周方方+徐朝霞+阿地拉艾皮熱+李金耀
[摘要] 哮喘是由多種免疫細胞參與的慢性呼吸道炎癥疾病,常常導致氣促、胸悶、咳嗽以及反復發(fā)作的喘息等癥狀,往往出現(xiàn)氣流阻塞,影響人體健康。中草藥(CHM)用于治療哮喘已經(jīng)有上千年的歷史,大量研究表明中草藥能有效的調節(jié)細胞免疫反應減緩哮喘癥狀。該文綜述了近幾年來中草藥對免疫細胞的調節(jié)作用及相關分子機制的研究,包括炎癥細胞數(shù)量、樹突狀細胞成熟、輔助性T細胞亞型之間的平衡、調節(jié)性T細胞的誘導及胞內信號通路,并展望了未來的研究方向。
[關鍵詞] 哮喘; 中草藥; 炎癥; 免疫調節(jié); 信號通路
[Abstract] Asthma is a kind of chronic respiratory inflammation, commonly with breathlessness, chest tightness, coughing, recurrent episodes of wheezing and airflow obstruction, severely affecting human health. A variety of immunocytes are involved in this chronic disease. Chinese herbal medicine(CHM) has a long history in the treatment of asthma. A large number of studies have shown that CHM could ameliorate asthma symptoms through regulating cellular immune responses. This paper reviewed the studies of CHM on the regulation of immunocytes and their mechanisms in recent years, including the count of inflammatory cells, maturation of dendritic cells, balance of helper T cell subtypes, induction of regulatory T cells and intracellular signaling pathways. We also proposed the future research directions about the effects of CHM on asthma treatment.
[Key words] asthma; Chinese herbal medicine; inflammation; immunomodulation; signaling pathway
哮喘是一種反復發(fā)作的氣道炎癥疾病,它由多種免疫細胞共同誘發(fā),常常導致氣促、胸悶、咳嗽、反復發(fā)作的喘息、黏液過量分泌和杯狀細胞增生等癥狀,并伴隨氣流阻塞,直接影響人體健康[1-2]。近十幾年來,由各種因素誘發(fā)的哮喘患者逐年增多,其中兒童的患病率增加最為顯著[3-4]。用于治療哮喘的藥物種類較多,包含支氣管擴張藥物(如β2受體激動劑、氨茶堿等),抗過敏性炎癥藥物(如糖皮質激素類藥物,色甘酸鈉等)以及免疫調節(jié)劑等[5],但是大多數(shù)治療哮喘藥物(如糖皮質激素和β2受體激動劑)具有嚴重的副作用,過量使用可能出現(xiàn)心動過速、肌肉震顫、骨代謝及腎上腺功能被抑制等癥狀。因此,從中草藥中篩選高效、無毒副作用治療哮喘的藥物成為了研究的熱點。
