時晶晶,屈銀虎,成小樂,祁志旭,劉曉妮,周思君,祁攀虎,周宗團(tuán)
(西安工程大學(xué) 機(jī)電工程學(xué)院,西安710048)
微膠囊銅粉對銅復(fù)合漿料性能的影響
時晶晶,屈銀虎,成小樂,祁志旭,劉曉妮,周思君,祁攀虎,周宗團(tuán)
(西安工程大學(xué) 機(jī)電工程學(xué)院,西安710048)
為提高銅漿料的導(dǎo)電性,利用微膠囊技術(shù)在銅粉表面包覆液體石蠟,增強(qiáng)銅粉的抗氧化性,并添加少量導(dǎo)電性能優(yōu)異的碳納米管作為導(dǎo)電增強(qiáng)相,制備碳納米管-銅復(fù)合漿料.利用四探針測試儀、掃描電鏡等測試方法研究了液體石蠟含量對包覆銅粉性能的影響以及微膠囊銅粉作為主導(dǎo)電相,碳納米管作為導(dǎo)電增強(qiáng)相對漿料導(dǎo)電性能的影響.結(jié)果表明:液體石蠟包覆含量為4 wt%的微膠囊銅粉具有良好的導(dǎo)電性和抗氧化性,其電導(dǎo)率為44.32%IACS;微膠囊銅粉作為碳納米管-銅漿料的主導(dǎo)電相,制備漿料膜層電阻率為22.59 mΩ·cm,相比于未包覆的銅粉為主導(dǎo)電相制備的漿料膜層電阻率降低了12.44%;碳納米管作為導(dǎo)電增強(qiáng)相所制備的漿料相比于純銅漿料,電阻率降低31.74%.
碳納米管;微膠囊;銅粉;復(fù)合漿料;液體石蠟
電子漿料產(chǎn)品是集材料、冶金、化工、電子技術(shù)等于一體的電子功能材料,高性能、低成本的原材料將大大提高電子產(chǎn)品的競爭能力,也必然成為電子漿料自身產(chǎn)業(yè)發(fā)展的必然條件[1-6].為提高電子漿料的性能并降低生產(chǎn)成本,研究價格低廉的銅導(dǎo)電漿料具有良好的發(fā)展前景.但銅的化學(xué)性質(zhì)比較活潑,在常溫下與空氣接觸就會被氧化而形成氧化膜,使其導(dǎo)電性降低[7-14].Caroline Clement[15]等人通過在氮?dú)鈿夥障鹿袒瘉肀苊庖糟~為基礎(chǔ)的聚合物漿料氧化,從而提高銅漿料的導(dǎo)電性.廖輝偉[16]等采用化學(xué)鍍法制取包覆型銅-銀雙金屬粉.蘇曉磊[17]等將一定量的硼酸三丁酯和硝酸鉍加入到正酸乙酯水溶液中,對混合溶劑進(jìn)行水解,獲得凝膠;再將稱取好的微米銅粉加入到該凝膠中,同時用超聲波進(jìn)行分散,使銅粉充分與凝膠混合,從而獲得包覆均勻的銅粉;用包覆好的銅粉制得銅電子漿料.這些研究工作各有特色、各有成效,但并未大幅度地提高銅電子漿料的導(dǎo)電性能.
本文采用液體石蠟包覆銅粉形成微膠囊銅粉,以微膠囊銅粉作為漿料的主導(dǎo)電相,添加導(dǎo)電性能優(yōu)異的碳納米管作為導(dǎo)電增強(qiáng)相,來制備碳納米管-銅復(fù)合漿料.微膠囊技術(shù)是指利用成膜材料將固體、液體或氣體囊于其中,形成直徑幾十微米至上千微米的微小容器的技術(shù),保護(hù)芯材免受不利環(huán)境因素如溫度、pH值等影響,以此提高產(chǎn)品的穩(wěn)定性和貨架期,利用液體石蠟包覆銅粉,有望提高銅粉的抗氧化性.而碳納米管比表面積大,直徑小,可充分與微米級銅粉顆粒接觸,添加碳納米管有望增強(qiáng)復(fù)合漿料的導(dǎo)電性[18-22].
