妻黄色片 | 9色porny在线观看| 男人舔女人的私密视频| 波野结衣二区三区在线| 精品人妻偷拍中文字幕| 欧美另类一区| 99热全是精品| 成年动漫av网址| 日韩av不卡免费在线播放| 啦啦啦在线观看免费高清www| 久久午夜福利片| 亚洲精品国产av蜜桃| 国产一区二区激情短视频 | 成年女人在线观看亚洲视频| www.色视频.com| 麻豆乱淫一区二区| 久久99一区二区三区| 日本爱情动作片www.在线观看| 夜夜爽夜夜爽视频| 亚洲av成人精品一二三区| 97精品久久久久久久久久精品| 久久国产精品大桥未久av| 久久久精品94久久精品| 欧美97在线视频| 又大又黄又爽视频免费| 激情视频va一区二区三区| 美女脱内裤让男人舔精品视频| 少妇人妻 视频| videossex国产| 男女午夜视频在线观看 | 亚洲av.av天堂| 亚洲欧洲日产国产| 亚洲成人一二三区av| 国产精品不卡视频一区二区| 欧美人与性动交α欧美精品济南到 | 国产精品久久久久久精品电影小说| 久久久久久久亚洲中文字幕| 美女大奶头黄色视频| 国产亚洲欧美精品永久| 侵犯人妻中文字幕一二三四区| 成年动漫av网址| 男女啪啪激烈高潮av片| 黄色怎么调成土黄色| 女性被躁到高潮视频| 亚洲三级黄色毛片| 伊人亚洲综合成人网| 国产视频首页在线观看| 国产一级毛片在线| 九九在线视频观看精品| 少妇的逼好多水| 国产日韩欧美视频二区| 国产伦理片在线播放av一区| 一区在线观看完整版| av国产精品久久久久影院| 女人被躁到高潮嗷嗷叫费观| 免费大片黄手机在线观看| av免费观看日本| 免费观看性生交大片5| 成人二区视频| 99视频精品全部免费 在线| 日韩不卡一区二区三区视频在线| 亚洲欧美清纯卡通| 人妻 亚洲 视频| 国产av精品麻豆| 精品午夜福利在线看| 9色porny在线观看| 国产欧美日韩一区二区三区在线| av.在线天堂| 精品久久国产蜜桃| 飞空精品影院首页| 熟女电影av网| 草草在线视频免费看| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验| 五月伊人婷婷丁香| 人人澡人人妻人| 香蕉精品网在线| 99国产综合亚洲精品| 一本色道久久久久久精品综合| 国产精品熟女久久久久浪| 久久精品熟女亚洲av麻豆精品| 一级片免费观看大全| 一级毛片电影观看| 天堂俺去俺来也www色官网| 黄色一级大片看看| 久久人人爽人人爽人人片va| 欧美成人午夜精品| 人妻一区二区av| 国产国语露脸激情在线看| 咕卡用的链子| 亚洲人成网站在线观看播放| 日本色播在线视频| 99九九在线精品视频| 一级爰片在线观看| 男女啪啪激烈高潮av片| 久久久久视频综合| av卡一久久| 亚洲伊人色综图| 亚洲av日韩在线播放| 中文字幕最新亚洲高清| 久久精品夜色国产| 欧美日本中文国产一区发布| 亚洲综合色惰| 丝袜脚勾引网站| 欧美老熟妇乱子伦牲交| 成人国产麻豆网| 纯流量卡能插随身wifi吗| 黄色 视频免费看| 久久亚洲国产成人精品v| 国产福利在线免费观看视频| 国产精品偷伦视频观看了| 女人精品久久久久毛片| 女性被躁到高潮视频| 亚洲,欧美,日韩| 日日撸夜夜添| 在线观看美女被高潮喷水网站| 天天躁夜夜躁狠狠躁躁| 天堂中文最新版在线下载| 国产精品欧美亚洲77777| 黄网站色视频无遮挡免费观看| 亚洲综合色惰| 国产乱来视频区| 久久久久久久久久成人| 99视频精品全部免费 在线| 男女国产视频网站| 成年av动漫网址| 满18在线观看网站| 天美传媒精品一区二区| 精品99又大又爽又粗少妇毛片| 99视频精品全部免费 在线| 少妇的逼好多水| 成人二区视频| 亚洲经典国产精华液单| 一级毛片电影观看| 亚洲伊人色综图| 九九在线视频观看精品| www.