中草藥(Chinese herbal medicine,CHM)在中國已經(jīng)有幾千年的應用歷史,用于預防和治療哮喘、關節(jié)炎、糖尿病、腫瘤等多種疾病[6-8]。CHM在亞洲其他國家如日本、韓國、印度等已得到廣泛應用,在歐美等發(fā)達國家也越來越受到重視,尤其是對慢性疾病的治療,逐漸成為發(fā)達國家不可或缺的生物醫(yī)學的重要補充[9-10]。臨床試驗研究表明CHM能有效的治療哮喘,并且沒有副作用[11-12]。據(jù)報道,世界范圍內已有超過400種藥用植物及其有效成分用于治療哮喘或過敏性綜合癥[13]。本文綜述了近幾年CHM治療哮喘的研究進展及其作用的機制。
1 中草藥減少炎癥細胞的數(shù)量
免疫細胞介導機體的免疫防御,增強抗病毒和抗病原菌感染的能力。但是哮喘等慢性炎癥疾病也會導致不同種類免疫細胞數(shù)量增多或遷移到特定組織、器官,加重病情。大量研究證實CHM具有調節(jié)免疫細胞的能力[14]。如傳統(tǒng)中藥配伍麻黃-石膏能降低卵清白蛋白(ovalbumin,OVA)誘導的哮喘模型中嗜酸性細胞和白細胞總數(shù),減輕炎癥反應,使哮喘癥狀得以緩解[15]。研究表明神香草[16]、甘草[17]、神仙草和鳶尾[18]等均能通過減少OVA誘導的哮喘小鼠模型炎癥細胞在氣道內的浸潤,減輕炎癥癥狀。不僅僅CHM的提取物具有調節(jié)白細胞數(shù)量的功能,而且從CHM分離的功效成分也具有相同的作用。例如從淫羊藿中分離出的功效成分類黃酮苷淫羊藿苷就能明顯降低OVA誘導哮喘小鼠白細胞的數(shù)量[19]。同樣來自中草藥溪黃草的功效成分冬凌草素甲不僅能夠減少OVA誘導的哮喘小鼠支氣管中的白細胞數(shù)量,還通過調控輔助性T細胞1(helper T cell 1,Th1)/ Th2的免疫平衡,緩解哮喘癥狀[20]。
2 中草藥調控Th1/Th2的免疫平衡
哮喘為Th2型反應為主的慢性氣道性疾病[21-22]。研究表明中成藥能夠通過調控Th1/Th2的免疫平衡達到減輕哮喘病癥的治療效果[23-24]。傳統(tǒng)中草藥膜莢黃芪在OVA誘導的哮喘小鼠模型中通過調節(jié)Th1/Th2平衡,減輕哮喘癥狀[25]。陰地蕨也可通過上調Th1/Th2的比例,降低外周血白細胞cysLTl受體基因mRNA的表達,發(fā)揮抗哮喘作用[26]。補腎中藥CKZ 可以通過轉錄因子和細胞因子多個環(huán)節(jié),增強Th1細胞的功能,同時抑制Th2細胞的功能,對Th1/Th2平衡具有多層次的調節(jié)作用,有效緩解哮喘的發(fā)生[27]。平喘方(炙麻黃、杏仁、甘草、紫蘇子、萊菔子、地龍干、桃仁、椒目、黃芩組成)治療的哮喘模型小鼠Th1型細胞因子IFN-γ水平升高、Th2型細胞因子IL-4水平降低,改善氣道炎癥,抑制氣道重建[28]。Jayaprakasam等研究發(fā)現(xiàn)靈芝、苦參、甘草3種中草藥協(xié)同抑制嗜酸性細胞趨化因子及Th2型細胞因子的產(chǎn)生,從而抑制哮喘病癥,并且三者的協(xié)同抑制效果明顯好于各自單獨的使用[29]。以上研究表明,不僅單方中草藥可以調節(jié)Th1/Th2免疫平衡,而且復方中草藥也可以協(xié)同調控炎癥反應重建免疫平衡,從而達到更好治療哮喘的效果。endprint
中草藥可通過調控Th1,Th2型轉錄因子重建Th1/Th2免疫平衡。中藥何首烏通過下調轉錄因子GATA-3 mRNA的表達,實現(xiàn)對Th2型免疫反應的抑制,同時降低Th2型免疫系統(tǒng)介質,抑制嗜酸性細胞浸潤,減弱炎癥反應及緩解哮喘癥狀 [30]。從補骨脂的甲基補骨脂黃酮衍生出來的成分B能夠促進T-bet mRNA的表達,抑制GATA-3 mRNA的表達,平衡Th1/Th2反應,展現(xiàn)了潛在的抗哮喘作用[31]。中草藥通過在不同水平上調控Th1,Th2型反應,從而實現(xiàn)Th1/Th2免疫平衡重建。