本課題所用銅粉顆粒表面可能有少量CuO和Cu2O,嚴(yán)重影響銅及其制成品的導(dǎo)電性,因此本課題選用稀鹽酸(質(zhì)量分?jǐn)?shù)為8%)酸洗去除銅粉表面氧化物,再進(jìn)行液體石蠟的包覆形成微膠囊銅粉,微膠囊銅粉的包覆膜將銅粉與腐蝕介質(zhì)(大氣、水分等)隔開,防止銅粉氧化.液體石蠟包覆銅粉的具體操作步驟如下:
1)酸洗:在10 μm的銅粉中分別加入適量(銅粉體積的二倍左右)稀鹽酸(多次實驗結(jié)果證明,質(zhì)量分?jǐn)?shù)為8%時效果最好),超聲波分散,使銅粉和稀鹽酸混合均勻,靜置3 min后倒掉表層的溶液,重復(fù)上述步驟3次;
2)水洗:快速將蒸餾水添加到盛放銅粉的容器中,用玻璃棒攪拌后靜置,倒掉表層溶液,使用蒸餾水沖洗3~5次,直到?jīng)]有明顯的鹽酸氣味則表明已經(jīng)清洗干凈;
3)無水乙醇去水處理:向水洗過的銅粉中加入適量無水乙醇(銅粉體積的2倍左右),用玻璃棒攪拌后靜置,倒掉表層的溶液,使用無水乙醇沖洗2~3次,以去除水分;
4)銅粉的包覆:往盛放銅粉的容器中分別加入液體石蠟進(jìn)行處理(銅粉體積的3倍左右),超聲波分散20 min同時進(jìn)行45℃水浴加熱,靜置后倒掉容器中多余的溶液;
5)烘干:將經(jīng)過包覆的銅粉放入自蔓延燃燒合成反應(yīng)斧中,在氮?dú)獗Wo(hù)下,以10℃/min加熱到100℃,并保溫2 h烘干銅粉.
選用外徑為20~30 nm,長度為10~30 μm的碳納米管作為導(dǎo)電增強(qiáng)相,10 μm銅粉作為主要導(dǎo)電相,熔點(diǎn)為430℃的玻璃粉作為粘結(jié)劑,將導(dǎo)電相,粘結(jié)劑和有機(jī)載體按一定比例攪拌混合研磨均勻,并經(jīng)過絲網(wǎng)印刷、靜置、燒結(jié),得到導(dǎo)電膜.具體操作步驟如下.
1)有機(jī)載體配制:按照表1量取有機(jī)載體各組分于燒杯中混合,置于60~70℃恒溫水浴中攪拌至乙基纖維素完全溶解.
表1 有機(jī)載體的組成及配比Table 1 The formula of organic carriers wt.%
2)復(fù)合電子漿料配制:將預(yù)處理好的銅粉和分散過的碳納米管按一定比例混合,在研缽中研磨攪拌均勻后添加玻璃粉繼續(xù)研磨攪拌,再加入有機(jī)載體,進(jìn)一步混合研磨攪拌均勻即可(配比見表2).
表2 漿料各組分配比Table 2 The formula of the paste wt.%
復(fù)合電子漿料導(dǎo)電膜的制備與燒結(jié):采用絲網(wǎng)印刷將漿料涂敷于氧化鋁陶瓷板表面,靜置數(shù)分鐘,使樣品表面流平.放入反應(yīng)斧中,在氮?dú)鈿夥障乱?0℃/min加熱到450℃,并保溫20 min,隨爐冷卻,即可制得樣品.
表觀色澤是銅粉表面改性后的重要指標(biāo)之一,銅粉粒徑不同,表面處理后的外觀色澤有紫紅色、銅紅色,研究發(fā)現(xiàn),表面處理后的銅粉顏色越接近銅紅色、光澤度越高,導(dǎo)電性越好.由圖1可見,石蠟包覆的微膠囊銅粉(如圖1(b))相比于未包覆的銅粉(如圖1(a))顏色鮮亮呈銅紅色且粉末較細(xì),當(dāng)置于密封袋中后其表面顏色變化很小.
如圖2所示,銅粉包覆前(如圖2(a))除了有Cu的特征峰之外,還出現(xiàn)了少量的Cu2O衍射峰,說明未經(jīng)包覆處理的純銅粉表面發(fā)生了明顯的氧化.而經(jīng)過石蠟包覆的銅粉(如圖2(b))XRD圖譜中的衍射峰均是Cu的特征峰,未出現(xiàn)Cu2O或CuO的衍射峰,證明為純銅粉,無其他任何雜質(zhì),而且其結(jié)晶度較高,未被氧化,說明經(jīng)過石蠟包覆后的銅粉具有較好的抗氧化性能,其導(dǎo)電性較好.