熟女人妻精品国产 | 久久久国产欧美日韩av| 久久99精品国语久久久| 黑人欧美特级aaaaaa片| 久久久久久人妻| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 内地一区二区视频在线| 亚洲一区二区三区欧美精品| av国产久精品久网站免费入址| 青春草视频在线免费观看| 亚洲av国产av综合av卡| 亚洲欧美日韩卡通动漫| 高清在线视频一区二区三区| 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 国产色爽女视频免费观看| 亚洲精品日韩在线中文字幕| 亚洲婷婷狠狠爱综合网| 少妇的逼水好多| 精品国产乱码久久久久久小说| 午夜91福利影院| 久久毛片免费看一区二区三区| 又大又黄又爽视频免费| 九色亚洲精品在线播放| 久久久国产精品麻豆| xxx大片免费视频| 韩国高清视频一区二区三区| 卡戴珊不雅视频在线播放| 亚洲国产看品久久| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 在线观看国产h片| av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频 | 久久亚洲国产成人精品v| 成人漫画全彩无遮挡| 宅男免费午夜| 欧美日韩视频高清一区二区三区二| 国产精品人妻久久久久久| 青春草亚洲视频在线观看| 国产不卡av网站在线观看| av一本久久久久| 少妇的逼水好多| 久久午夜综合久久蜜桃| 欧美人与善性xxx| 黄片播放在线免费| 欧美日本中文国产一区发布| 丝袜美足系列| 全区人妻精品视频| 女性被躁到高潮视频| 纵有疾风起免费观看全集完整版| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 亚洲国产色片| 超色免费av| 久久久精品区二区三区| 国产熟女午夜一区二区三区| 亚洲精品一区蜜桃| 免费不卡的大黄色大毛片视频在线观看| 午夜影院在线不卡| www.熟女人妻精品国产 | 久久精品国产综合久久久 | 国产乱来视频区| 制服诱惑二区| 乱人伦中国视频| 亚洲国产精品专区欧美| 一级爰片在线观看| 国产片内射在线| 人人妻人人爽人人添夜夜欢视频| 在线观看免费高清a一片| videosex国产| 亚洲欧美清纯卡通| 男女啪啪激烈高潮av片| 亚洲精品中文字幕在线视频| 又大又黄又爽视频免费| 少妇精品久久久久久久| 午夜久久久在线观看| 欧美变态另类bdsm刘玥| xxxhd国产人妻xxx| 99国产综合亚洲精品| www日本在线高清视频| 交换朋友夫妻互换小说| 激情视频va一区二区三区| 中文字幕人妻熟女乱码| 高清在线视频一区二区三区| 2018国产大陆天天弄谢| 97超碰精品成人国产| 视频中文字幕在线观看| 看十八女毛片水多多多| 一本大道久久a久久精品| 精品福利永久在线观看| 黄网站色视频无遮挡免费观看| 五月伊人婷婷丁香| 久久久a久久爽久久v久久| 国产男人的电影天堂91| 亚洲,欧美精品.| 中文字幕av电影在线播放| 免费av不卡在线播放| 欧美国产精品va在线观看不卡| 久久久亚洲精品成人影院| 麻豆乱淫一区二区| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说| 丝袜在线中文字幕| 我的女老师完整版在线观看| 成年动漫av网址| 亚洲av电影在线观看一区二区三区| 日韩,欧美,国产一区二区三区| 嫩草影院入口| 亚洲国产精品一区二区三区在线| 免费黄色在线免费观看| 99热国产这里只有精品6| 97在线人人人人妻| 97在线视频观看| 人妻一区二区av| 亚洲成人手机| 最近最新中文字幕大全免费视频 | 国产 一区精品| 久久久久久人妻| 五月玫瑰六月丁香| 日韩在线高清观看一区二区三区| 美女福利国产在线| 国产成人精品久久久久久| 欧美xxxx性猛交bbbb| 欧美人与性动交α欧美精品济南到 | 国产精品久久久久久精品电影小说| 免费人妻精品一区二区三区视频| 乱人伦中国视频| 国产国拍精品亚洲av在线观看| 97超碰精品成人国产| 久久人人爽av亚洲精品天堂| 久久精品人人爽人人爽视色| 曰老女人黄片| 亚洲一区二区三区欧美精品| 免费黄网站久久成人精品| 