鄭建新,劉威成,蔣書祥
(河南理工大學(xué) 機(jī)械與動(dòng)力工程學(xué)院,河南焦作454003)
縱-彎復(fù)合振動(dòng)超聲擠壓加工試驗(yàn)研究
鄭建新,劉威成,蔣書祥
(河南理工大學(xué) 機(jī)械與動(dòng)力工程學(xué)院,河南焦作454003)
為研究擠壓加工時(shí)靜壓力、進(jìn)給量和擠壓速度等工藝參數(shù)對試件表面質(zhì)量的影響,在擠壓加工中引入縱-彎復(fù)合振動(dòng)后對Q235鋼軸件端面進(jìn)行處理,并與普通擠壓加工進(jìn)行對比,基于正交試驗(yàn)結(jié)果構(gòu)建了擠壓加工后表面粗糙度和表面里氏硬度二次回歸預(yù)測模型.試驗(yàn)發(fā)現(xiàn):在相同加工工藝參數(shù)下,在普通擠壓加工中引入縱-彎復(fù)合超聲振動(dòng)后獲得的表面粗糙度Ra值更小,而表面里氏硬度值顯著提高;采用兩種擠壓加工方法后工件表面粗糙度Ra值均隨著靜壓力和進(jìn)給量的增加而增大,而擠壓速度的影響很小,進(jìn)給量對表面粗糙度的影響最為顯著;工件經(jīng)超聲擠壓加工時(shí)靜壓力越大,則獲得的表面硬度越大,且表面硬度隨進(jìn)給量的增大先增大后減小,而普通擠壓加工后表面硬度隨靜壓力和進(jìn)給量的增大先增后減,且在兩種加工方式下工件表面硬度基本不受擠壓速度的影響.縱-彎復(fù)合振動(dòng)超聲擠壓加工工藝適合Q235鋼表面強(qiáng)化處理,構(gòu)建的表面粗糙度和硬度的預(yù)測模型可用于指導(dǎo)Q235鋼表面強(qiáng)化處理工藝生產(chǎn).
超聲擠壓;縱-彎復(fù)合振動(dòng);表面粗糙度;硬度;預(yù)測模型
表面疲勞、 磨損和腐蝕是造成機(jī)械零部件失效的主要原因,由此常造成巨大的經(jīng)濟(jì)損失[1].表面改性技術(shù)可有效解決機(jī)械零部件疲勞失效問題.常用的零部件表面改性技術(shù)主要有表面熱處理和機(jī)械強(qiáng)化等[2-3].
表面機(jī)械強(qiáng)化如噴丸、冷擠壓和滾壓等,通過采用沖擊、擠壓或滾壓等方法使材料表面產(chǎn)生劇烈塑性變形,優(yōu)化材料表層的微觀組織結(jié)構(gòu)與性能,改善表層的應(yīng)力分布,提高材料表面硬度,因而能夠顯著提高材料的抗應(yīng)力腐蝕、疲勞性能和摩擦磨損性能[4-5].在機(jī)械表面強(qiáng)化技術(shù)中引入超聲振動(dòng)后,進(jìn)行超聲擠壓、超聲噴丸和超聲滾壓等超聲表面強(qiáng)化處理,能進(jìn)一步有效地提高工件表面機(jī)械性能和使用性能[6-13].而國內(nèi)外在二維超聲切削加工領(lǐng)域取得的研究成果表明,二維復(fù)合振動(dòng)超聲加工獲得表面加工質(zhì)量和加工精度均優(yōu)于單一振動(dòng)模態(tài)下的加工效果[14-16].
縱-彎復(fù)合振動(dòng)超聲擠壓加工是將縱-彎超聲復(fù)合振動(dòng)引入到傳統(tǒng)機(jī)械擠壓加工中,對工件表面進(jìn)行超聲表面強(qiáng)化處理.工具頭以超聲頻垂直撞擊工件表面,由此使得工件表層金屬產(chǎn)生劇烈塑性變形,細(xì)化晶粒,并在表層形成殘余壓應(yīng)力.與此同時(shí),在橫向超聲振動(dòng)作用下,工具頭高頻碾壓工件因縱向沖擊變形形成的微觀峰谷,實(shí)現(xiàn)工件表面光整與強(qiáng)化加工.
為研究擠壓加工工藝參數(shù)(選定參數(shù)為靜壓力、進(jìn)給量和擠壓速度)對工件表面質(zhì)量(評(píng)價(jià)指標(biāo)為表面粗糙度和硬度)的影響,本研究將對Q235鋼軸件進(jìn)行縱-彎復(fù)合振動(dòng)超聲擠壓加工(UE)和普通擠壓加工(CE)試驗(yàn),構(gòu)建表面粗糙度和硬度預(yù)測模型,以促進(jìn)該技術(shù)的工程應(yīng)用.