圖1 銅粉包覆前后對比Fig.1 Optical micrographs of copper powders:(a)Uncoated copper powders;(b)Coated copper powders
圖2 銅粉包覆前后的XRD譜圖對比Fig.2 XRD of copper powders:(a)uncoated copper pow?ders;(b)coated copper powders
圖3為未表面改性處理銅粉(圖3(a))和液體石蠟包覆銅粉(圖3(b))的SEM形貌圖.經(jīng)過掃描電鏡觀察銅粉經(jīng)過液體石蠟包覆處理前后的對比,不難發(fā)現(xiàn),未處理的銅粉團(tuán)聚的十分嚴(yán)重,有很多大塊尺寸的銅粉團(tuán)聚體存在,處理后的銅粉雖然也有一定的團(tuán)聚,但相對未處理的銅粉其團(tuán)聚體的尺寸明顯減小,說明分散性得到了改善.
圖3 未包覆銅粉與微膠囊銅粉SEM形貌圖對比Fig.3 XRD of copper powders:(a)Uncoated copper pow?ders;(b)Coated copper powders with liquid paraffin
選取規(guī)格為10 μm的銅粉,控制銅粉的質(zhì)量不變?yōu)?.5 g,增加液體石蠟的含量,將包覆后的銅粉壓塊制樣得到B1-B7七組樣品并計算其包覆層厚度(如表3).圖4為液體石蠟包覆球形銅粉示意圖,假設(shè)所有未處理的銅粉和經(jīng)過液體石蠟包覆后的銅粉均為均勻等徑球體,未包覆銅粉球體半徑為r(r=10 μm),包覆后半徑為R,包覆層厚度為a.
假設(shè)銅粉質(zhì)量為M銅,液體液體石蠟質(zhì)量為Μ石蠟,已知銅的密度ρ銅=8.9 g/cm3,液體石蠟密度ρ石蠟=0.75 g/cm3,包覆層厚度為a.則經(jīng)幾何推導(dǎo)和密度體積換算得到包覆層厚度為
按公式1計算出包覆膜層厚度,如表3所示.
圖4 液體石蠟包覆示銅粉示意圖Fig.4 The schematic diagram of coated copper powders with liquid paraffin
表3 不同含量液體石蠟包覆所得銅粉壓塊的包覆層厚度Table 3 The thickness of the coated copper powders with different content of liquid paraffin
圖5為不同含量液體石蠟包覆所得銅粉壓塊樣品1~7的電導(dǎo)率測試曲線圖.電導(dǎo)率測試結(jié)果表明:微膠囊銅粉中的液體石蠟含量低于4%時,隨著液體石蠟含量的增加,包覆銅粉的電導(dǎo)率也隨之增加;當(dāng)微膠囊銅粉中液體石蠟含量超過4%時,所得銅粉的電導(dǎo)率開始下降.綜上所述,當(dāng)微膠囊銅粉中的液體石蠟含量為4%時,銅粉的電導(dǎo)率較高,導(dǎo)電性能較好,較為適合作為復(fù)合電子漿料的主要導(dǎo)電相.這是因為,液體石蠟作為微膠囊壁材,其含量會影響包覆膜層的厚度與強(qiáng)度;當(dāng)液體石蠟含量較少時,銅粉不能完全被包覆或者有部分泄露出來,裸露在空氣中,極易被氧化,導(dǎo)致其電導(dǎo)率較低,微膠囊銅粉的導(dǎo)電性較差;隨著微膠囊銅粉中石蠟含量的增加,銅粉被包覆地較為充分,但液體石蠟含量過多,會導(dǎo)致包覆膜層較厚,導(dǎo)致芯材銅粉的接觸程度降低,導(dǎo)電通路減少,所以微膠囊銅粉的導(dǎo)電率變低,同時也會使微膠囊的粒徑變大,影響其分散性和穩(wěn)定性.