精品午夜福利在线看| 欧美激情 高清一区二区三区| 男男h啪啪无遮挡| 天堂中文最新版在线下载| 韩国av在线不卡| 中文字幕人妻熟女乱码| 国产又爽黄色视频| 久久热在线av| 九九在线视频观看精品| 欧美成人午夜精品| 菩萨蛮人人尽说江南好唐韦庄| 成年女人在线观看亚洲视频| av在线播放精品| 日本-黄色视频高清免费观看| 久久精品夜色国产| 少妇人妻 视频| 免费人成在线观看视频色| 9色porny在线观看| 国产有黄有色有爽视频| 黄网站色视频无遮挡免费观看| 亚洲国产av新网站| 成年动漫av网址| av国产精品久久久久影院| 日本-黄色视频高清免费观看| 青春草国产在线视频| 极品人妻少妇av视频| 免费人成在线观看视频色| xxxhd国产人妻xxx| 在线看a的网站| 欧美亚洲日本最大视频资源| 国产精品人妻久久久影院| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av电影中文网址| 18在线观看网站| 伊人久久国产一区二区| 黑人猛操日本美女一级片| 成年人免费黄色播放视频| 色婷婷久久久亚洲欧美| 69精品国产乱码久久久| 国产一区有黄有色的免费视频| 欧美性感艳星| 免费观看av网站的网址| 国产亚洲一区二区精品| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品999| videossex国产| freevideosex欧美| av在线app专区| 青春草亚洲视频在线观看| 最近中文字幕2019免费版| 一边摸一边做爽爽视频免费| 日日撸夜夜添| 人妻一区二区av| 夜夜骑夜夜射夜夜干| 黄片无遮挡物在线观看| 91成人精品电影| 美女xxoo啪啪120秒动态图| 在线天堂最新版资源| 激情视频va一区二区三区| 国产精品国产三级国产av玫瑰| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 9热在线视频观看99| 免费在线观看黄色视频的| 一区二区日韩欧美中文字幕 | 国产又色又爽无遮挡免| 嫩草影院入口| 欧美日韩成人在线一区二区| 少妇精品久久久久久久| 最近中文字幕高清免费大全6| 亚洲av日韩在线播放| 久久久久久人人人人人| 2018国产大陆天天弄谢| 久久久国产精品麻豆| 99热6这里只有精品| 极品人妻少妇av视频| 精品一区二区三卡| 久久韩国三级中文字幕| 久久久亚洲精品成人影院| 乱人伦中国视频| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久久电影| 久久精品久久久久久久性| 一本—道久久a久久精品蜜桃钙片| 熟女av电影| 免费观看性生交大片5| 亚洲av欧美aⅴ国产| 久久久久久久国产电影| 精品一区在线观看国产| 一级毛片黄色毛片免费观看视频| 丝袜在线中文字幕| √禁漫天堂资源中文www| 久久久国产精品麻豆| 日韩一区二区三区影片| 精品久久蜜臀av无| 伦理电影大哥的女人| 日韩 亚洲 欧美在线| 久久这里只有精品19| 尾随美女入室| 中文乱码字字幕精品一区二区三区| 国产国语露脸激情在线看| 国产不卡av网站在线观看| 高清欧美精品videossex| 欧美日韩精品成人综合77777| videosex国产| 国产乱来视频区| 日韩中文字幕视频在线看片| 久久久久精品人妻al黑| 国产成人aa在线观看| 精品久久久久久电影网| 伦精品一区二区三区| 国产精品嫩草影院av在线观看| 视频区图区小说| 亚洲,欧美精品.| 国产片特级美女逼逼视频| 精品一区二区三区四区五区乱码 | 国产亚洲最大av| 美女脱内裤让男人舔精品视频| 久热久热在线精品观看| 国产激情久久老熟女| 99国产综合亚洲精品| 飞空精品影院首页| 国产亚洲最大av| 制服丝袜香蕉在线| 午夜精品国产一区二区电影| 男女国产视频网站| 天堂中文最新版在线下载| 九九爱精品视频在线观看| 国产片内射在线| 人体艺术视频欧美日本| 亚洲av综合色区一区| 欧美国产精品一级二级三级|