3 中草藥通過調控調節(jié)性T細胞重建免疫平衡
調節(jié)性T細胞(regulatory T cells,Tregs)是一類控制體內自身免疫反應的T細胞亞群,在抑制哮喘發(fā)生過程中發(fā)揮著關鍵作用[32-33]。中草藥能夠通過誘導Tregs抑制Th2或Th17型反應,從而抑制哮喘的發(fā)生或減輕哮喘的病癥[34-35]。黃芪通過促進轉錄因子Foxp3 mRNA 的水平,增加誘導型Tregs(induced Tregs,iTregs)的比例,進而減輕哮喘病癥[36]。荊芥苞蒿水提物在OVA誘導的哮喘小鼠模型中通過上調Treg的數(shù)量,下調Th17型細胞因子,從而降低Th17/Tregs的比例,抑制Th17型免疫水平;同時降低轉化生長因子-β(transfer growth factor-bata,TGF-β)細胞內信號轉導分子Smad2/3的蛋白水平,達到減緩哮喘的作用[37]。從地黃、淫羊藿等提取的補腎益氣配方在哮喘模型中能夠減少肺組織中RORγt的表達,抑制Th17型反應,同時上調Foxp3的表達,增加Tregs,調節(jié)Th17/Tregs平衡,從而減緩哮喘癥狀[38]。Ruan等發(fā)現(xiàn)CHM(五味子、炙黃芪、白術、土茯苓、陳皮、辛夷、甘草等)混合提取的配方固本方小湯能夠顯著減少白介素17A(interleukin 17,IL-17)的表達而增加IL-10的表達,從而增加Tregs的比例,抑制Th17型反應[39]。從紅花中分離出來的藏花酸在OVA誘導的哮喘模型中通過提高腫瘤壞死因子誘導蛋白8樣2[tumor necrosis factor (TNF)-alpha-induced protein 8-like 2,TIPE2]的表達,上調Foxp3的表達,使得Tregs的數(shù)目增加,減輕惡性哮喘癥狀[40]。Lin等[41]發(fā)現(xiàn)歐前胡素通過調節(jié)樹突狀細胞(dendritic cell,DC)的功能,促進IL-10的表達,誘導Tregs產(chǎn)生,使得Th2型反應下降,增強抗炎效應。這些研究說明CHM可通過誘導調節(jié)性T細胞,抑制Th2或Th17型反應,使免疫系統(tǒng)重新回歸免疫平衡。
4 中草藥調節(jié)DC的成熟狀態(tài)與功能
專職抗原提呈細胞DC在引發(fā)過敏性級聯(lián)反應中發(fā)揮著重要作用[42-43]。研究表明,CHM通過調節(jié)DC的成熟與功能,從而影響T細胞的活化及分化,抑制或減輕哮喘[44]。從紫草提取的有效成分紫草素在小鼠哮喘模型中通過抑制DC主要組織相容性復合體(major histocompatibility complex class,MHC)Ⅱ,CD80,CD86,CCR7,OX40L的表達,降低CD4+ T細胞分泌IL-4,IL-5,TNF-α的水平[45]。從蒿類植物中提取的AIP1能夠下調DC表面CD11c及MHC Ⅱ的表達,降低CD11c+MHC Ⅱ+的比例,減輕哮喘癥狀[46]。從甘草中提取的有效成分甘草酸通過下調DC表面分子(OX40L等)表達,抑制Th2型免疫反應,減緩哮喘癥狀[47]。Yang等研究發(fā)現(xiàn)姜黃素通過激活DC內Wnt/β-catenin信號通路,調節(jié)DC功能,從而減輕哮喘炎癥反應[48]。Gu等研究表明從中草藥中提取的活性成分橙黃素顯著降低由Der p1誘導的哮喘病人單核細胞來源DC表面HLA-DR,CD86,CD83的表達,以及IκB的磷酸化和核因子κB(nuclear factor kappa B,NF-κB)p65細胞核轉運,使得誘導自體CD4+ T細胞活化的能力下降,有望成為潛在的哮喘治療藥物[49]。說明中草藥可以通過調節(jié)DC的成熟及功能,抑制Th2型免疫反應,實現(xiàn)免疫平衡。