試驗(yàn)材料為Q235鋼.棒料長30 mm,直徑為75 mm.擠壓加工前采用相同的工藝參數(shù)對工件端面進(jìn)行粗車處理,粗車后表面粗糙度值Ra約為2.96 μm,里氏硬度約為HL 526.
試驗(yàn)設(shè)備如圖1(a)所示.將縱-彎復(fù)合振動(dòng)超聲擠壓加工聲學(xué)系統(tǒng)安裝在CAK50186di數(shù)控車床的刀架上,對工件表面進(jìn)行擠壓加工.
縱-彎復(fù)合振動(dòng)超聲聲學(xué)系統(tǒng)如圖1(b)所示,超聲聲學(xué)系統(tǒng)諧振頻率為20.6 kHz,工具頭縱向振動(dòng)振幅為9.6 μm,橫向振動(dòng)振幅4.9 μm.工具頭進(jìn)給過程中,保證實(shí)時(shí)擠壓線速度恒定.
工件加工后的表面粗糙度采用SURTRONIC 3+便攜式粗糙度測量儀進(jìn)行測量,表面硬度用TH160里氏硬度計(jì)測量.
試驗(yàn)研究前述3個(gè)加工工藝參數(shù)對表面粗糙度Ra和硬度HL的影響.采用正交表L16(45)進(jìn)行擠壓加工試驗(yàn).試驗(yàn)方案及結(jié)果見表1.
圖1 縱-彎復(fù)合振動(dòng)超聲擠壓加工試驗(yàn)裝置Fig.1 Experimental equipment of UE:(a) experimental equipment;(b)acoustic system
表1 試驗(yàn)方案及試驗(yàn)結(jié)果Table 1 Experimental scheme and results
由表1可知,對工件表面粗糙度而言,超聲擠壓加工后其Ra值顯著低于普通擠壓加工,且表面硬度有顯著提高.縱-彎復(fù)合振動(dòng)超聲擠壓加工后,當(dāng)Fs=260 N,fr=0.08 mm/r,v=40 m/min時(shí)粗糙度值最小,為Ra=0.41 μm,而同樣工藝條件下普通擠壓獲得表面粗糙度值Ra=0.69 μm,超聲擠壓所獲得表面粗糙度值降低了約40%;當(dāng)Fs=300 N,fr=0.16 mm/r,v=30 m/min時(shí)硬度值最大為HL=684,而同樣工藝條件下普通擠壓獲得表面硬度HL=640 μm,超聲擠壓所獲得表面里氏硬度值提高了約10%.
采用極差分析法研究加工工藝參數(shù)與表面質(zhì)量之間的關(guān)系.極差分析結(jié)果列于表2.
表2 極差分析結(jié)果Table 2 Range analysis results
表2表明,縱-彎復(fù)合振動(dòng)超聲擠壓和普通擠壓加工時(shí),進(jìn)給量和靜壓力對表面粗糙度和硬度的影響較大,而擠壓速度對表面粗糙度和硬度的影響可忽略不計(jì).
圖2和圖3給出了各工藝參數(shù)與表面質(zhì)量之間的關(guān)系.
圖2 工藝參數(shù)與表面粗糙度之間的關(guān)系Fig.2 Relationship beween processing parameters and surface roughness:(a)influence of static pressure on Ra;(b)influence of extrusion speed on Ra;(c)influence of feed?rate on Ra
圖3 工藝參數(shù)與表面里氏硬度的關(guān)系Fig.3 Relationship between processing parameters and surface Leeb hardness:(a)influence of static pressure on surface Leeb hardness;(b)influence of extrusion speed on surface Leeb hardness;(c) influence of feed?rate on surface Leeb hardness
圖2和圖3表明,在兩種擠壓加工方法下,工件表面粗糙度值均隨著靜壓力和進(jìn)給量的增加而增大,而擠壓速度對表面粗糙度的影響很小.在普通擠壓中引入縱-彎復(fù)合超聲振動(dòng)后,工件表面硬度隨靜壓力的增大而增大,隨進(jìn)給量的增大先增后減,而普通擠壓加工后表面硬度隨靜壓力和進(jìn)給量的增大先增后減,且在兩種加工方式下擠壓速度對加工后工件硬度的影響均不顯著.
采用三豐Mitutoyo工具顯微鏡觀察兩種擠壓加工方式下獲得的試件表面微觀形貌,結(jié)果如圖4所示.