圖5 1~7樣品電導(dǎo)率測試曲線圖Fig.5 The conductivity of samples 1~7
由表4可知,相比于未包覆的銅粉為主導(dǎo)電相制備的漿料膜層電阻率降低了12.44%;碳納米管作為導(dǎo)電增強(qiáng)相所制備的漿料相比于純銅漿料,電阻率降低31.74%.微膠囊銅粉作為主導(dǎo)電相所制備的漿料相比于未包覆銅粉制備的漿料電阻率較低,導(dǎo)電性更好.微膠囊銅粉作為漿料主導(dǎo)電相,其氧化程度較低,自身導(dǎo)電性較好,且在漿料的制備過程中,其分散更加均勻,使得漿料膜層的導(dǎo)電性能得到明顯提高.
表4 銅粉包覆前后所制漿料電阻率對比Table 4 The resistivity of the pastes with coated copper pow?ders and uncoated copper powders
圖6為碳納米管-銅漿料導(dǎo)電膜層SEM圖,微膠囊銅粉在漿料中分布較為均勻,未出現(xiàn)大量團(tuán)聚現(xiàn)象;碳納米管作為導(dǎo)電增強(qiáng)相,具有良好的導(dǎo)電性,且其連接在微膠囊銅粉之間,形成致密的導(dǎo)電網(wǎng)絡(luò),有效地提高了漿料的導(dǎo)電性.此時漿料導(dǎo)電膜層表面平整,致密性較好,形成良好的導(dǎo)電網(wǎng)絡(luò),其印刷性與導(dǎo)電性都較為理想,可滿足使用要求.
圖7為碳納米管-銅漿料導(dǎo)電膜層XRD譜圖.450℃燒結(jié)并保溫20 min所得的復(fù)合漿料燒結(jié)膜中含有Cu、C、Al2O3的3種物質(zhì),主衍射峰為Cu,未出現(xiàn)Cu2O衍射峰.燒結(jié)膜中含有Al2O3是因為X射線穿透燒結(jié)膜層而顯示出Al2O3基板的結(jié)構(gòu).這說明導(dǎo)電膜層的主導(dǎo)電相為Cu,且表面未被氧化.
圖6 碳納米管-銅漿料導(dǎo)電膜層SEM圖Fig.6 SEM of the carbon nanotube?copper paste
圖7 碳納米管-銅漿料導(dǎo)電膜層XRD譜圖Fig.7 XRD of the carbon nanotube?copper paste
液體石蠟包覆的10 μm銅粉作為主導(dǎo)電相,外徑為20~30 nm,長度為10~30 um的碳納米管作為導(dǎo)電增強(qiáng)相,熔點(diǎn)為430℃的玻璃粉作為粘結(jié)劑與有機(jī)載體混合制備碳納米管-銅電子漿料,通過手工絲網(wǎng)印刷方式將其印刷到陶瓷基板上,在N2保護(hù)氣氛下燒結(jié),燒結(jié)溫度為450℃,保溫10 min,最終制得碳納米管-銅電子復(fù)合漿料導(dǎo)電膜層.對微膠囊銅粉和漿料導(dǎo)電膜層進(jìn)行表征測試和分析,得出以下結(jié)論:
1)液體石蠟含量為4%的微膠囊銅粉具有良好的導(dǎo)電性能和抗氧化性,在漿料制備時銅粉不易團(tuán)聚,其電導(dǎo)率為44.32%IACS;
2)微膠囊銅粉作為主導(dǎo)電相與未包覆銅粉相比,所制備的漿料電阻率降低了12.44%;
3)碳納米管作為導(dǎo)電增強(qiáng)相,制備的漿料電阻率相比于純銅漿料降低了31.74%;
[1]史泰岡,祁紅璋,嚴(yán)彪.電子漿料材料的研究進(jìn)展及其在印刷電路板方面的應(yīng)用[J].上海有色金屬,2012,33(3):2-4.SHI Taigang,QI Hongzhang,YAN Biao.Research progress of electronic paste and its application in printed circle board industry[J].Shanghai nonferrous metals,2012,33(3):2-4.
[2]張靜,楊彥,袁夢鑫.新型電子元器件電極漿料組成與性能的研究[J].科研發(fā)展,2014(18):144.ZHANG Jing,YANG Yan,YUAN Mengxin.Research on the composition and properties of new electronic components electrode paste[J].Research and development,2014(18):144.
[3]陸廣廣,宣天鵬.電子漿料的研究進(jìn)展與發(fā)展趨勢[J].金屬功能材料,2008,15(1):48.LU Guanguang, XUAN Tianpeng.Development tendency and research progress of the electronic paste[J].Metallic Functional Materials,2008,15(1):48.
