張婧,董紹楠,侯曉霞,畢樹平
南京大學化學化工學院,南京 210023
密度泛函理論方法研究鋁-麥芽酚配合物的形態(tài)結(jié)構(gòu)與水交換反應(yīng)
張婧,董紹楠,侯曉霞,畢樹平*
南京大學化學化工學院,南京 210023
鋁-麥芽酚配合物;密度泛函理論;鋁形態(tài)結(jié)構(gòu);水交換反應(yīng);致毒機制
Received14 January 2017accepted31 May 2017
Keywords: aluminium(III)-maltolate complexes; density functional theory (DFT); the structures and speciation of aluminium; water-exchange reaction; toxicity mechanism
鋁具有很強的神經(jīng)毒性,被認為是導(dǎo)致阿爾茲海默病等神經(jīng)退行性疾病的重要因素之一,其毒性大小與鋁化合物的種類及形態(tài)有關(guān)[1]。麥芽酚(maltolate,簡寫為ma)是一種廣泛用于食品添加劑的天然產(chǎn)物[2],易與水溶液中Al3+結(jié)合生成具有水溶性和脂溶性的電中性配合物[3]。鋁-麥芽酚配合物在不同配比、pH等環(huán)境因素下具有多種形態(tài),而Al3+的毒性與鋁-麥芽酚配合物的賦存形態(tài)密切相關(guān)。麥芽酚配體增強了Al3+的膜通透性,進而提高了Al3+的生理活性和生物利用度[3]。Al3+進入細胞內(nèi)作用于神經(jīng)元、神經(jīng)膠質(zhì)細胞和DNA磷酸基團[3]等位點進而造成神經(jīng)損傷[4]。國內(nèi)外課題組[4-9]主要采用核磁共振、紅外光譜、紫外光譜和質(zhì)譜等實驗方法對鋁-麥芽酚體系進行研究,但由于現(xiàn)有實驗條件的自身限制、準確解析和歸屬光譜的難度以及無法準確檢測低濃度化合物的現(xiàn)狀,使得這些研究難以區(qū)分鋁-麥芽酚配合物的不同形態(tài)結(jié)構(gòu)以及準確判斷反應(yīng)活性位點。量子化學計算方法為解決這一難題提供了新的思路[10]。本文采用密度泛函理論計算方法對鋁-麥芽酚體系進行系統(tǒng)研究,主要工作從靜態(tài)結(jié)構(gòu)、動態(tài)水交換反應(yīng)和不同鋁形態(tài)與致毒機制的關(guān)聯(lián)探討3個方面進行:(1) 在超分子-極化連續(xù)(GP-SM-PCM)模型下優(yōu)化鋁-麥芽酚配合物靜態(tài)結(jié)構(gòu)得到鍵長、鍵角、NPA電荷和能量等參數(shù),計算得到Al(ma)3配合物4種異構(gòu)體的核磁共振、紫外和紅外等光譜學數(shù)據(jù)并與文獻實驗值比較;(2) 模擬1∶1和1∶2鋁-麥芽酚配合物各種可能位點的水交換反應(yīng),通過計算得到的相關(guān)結(jié)構(gòu)-能量參數(shù)預(yù)測不同構(gòu)型各位點的水交換速率,并與文獻報道的實驗值進行對比;(3) 探討鋁-麥芽酚配合物不同形態(tài)與轉(zhuǎn)化以及水交換反應(yīng)速率與Al3+生物有效性的關(guān)系和致毒機制。
所有計算在Gaussian 03程序包中運行。所有結(jié)構(gòu)均采用密度泛函理論(DFT)在B3LYP/6-311+G(d,p)基組水平下進行優(yōu)化及頻率計算。原子電荷由自然布居分析(NPA)得到,單點能采用MP2方法在相同基組水平下進行計算[10]。本文中所有構(gòu)型的優(yōu)化、頻率和單點能計算均在0 K下進行,熱力學計算在298.15 K和1 atm下進行。
圖1 鋁-麥芽酚配合物的10種可能靜態(tài)構(gòu)型Fig. 1 Ten possible static configurations of the Al-maltolate complexes
2.1 鋁-麥芽酚配合物的靜態(tài)結(jié)構(gòu)
圖2為優(yōu)化得到的1∶1、1∶2和1∶3鋁-麥芽酚配合物10種靜態(tài)構(gòu)型。以赤道面左下角O原子為起點,逆時針編號1-4,赤道面上方O原子為編號5,下方O原子編號為6。計算所得的鍵長、鍵角、NPA電荷和能量等參數(shù)見表1,Al(ma)3配合物4種異構(gòu)體的NMR、UV-vis、IR等數(shù)據(jù)和譜圖分別見表2和3及圖3和4。