圖4表明,在兩種擠壓加工方式下,工件表面材料均發(fā)生塑性流動(dòng).在工件表面,能看到明顯的擠壓條紋(圖中箭頭所示)和擠壓犁溝.引入超聲振動(dòng)后,工件表面擠壓條紋呈交錯(cuò)狀且表面更光滑,其表面形貌得到顯著改善.
圖4 工件表面微觀形貌Fig.4 Microscopic morphology of workpiece surface:(a)CE;(b)UE
由于各工藝參數(shù)對表面質(zhì)量的影響是非線性的,可采用統(tǒng)計(jì)分析方法-回歸分析來描述他們之間的關(guān)系,并對試驗(yàn)結(jié)果進(jìn)行預(yù)測與優(yōu)化.由表1試驗(yàn)結(jié)果可構(gòu)建表面粗糙度和硬度的預(yù)測模型.采用的二次回歸預(yù)測模型為
式中:Y是表面粗糙度/表面硬度的估計(jì)值;a是常數(shù);bi是xi的線性效應(yīng);bki是xk和xi的交互效應(yīng);bii是xi的二次效應(yīng)[15].
對工藝參數(shù)與性能指標(biāo)進(jìn)行相關(guān)性分析,剔除不顯著項(xiàng),然后進(jìn)行回歸分析,得到Q235鋼端面超聲擠壓加工后的表面質(zhì)量預(yù)測模型分別為
采用F檢驗(yàn)法對預(yù)測模型進(jìn)行顯著性檢驗(yàn),其中表面粗糙度和硬度的F值分別為14.6和6.1,大于F0.01(6,9)=5.8,預(yù)測模型在90%的置信水平上是顯著的.
進(jìn)一步分析表面粗糙度模型和表面硬度的復(fù)決定系數(shù)(即擬合程度)R2,分別為 90.7%和80.2%,說明兩個(gè)預(yù)測模型擬合程度高.基于此,可認(rèn)為采用這兩個(gè)預(yù)測模型來預(yù)測超聲振動(dòng)擠壓Q235鋼時(shí)的表面粗糙度和硬度是合適的.
為研究各工藝參數(shù)之間的交互作用對表面質(zhì)量的影響,結(jié)合預(yù)測模型來繪制各工藝參數(shù)的交互響應(yīng)曲面圖,結(jié)果見圖5、圖6.
圖5 工藝參數(shù)之間的交互作用對表面粗糙度的影響Fig.5 Interaction effect of processing parameters on surface roughness:(a)v=30 m/min;(b)Fs=220 N
圖6 工藝參數(shù)之間的交互作用對表面里氏硬度的影響Fig.6 Interaction effect of processing parameters on surface Leeb hardness:(a)v=30 m/min;(b)fr=0.12 mm/r
由圖5(a)和圖6(a)結(jié)果可以發(fā)現(xiàn),靜壓力和進(jìn)給量間的交互作用對表面粗糙度和表面硬度的影響均較顯著;而圖5(b)和圖6(b)表明,擠壓速度和進(jìn)給量交互作用對表面粗糙度無顯著影響,擠壓速度和靜壓力之間的交互作用對表面硬度也無明顯影響.
通過對正交試驗(yàn)(OT)結(jié)果進(jìn)行極差分析可獲得最優(yōu)工藝參數(shù).基于預(yù)測模型(PM)利用規(guī)劃求解也獲得最優(yōu)工藝參數(shù).采用兩種方法獲得的最優(yōu)工藝參數(shù)和預(yù)測值如表3所示.
表3 最優(yōu)工藝參數(shù)與最佳目標(biāo)值Table 3 Optimal processing parameters and results
由表3可知,除擠壓速度外,其他最優(yōu)工藝參數(shù)值均相同.而前已述及,擠壓速度對工件表面粗糙度和硬度的影響可忽略不計(jì),因此,可認(rèn)為兩種優(yōu)選方法獲得的最優(yōu)工藝參數(shù)及最佳目標(biāo)值基本吻合,預(yù)測模型可用于生產(chǎn)實(shí)踐.
1)在相同的工藝參數(shù)下,在普通擠壓加工中引入縱-彎復(fù)合超聲振動(dòng)后獲得的表面粗糙度值大幅降低,最高降低了約40%;而硬度顯著提高,提高了約10%.
2)在兩種擠壓加工方法下,靜壓力和進(jìn)給量對表面粗糙度Ra值和表面里氏硬度值HL的影響均較大,而擠壓速度的影響可忽略不計(jì).
3)在兩種擠壓加工方法下,工件表面粗糙度值均隨著靜壓力和進(jìn)給量的增加而增大.