5 中草藥調節(jié)細胞內的信號通路
從黃芩中提取的紫葳素甲調控OVA誘導的NF-κB信號通路,降低支氣管肺泡中的Th2型相關細胞因子及OVA特異性IgE的表達,抑制哮喘炎癥反應[50]。從穿心蓮中提取的穿心蓮內酯能在體內和體外顯著降低由活性氧介導的NF-κB的活化和核苷酸結合域富含亮氨酸重復序列(nucleotide-binding domain leucine-rich repeat-containing,NLR)家族中NFRP3炎性體的形成,進而降低TNF-α和IL-1β的產(chǎn)生,減輕肺損傷[51]。從川芎中分離的川芎嗪毛冬青能有效減輕OVA引起的哮喘小鼠過敏性氣道炎癥,降低CCL3,CCL19,CCL21趨化因子和受體CCR7的表達水平,這些抑制效應與抑制STAT3與p38絲裂原激活蛋白激酶(mitogen activated protein kinase,MAPK)的信號通路密切相關[52]。從CHM中分離的原兒茶酸在一定程度上能夠有效的改善OVA引起的小鼠過敏性哮喘,研究發(fā)現(xiàn)其機制可能與阻斷MAPK以及NF-κB通路相關[53]。中藥驗方天龍喘咳靈水煎劑有效抑制MAPKs信號通路當中的胞外信號調節(jié)激酶(extracellular signal regulated kinase,ERK)通路和STAT3通路,有效防治慢性哮喘小鼠模型的氣道重塑[54]。Liu等研究發(fā)現(xiàn)從中草藥配方ASHMITM分離的靈芝酸C1可以抑制巨噬細胞及哮喘病人外周血單核細胞NF-κB信號通路及部分抑制AP1 和MAPK信號通路,減輕TNF-α介導的哮喘炎癥反應[55]。來自香青蒿的半合成物質二氫青蒿素在OVA誘導的哮喘模型中抑制ERK,p38及IκB磷酸化,降低肺組織中Muc5ac和Chil4 mRNA的表達水平,減輕過敏性癥狀[56]。從商陸分離的商陸皂苷甲能活化Nrf-2通路,增加抗氧化酶相關mRNA的表達,降低肺泡中及肺組織中炎性細胞因子及相關黏附分子mRNA的表達,減輕氣道炎癥[57]。說明中草藥通過調控不同信號通路,可以降低哮喘炎癥相關細胞因子和蛋白的表達。endprint
6 展望
中草藥能夠通過不同方式減輕哮喘炎癥,其功效成分可以直接抑制炎性細胞向肺組織的浸潤,調節(jié)Th1/Th2,Th17/Treg的平衡,誘導Treg細胞分化及IL-10表達,從而抑制炎癥反應。隨著研究的深入,越來越多的中藥功效成分被分離、鑒定,并對其功能進行了相關研究。但是,這些中草藥功效成分的作用機制仍然需要進一步闡明,如中草藥對抗原遞呈細胞成熟及細胞因子表達的影響,對Treg的誘導分化等;此外中草藥功效成分之間是否都具有協(xié)同作用及其協(xié)同作用的機制也需要深入研究,從而優(yōu)化中草藥的配方,提高中草藥治療哮喘的效果。
[參考文獻]
[1] 曹俊嶺,李國輝.中成藥與西藥臨床合理聯(lián)用[M]. 北京:北京科學技術出版社,2016.
[2] 劉翠.中西醫(yī)結合護理學[M]. 北京:科學技術文獻出版社,2016.
[3] Akinbami L J, Moorman J E, Garbe P L, et al. Status of childhood asthma in the United States, 1980-2007[J]. Pediatrics, 2009, 123(Supplement 3): S131.