[4]徐磊,張宏亮,劉顯杰.電子漿料研究進(jìn)展.[J].船電技術(shù),2012,1(32):141-146.XU Lei,ZHANG Hongliang,LIU Xianjie.Reviews on electronic paste[J].Marine Electric& Electronic,,2012,1(32):141-146.
[5]JUSSI P,MACIEJ S,SAARA R,et al.Characterization oflaser?sintered thick?film paste on polycarbonate substrates[J].Optics and Lasers in Engineering 2014(56):19-27.
[6]IRFAN M,KUMAR D.Recent advances in isotropic conductive adhesives for electronics packaging applications[J].International Journal of Adhesion and Adhesives,2008,28(7):362-371.
[7]劉新峰,屈銀虎,鄭紅梅,等.銅電子漿料的抗氧化研究和進(jìn)展 [J].應(yīng)用化工,2014, 43(8):1493-1497.LIU Xinfeng,QU Yinhu,ZHENG Hongmei,et al.Progress on oxidation resistance of copper paste[J].Applied Chemical Industry,2014,43(8):1493-1497.
[8]劉曉琴,蘇曉磊.銅電子漿料的研究發(fā)展現(xiàn)狀[J].硅酸鹽通報,2013,32(12):2502-2513.LIU Xiaoqin,SU Xiaolei.Research progressand developments of conductive copper paste[J].Bulletin of the Chinese Ceramic Society,2013,32(12):2502-2513.
[9]蒙青,屈銀虎,成小樂,等.無鉛玻璃粘結(jié)相對銅導(dǎo)電漿料性能的影響[J].功能材料,2016(2):2130-2134.MENG Qing,QU Yinhu,CHENG Xiaole,et al.The effects of the lead?free glass powders on performances of copper electronic paste[J].Journal of functional materials,2016(2):2130-2134.
[10]劉新峰.高溫?zé)Y(jié)型銅電子漿料抗氧化性研究[D].西安:西安工程大學(xué),2015. LIU Xinfeng.Study foranti?oxidation ofcopper electrical paste sintered in high temperature[D].Xi’an:Xi’an Polytechnic University,2015.
[11]王翔,屈銀虎,成小樂,等.高溫?zé)Y(jié)型銅電子漿料的導(dǎo)電性[J].西安工程大學(xué)學(xué)報,2017,31(1):113-118.WANG Xiang,QU Yinhu,CHENG Xiaole,et al.The electrical conductivity of high temperature sintered copper electronic paste[J].2017,31(1):113-118.
[12]李冰,王俊勃,蘇曉磊,等.電子漿料中的賤金屬導(dǎo)電相的改善工藝研究進(jìn)展[J].材料導(dǎo)報A,2013,21:35-39.LI Bing,WANG Junbo,SU Xiaolei,et al.Research progress in improving progressing of base metal electric conduction phase in electronic paste[J].Journal of materials A,2013,21:35-39.
[13]張飛進(jìn),朱曉云.電子漿料用有機(jī)載體的研究現(xiàn)狀及發(fā)展趨勢[J].材料導(dǎo)報A,2013,27(2):81-85.ZHANG Feijin,ZHU Xiaoyun.Research progress and development tendency of organic carrier for electronic paste[J].Journal of Materials A,2013,27(2):81-85.
[14]DON W,IZABEL K F,RICHARD R,et al.Non?Contacting busbars for advanced cell structures using low temperature copper paste[J].Energy Procedia,2015,67:101-107.
[15]CAROLINE C,HANS B,F(xiàn)LORIAN V,et al.Inert drying system for copper paste application in PV.Energy Procedia,2013,38:423-429.
[16]廖輝偉,李翔,彭汝芳,等.包覆型納米銅-銀雙金屬粉研究[J].無機(jī)化學(xué)學(xué)報,2003,19(12):1327-1330.LIAO Huiwei,LI Xiang,PENG Rufang,et al.Study on Ag coating Cu nano bimetallic powders[J].Chinese Journal of Inorganic Chemistry, 2003, 19(12):1327-1330.
[17]蘇曉磊,賈艷,王俊勃,等.一種具有良好抗氧化性能銅電子漿料的制備:201210396012.1[P].2013.03.20.SU Xiaolei, JIA Yan, WANG Junbo, etal.Preparation ofcopperelectronic paste with good oxidation resistance:201210396012.1[P].2013.03.20.