4)超聲擠壓加工靜壓力越大則獲得的表面硬度越高.進(jìn)給量越大則獲得的表面硬度先增大后減??;而普通擠壓加工后表面硬度隨靜壓力和進(jìn)給量的增大先增后減.
5)超聲擠壓加工時(shí),進(jìn)給量和靜壓力的交互作用對表面質(zhì)量的影響均較為顯著.
6)分別基于正交試驗(yàn)結(jié)果和預(yù)測模型獲得了最優(yōu)工藝參數(shù),結(jié)果接近,表明預(yù)測模型可靠.
[1]RAJABI F,ZAREI?HANZAKI A,ESKANDARI M,et al.The effectsofrolling parameterson the mechanical behavior of 6061 aluminum alloy[J].Materials Science and Engineering:A,2013,57(8):90-95.DOI:10.1016/j.msea.2013.04.023.
[2]趙振業(yè).發(fā)展熱處理和表面改性技術(shù),提升國家核心競爭力[J].金屬熱處理,2013,38(1):1-3.DOI:10.13251/j.issn.0254-6051.2013.01.001.ZHAO Zhenye.Developing heat treatment and surface modification technology in China,promoting national core competitiveness[J].Heat Treatment of Metals,2013,38(1):1-3.DOI:10.13251/j.issn.0254-6051.2013.01.001.
[3]章艷,張興權(quán),左立生,等.激光噴丸強(qiáng)化對半圓孔件疲勞壽命的影響[J].材料科學(xué)與工藝,2015,23(2):19-24.DOI:10.11951/j.issn.1005-0299.20150204.ZHANG Yan,ZHANG Xingquan,ZUO Lisheng,et al.Effect of laser shot peening on fatigue life of semicircle hole specimen[J].Materials Science and Technology,2015,23(2):19-24.DOI:10.11951/j.issn.1005-0299.20150204.
[4]朱有利,王燕禮,邊飛龍,等.金屬材料超聲表面強(qiáng)化技術(shù)的研究與應(yīng)用進(jìn)展[J].機(jī)械工程學(xué)報(bào),2014,50(20):35-45.DOI:10.3901/JME.2014.20.035.ZHU Youli,WANG Yanli,BIAN Feilong,et al.Progresses on research and application ofmetal ultrasonic surface enhancementtechnologies [J].Journal of Mechanical Engineering,2014,50(20):35-45.DOI:10.3901/JME.2014.20.035.
[5]周新遠(yuǎn),汪勇,宋占永,等.噴丸強(qiáng)化對7A52鋁合金組織性能影響[J].功能材料,2013,44(z2):355-358.DOI:10.3969/j.issn.1001-9731.2013.增刊(Ⅱ).039.ZHOU Xinyuan,WANG Yong,SONG Zhanyong,et al.Effect of shot peening on microstructure and properties of 7A52 aluminum alloy[J].Journal of Functional Materials,2013,44(z2):355-358.
[6]LI Wen,ZHANG Deyuan.High frequency ultrasonic elliptical vibration turning study for weak rigidity precision workpiece[J].Key Engineering Materials,2011,467-469:236-240.DOI:10.4028/www.scientific.net/KEM.467-469.236
[7]黃志超,呂世亮,謝春輝,等.先進(jìn)噴丸表面改性技術(shù)研究進(jìn)展[J].材料科學(xué)與工藝,2015,23(3):57-61.DOI:10.11951/j.issn.1005-0299.20150311.HUANGZhichao,Lü Shiliang,XIE Chunhui,et al.Development on surface modification technology of advanced shot peening[J].Materials Science and Technology,2015,23(3):57-61.DOI:10.11951/j.issn.1005-0299.20150311.
[8]張勤儉,王會(huì)英,徐文勝,等.超聲擠壓強(qiáng)化技術(shù)的研究現(xiàn)狀及發(fā)展前景[J],電加工與模具,2013,22(6):11-14.ZHANG Qinjian,WANG Huiying,XU Wensheng,et al.The research status and developing prospect of ultrasonic extrusion strengthening technology[J].Electromachining&Mould,2013,22(6):11-14.
[9]邵水軍,趙波.納米陶瓷材料超聲振動(dòng)磨削加工表面質(zhì)量研究[J].兵器材料科學(xué)與工程,2014,34(2):1-5.DOI:10.14024/j.cnki.1004-244x.2014.02.022.SHAO Shuijun,ZHAO Bo.Surface quality of nano?ceramics by ultrasonic vibration grinding[J].Ordnance Material Science and Engineering,2014,34(2):1-5.DOI:10.14024/j.cnki.1004-244x.2014.02.022.