[4] 趙建新.特效穴位治百病速查寶典[M]. 北京:科學技術文獻出版社,2012.
[5] 中華醫(yī)學會呼吸病學分會哮喘學組.支氣管哮喘防治指南(支氣管哮喘的定義、診斷、治療和管理方案)[J]. 中華結核和呼吸雜志,2008,31(3):177.
[6] Li M X, He X R, Tao R, et al. Phytochemistry and pharmacology of the genus Pedicularis used in traditional Chinese medicine[J]. Am J Chin Med, 2014, 42(5): 1071.
[7] Shan M Q, Shang J, Ding A W. Platycladus orientalis leaves: a systemic review on botany, phytochemistry and pharmacology[J]. Am J Chin Med, 2014, 42(3): 523.
[8] Wang C Y, Bai X Y, Wang C H. Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development[J]. Am J Chin Med, 2014, 42(3): 543.
[9] Cai Y, Boyd D L, Coeytaux R R, et al. Treatment of chronic conditions with traditional Chinese medicine: findings from traditional Chinese medicine hospitals in Hubei, China[J]. J Alternat Complement Med, 2015, 21(1): 40.
[10] 何巍. 美國探討中草藥治療哮喘病人的積極意義[J]. 中醫(yī)藥國際參考, 2010(1): 25.
[11] Li X M. Treatment of asthma and food allergy with herbal interventions from traditional Chinese medicine[J]. Mt Sinai J Med: J Transl Pers Med, 2011, 78(5): 697.
[12] Li X M, Brown L V. Efficacy and mechanisms of action of traditional Chinese medicines for treating asthma and allergy[J]. J Allergy Clin Immun, 2009, 123(2): 297.
[13] Mali R G, Dhake A S. A review on herbal anti-asthmatics[J]. OPEM, 2011, 11(2): 77.
[14] Li J, Zhang F, Li J. The immunoregulatory effects of traditional Chinese medicine on treatment of asthma or asthmatic inflammation[J]. Am J Chin Med, 2015, 43(6):1.
[15] Mei F, Xing X F, Tang Q F, et al.Antipyretic and anti-asthmatic activities of traditional Chinese herb-pairs, Ephedra and Gypsum[J]. Chin J Inteqr Med, 2016, 22(6): 445.
[16] Ma X, Ma X, Ma Z, et al. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model[J]. Exp Ther Med, 2014, 8(5): 1371.endprint
[17] Yang N, Patil S, Zhuge J, et al. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMITM, inhibit memory Th2 responses in vitro and in vivo[J]. Phytother Res, 2013, 27(9): 1381.
[18] Wei Y, Abduwaki M, Li M, et al. Loki zupa (Luooukezupa) decoction reduced airway inflammation in an OVA-induced asthma mouse model[J]. Chin Med, 2016, 11(1): 1.
[19] Wei Y, Liu B, Sun J, et al. Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model[J]. Immunobiology, 2015, 220(6): 789.
[20] Wang J, Li F, Ding J, et al. Investigation of the antiasthmatic activity of oridonin on a mouse model of asthma[J]. Mol Med Rep, 2016, 14(3): 2000.
[21] Lambrecht B N, Hammad H. The immunology of asthma[J]. Nat Immunol, 2015, 16(1): 45.
[22] Bergqvist A, Andersson C K, Mori M, et al. Alveolar T-helper type-2 immunity in atopic asthma is associated with poor clinical control[J]. Clin Sci, 2015, 128(1): 47.
[23] Srivastava K D, Dunkin D, Liu C, et al. Herbal formula ASHMI suppresses neutrophil predominant airway inflammation in a ragweed sensitized murine asthma model[J]. Ann Allergy Asthma Immunol,2014, 112(4): 339.