[18]劉劍洪,吳雙泉,何傳新,等.碳納米管和碳微米管的結(jié)構(gòu)、性質(zhì)及其應(yīng)用[J].深圳大學(xué)學(xué)報(理工版),2013,01:1-11.LIU Jianhong,WU Shuangquan,HE Chuanxin,et al.Structure property and application of carbon nanotubes and carbon microtubes[J].JournalofShenzhen University Science And Engineering,2013,01:1-11.
[19]李敏,王紹凱,顧軼卓,等.碳納米管有序增強(qiáng)體及其復(fù)合材料研究進(jìn)展[J].航空學(xué)報,2014,10:2699-2721.LI Min,WANG Shaokai,GU Yizhuo,et al.Research of carbon nanotubes ordered reinforcement and its composites[J].Acta Aeronautica Et Astronautica Sinica,2014,10:2699-2721.
[20]劉巍,劉平,陳小紅,等.銅基碳納米管復(fù)合薄膜電沉積制備工藝[J].材料科學(xué)與工藝,2016,24(4):18-24.LIU Wei, LIU Ping, CHEN Xiaohong, etal.Preparation of copper matrix carbon nanotube composite films[J].Materials Science and Technology,2016,24(4):18-24.
[21]尚潤琪,屈銀虎,成小樂,等.碳納米管對銅電子漿料導(dǎo)電性能的影響[J].西安工程大學(xué)學(xué)報,2016(6):802-807.SHANG Runqi,QU Yinhu,CHENG Xiaole,et al.Effect of carbon nanotubes on electrical conductivity of Cu paste[J].Xi′an Polytechnic University,2016(6):802-807.
[22]王利民,何衛(wèi),蔡煒,等.碳納米管與鋁合金基體材料的混合工藝研究[J].材料科學(xué)與工藝,2015,23(6):104-108.WANG Limin,HE Wei,CAI Wei,et al.Research on mixing procedure of carbon nanotubes and aluminum alloy powder[J].Materials Science and Technology,2015,23(6):104-108.
Influences of micro capsule copper powders on the properties of copper composite pastes
SHI Jingjing,QU Yinhu,CHENG Xiaole,QI Zhixu,LIU Xiaoni,ZHOU Sijun,QI Panhu ZHOU Zongtuan
(College of Mechanical and Electronic Engineering,Xi′an Polytechnic University,Xi′an 710048,China)
The copper powders were coated with liquid paraffin by micro capsule technology to enhance the antioxidation of copper powders.A small amount of carbon nanotubes with good conductivity were added as conductive reinforced phase to prepare the composite paste.Influences of paraffin content on the paraffin?coated copper powders were analyzed.Influences of micro capsule copper powders as main conductive phase and carbon nanotubes as conductive reinforced phase were characterized by Four?Point probe,scanning electron microscopy(SEM)and other testing methods.The results show that copper powders coated by 4 wt% paraffin have better conductive property and oxidation resistance.Its conductivity is 44.32 s/cm.The micro capsule copper powders are used as conductive phase to prepare the paste.Its resistivity is 22.59 Ω·cm,which is decreased by 12.44%compared to the copper paste.The resistivity of the paste with carbon nanotubes as conductive reinforced phase is decreased by 31.74%compared to the copper paste.
carbon nanotubes;micro capsule;copper powders;composite paste;paraffin
TM241
A
1005-0299(2017)05-0080-06
2017-1-03.< class="emphasis_bold">網(wǎng)絡(luò)出版時間:
時間:2017-09-30.
陜西省科學(xué)技術(shù)研究發(fā)展計劃-工業(yè)攻關(guān)攻關(guān)項目(2013K09-33);陜西省教育廳科學(xué)研究計劃項目(15JK1332);陜西省教育廳服務(wù)地方專項計劃項目(14JF007);西安市科技計劃項目-產(chǎn)學(xué)研協(xié)同創(chuàng)新計劃(CXY1517(3));西安工程大學(xué)研究生創(chuàng)新基金(CX201611).
時晶晶(1992—),女,研究生.
屈銀虎,E?mail:quyinhu@xpu.edu.cn.
10.11951/j.issn.1005-0299.20170021
(編輯 張積賓)