[10]YAN Yanyan,ZHAO Bo,LIU Junli.Ultraprecision surface finishing of nano?ZrO2ceramics using two? dimensional ultrasonic assisted grinding[J].The InternationalJournal of Advanced Manufacturing Technology,2009,43(5):462-467.DOI:10.1007/s00170-008-1732-x.
[11]張勤儉,王會(huì)英,劉月明,等.30CrMoA車軸材料超聲表面擠壓強(qiáng)化技術(shù)研究[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2015,7(23):177-184.DOI:10.16058/j.issn.1005-0930.2015.s1.019.ZHANG Qinjian,WANG Huiying,LIU Yuemin,et al.Study on ultrasonic surface extrusion technology of 30CrMoA axle[J].Journal of Basic Science and Engineering,2015,7(23):177-184.DOI:10.16058/j.issn.1005-0930.2015.s1.019.
[12]李瑞鋒,張德遠(yuǎn),程明龍.高強(qiáng)鋼大直徑內(nèi)螺紋超聲滾壓強(qiáng)化技術(shù)[J].中國表面工程,2014,27(2):63-68.DOI:10.3969/j.issn.1007-9289.2014.02.011.LI Ruifeng,ZHANG Deyuan,CHENG Minglong.High strength steel large diameter internal thread strengthening by ultrasonic burnishing technology[J].China Surface Engineering,2014,27(2):63-68.DOI:10.3969/j.issn.1007-9289.2014.02.011.
[13]THIBAUT C,JUN L,DANIEL N.Modellingof multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening(USP)[J].Materials Processing Technology,2012,212(10):2080-2090.DOI:10.1016/j.jmatprotec.2012.05.005.
[14]LIU Yu,ZHAO Xiaohui,WANG Dongpo.Determina?tion of the plastic properties of materials treated by ul?trasonic surface rolling process through instrumented indentation[J].Materials Science and Engineering:A,2014,600:21-31.DOI:10.1016/j.msea.2014.01.096.
[15]鄭建新,侯雅麗.縱-扭復(fù)合振動(dòng)超聲深滾加工工藝試驗(yàn)[J].中國機(jī)械工程,2016,27(19):2636-2640.
[16]鄭建新,羅傲梅.6061-T6鋁合金縱-扭復(fù)合振動(dòng)超聲深滾加工試驗(yàn)研究[J].稀有金屬材料與工程,2015,44(3):733-737.ZHENG Jianxin,LUO Aomei.Experimental study on aluminum alloy 6061-T6 by ultrasonic deep rolling with longitudinal?torsional vibration[J].Rare Metal Materials and Engineering,2015,44(3):733-737.
Experimental study on ultrasonic extrusion with longitudinal?flexural vibration
ZHENG Jianxin,LIU Weicheng,JIANG Shuxiang
(College of Mechanical&Power Engineering,Henan Polytechnic University,Jiaozuo 454003,China)
Longitudinal?flexural vibration was intraduced into conventional extrusion(CE)to deal with the Q235 steel in order to study the effects of the processing parameters on the surface roughness and the hardness.And the prediction models of the surface roughness and the hardness for ultrasonic extrusion(UE)Q235 steel with longitudinal?flexural vibration were constructed in the light of the onthogonal experimental results using the quadratic regression analysis method.The results show that compared to CE,the surface roughnessRaobtained by UE are smaller,while the hardness HL are much higher than that of CE with the same processing parameters.In the process of UE and CE,the value ofRaincreases with the static pressure and the feed?rate increase,and changes little with the increment of the extrusion speed.And the feed?rate has greatly impact on the surface roughness.The hardness HL obtained by UE increases with the increment of the static pressure,and when the feed?rate increase,the hardness first increase and then decrease.However,the hardness obtained by CE increases firstly and then decreases with the increments of the static pressure and the feed?rate.Meanwhile,the extrusion speed has little effect on the hardness in the process of UE and CE.The prediction models of the surface roughness and the hardness are significant at the 90%confidence level,and the optimal processing parameters obtained by the prediction models are similar to that obtained by the orthogonal test,indicating that the prediction models are reliable.
ultrasonic extrusion;longitudinal?flexural vibration;surface roughness;hardness;prediction model
TB559;TG663
A
1005-0299(2017)05-0062-06
2016-09-28.< class="emphasis_bold">網(wǎng)絡(luò)出版時(shí)間:
時(shí)間:2017-09-15.
河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(16A460006);國家自然科學(xué)基金資助項(xiàng)目(51005071).
鄭建新(1979—),男,教授.
鄭建新,E?mail:zhengjx@hpu.edu.cn.
10.11951/j.issn.1005-0299.20160324
(編輯 呂雪梅)