[24] Wang S D, Lin L J, Chen C L, et al. Xiao-Qing-Long-Tang attenuates allergic airway inflammation and remodeling in repetitive dermatogoides pteronyssinus challenged chronic asthmatic mice model[J]. J Ethnopharmacol, 2012, 142(2): 531.
[25] Chen S M, Tsai Y S, Lee S W, et al. Astragalus membranaceus modulates Th1/2 immune balance and activates PPARγ in a murine asthma model[J]. Biochem Cell B, 2014, 92(5): 397.
[26] Yuan Y, Yang B, Ye Z, et al. Sceptridium ternatum extract exerts antiasthmatic effects by regulating Th1/Th2 balance and the expression levels of leukotriene receptors in a mouse asthma model[J]. J Ethnopharmacol, 2013, 149(3): 701.
[27] 吳彬,俞建,王瑩,等.補腎中藥對哮喘緩解期患兒Th1/Th2平衡的影響[J]. 中國中西醫(yī)結合雜志, 2007, 27(2): 120.
[28] 趙毅濤,張新光,白莉,等.平喘方對哮喘模型小鼠肺組織炎癥及γ干擾素和白細胞介素4的影響[J]. 結合醫(yī)學學報, 2012, 10(7): 807.
[29] Jayaprakasam B, Yang N, Wen M C, et al. Constituents of the anti-asthma herbal formula ASHMITM synergistically inhibit IL-4 and IL-5 secretion by murine Th2 memory cells, and eotaxin by human lung fibroblasts in vitro[J]. J Integr Med, 2013, 11(3): 195.
[30] Lee C C, Lee Y L, Wang C N, et al. Polygonum multiflorum decreases airway allergic symptoms in a murine model of asthma[J]. Am J Chin Med, 2016, 44(1): 133.endprint
[31] Chen X, Shen Y, Liang Q, et al. Effect of bavachinin and its derivatives on T cell differentiation[J]. Int Immunopharmacol, 2014, 19(2): 399.
[32] Lambrecht B N, Hammad H. Asthma: the importance of dysregulated barrier immunity[J]. Eur J Immunol, 2013, 43(12): 3125.
[33] 李紅,李云.調節(jié)性T細胞和樹突狀細胞的免疫耐受與哮喘的關系[J]. 醫(yī)學綜述, 2010, 16(3): 336.
[34] Ma C, Ma Z, Liao X, et al. Immunoregulatory effects of glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/Th2 cytokines and enhancement of CD4+ CD25+ Foxp3+ regulatory T cells in ovalbumin-sensitized mice[J]. J Ethnopharmacol, 2013, 148(3): 755.
[35] Ma C, Ma Z, Fu Q, et al. Curcumin attenuates allergic airway inflammation by regulation of CD4+ CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice[J]. Fitoterapia, 2013, 87: 57.
[36] Jin H, Luo Q, Zheng Y, et al. CD4+ CD25+ Foxp3+ T cells contribute to the antiasthmatic effects of Astragalus membranaceus extract in a rat model of asthma[J]. Int Immunopharmacol, 2013, 15(1): 42.
[37] Wang J, Li F S, Pang N N, et al. Inhibition of asthma in OVA sensitized mice model by a traditional Uygur herb Nepeta bracteata Benth[J]. Evid Based Complement Alternat Med, 2016, 2016(11): 5769897.
[38] Wei Y, Luo Q L, Sun J, et al. Bu-Shen-Yi-Qi formulae suppress chronic airway inflammation and regulate Th17/Treg imbalance in the murine ovalbumin asthma model[J]. J Ethnopharmacol, 2015, 164: 368.
[39] Ruan G, Tao B, Wang D, et al. Chinese herbal medicine formula GuBenFangXiaoTang attenuates airway inflammation by modulating Th17/Treg balance in an ovalbumininduced murine asthma model[J]. Exp Ther Med, 2016, 12(3): 1428.
[40] Ding J, Su J, Zhang L, et al. Crocetin activates foxp3 through TIPE2 in asthma-associated treg cells[J]. Cell Physiol Biochem, 2015, 37(6): 2425.
[41] Lin C L, Hsiao G, Wang C C, et al. Imperatorin exerts antiallergic effects in Th2-mediated allergic asthma via induction of IL-10-producing regulatory T cells by modulating the function of dendritic cells[J]. Pharmacol Res, 2016, 110: 111.
[42] Lambrecht B N, Hammad H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology[J]. Annu Rev Immunol, 2012, 30: 243.
[43] Nace G, Evankovich J, Eid R, et al. Dendritic cells and damage-associated molecular patterns: endogenous danger signals linking innate and adaptive immunity[J]. J Innate Immun, 2011, 4(1): 6.endprint
[44] Yang S H, Yu C L, Yang Y H, et al. The immune-modulatory effects of a mixed herbal formula on dendritic cells and CD4+ T lymphocytes in the treatment of dust mite allergy asthma and perennial allergic rhinitis[J]. J Asthma, 2016, 53(4): 446.
[45] Lee C C, Wang C N, Lai Y T, et al. Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma[J]. Brit J Pharmacol, 2010, 161(7): 1496.
[46] Lee J A, Sung H N, Jeon C H, et al. A carbohydrate fraction, AIP1 from Artemisia iwayomogi suppresses pulmonary eosinophilia and Th2-type cytokine production in an ovalbumin-induced allergic asthma. down-regulation of TNF-alpha expression in the lung[J]. Int Immunopharmacol, 2008, 8(1): 117.
[47] 吳巧珍,湯穎,張劍峰,等.甘草酸對支氣管哮喘小鼠氣道炎癥的影響機制[J]. 中華醫(yī)學雜志, 2014, 94(42): 3338.
[48] Yang X, Lv J N, Li H, et al. Curcumin reduces lung inflammation via Wnt/β-catenin signaling in mouse model of asthma[J]. J Asthma, 2017,54:335.
[49] Gu X, Zhou L, Du Q, et al. Hesperetin inhibits the maturation and function of monocyte-derived dendritic cells from patients with asthma[J]. Mol Med Rep, 2009, 2(3): 509.
[50] Zhou D G, Diao B Z, Zhou W, et al. Oroxylin a inhibits allergic airway inflammation in ovalbumin (OVA)-induced asthma murine model[J]. Inflammation, 2016, 39(2): 867.
[51] Peng S, Gao J, Liu W, et al. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation[J]. Oncotarget, 2016, 7(49): 80262.
[52] Wei Y, Liu J, Zhang H, et al. Ligustrazine attenuates inflammation and the associated chemokines and receptors in ovalbumine-induced mouse asthma model[J]. Environ Toxicol Phar, 2016, 46: 55.
[53] 魏苗苗.原兒茶酸對過敏性哮喘模型小鼠的保護作用及相關機制的研究[D]. 長春:吉林大學, 2013.
[54] 羅永峰,吳壯,徐軍.天龍咳喘靈改善慢性哮喘小鼠氣道重塑的機制[J]. 遼寧中醫(yī)雜志, 2011(2): 357.
[55] Liu C, Yang N, Song Y, et al. Ganoderic acid C 1 isolated from the anti-asthma formula, ASHMITM suppresses TNF-α production by mouse macrophages and peripheral blood mononuclear cells from asthma patients[J]. Int Immunopharmacol, 2015, 27(2): 224.
[56] Wei M, Xie X, Chu X, et al. Dihydroartemisinin suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model[J]. Immunopharm Immunot, 2013, 35(3): 382.
[57] Ci X, Zhong W, Ren H, et al. Esculentoside a attenuates allergic airway inflammation via activation of the Nrf-2 pathway[J]. Int Arch Allergy and Imm, 2015, 167(4): 280.
[責任編輯 張寧寧]endprint