(1)結(jié)構(gòu)特征。以相同模型方法基組下優(yōu)化得到的Al(H2O)63+團簇(Nm=12)為本底(Al-OH2鍵長1.916 ?),鋁-麥芽酚1∶1配合物的平均Al-OH2鍵長(1.923 ?)稍有拉長,其中配體鄰位Al-OH2鍵長為1.947 ?,對位平均鍵長為1.899 ?,表明麥芽酚配體增加了鄰位水分子的不穩(wěn)定性,同時穩(wěn)定了對位水分子。1∶2配合物3個cis結(jié)構(gòu)的Al-OH2鍵長(1.906~1.914 ?)與本底Al-OH2鍵長相差不大,分析可能原因為配體對其鄰位活化與對位鈍化效應(yīng)相互抵消。1∶2配合物2個trans結(jié)構(gòu)的Al-OH2鍵長(1.946~1.948 ?)和Al(H2O)63+團簇的Al-OH2鍵長(1.916 ?)相比明顯增加,說明配體的加入一定程度上增強了配位水分子反應(yīng)活性,分析原因為配體的鄰位活化效應(yīng)。由于Al(ma)3具有水溶性[3],故外層添加的6個水分子穩(wěn)定在第二水化層并且與配位O原子形成氫鍵,4個構(gòu)型的平均Al-O鍵長在1.934~1.939 ?之間,與Al(H2O)63+團簇相比增加了0.02 ?左右。通過分析1∶1、1∶2和1∶3鋁-麥芽酚配合物不同形態(tài)結(jié)構(gòu)的3個特征鍵角,發(fā)現(xiàn)所有形態(tài)均為六配位,其中赤道鍵角∠O1-Al-O2與∠O1-Al-O3在90°和175°左右,軸向鍵角∠O5-Al-O6在175°左右,構(gòu)型為變形八面體。
(2)NPA電荷特征。如表1所示,隨著配體數(shù)目的增加,鋁-麥芽酚配合物的中心Al原子上正電荷逐漸減小(1.938 e→1.932 e→1.919 e),其中trans構(gòu)型的1∶2配合物比1∶1配合物減少了0.01 e,1∶3構(gòu)型比1∶1構(gòu)型減少了0.019 e。分析原因可能為,隨著配體的加入體系形成了更大的共軛體系導(dǎo)致電荷進一步分散。
圖2 鋁-麥芽酚配合物優(yōu)化得到的10種靜態(tài)構(gòu)型Fig. 2 The ten optimized static configurations of Al-maltolate complexes
表1 鋁-麥芽酚配合物10種靜態(tài)構(gòu)型的結(jié)構(gòu)、NPA電荷和能量參數(shù)Table 1 Structural parameters, NPA charges and energies for ten static configurations of Al-maltolate complexes
注:∠O1-Al-O2和∠O1-Al-O3為赤道鍵角;∠O5-Al-O6為軸向鍵角;a鋁與螯合O的平均鍵長;b鋁與配體麥芽酚中4-吡喃酮O的(平均)鍵長;c鋁與麥芽酚中3-羥基O的(平均)鍵長;dAl-OH2平均鍵長;eAl-OH2(cis)的平均鍵長;fAl-OH2(trans)的平均鍵長;g螯合O的平均NPA電荷;h4-吡喃酮O的(平均)NPA電荷;i3-羥基O的(平均)NPA電荷;j配位H2O中O的平均NPA電荷。
Note: ∠O1-Al-O2and ∠O1-Al-O3are the equatorial bond angles; ∠O5-Al-O6is the axial bond angle;athe average Al-O bond length between Al and chelated O;bthe (average) Al-O bond length between Al and 4-pyronate O;cthe (average) Al-O bond length between Al and 3-oxy O;dthe average Al-OH2bond length;ethe average Al-OH2(cis) bond length;fthe average Al-OH2(trans) bond length;gthe average NPA charge of chelated O;hthe (average) NPA charge of 4-pyronate O;ithe (average) NPA charge of 3-oxy O;jthe average NPA charge of O in H2O.
圖3 Al(ma)3配合物在水溶液中的紫外吸收光譜圖Fig. 3 The UV spectrums of Al(ma)3 complexes in aqueous solution
(4)光譜學特征。由表2中27Al NMR和1H NMR數(shù)據(jù)可以看出,計算得到的化學位移與實驗值基本一致,說明GP-SM-PCM模型適合用于處理鋁-麥芽酚配合物體系。如表3以及圖3所示,Al(ma)3的4種同分異構(gòu)體計算得到的紫外最大吸收波長~ 300 nm,與實驗值305 nm相符。根據(jù)圖4所示紅外光譜圖,選取特征Al-O振動、配體環(huán)中C=C振動以及C-H振動進行對比,以Λ-fac-Al(ma)3為例,文獻中Al-O最強振動發(fā)生在410 cm-1和445 cm-1處,理論計算得到的Al-O振動主要在423~462 cm-1之間,兩者基本相符。
表2 1∶3鋁-麥芽酚配合物的27Al NMR和1H NMR計算結(jié)果aTable 2 27Al NMR and 1H NMR shielding constants and chemical shifts (ppm) of Al(ma)3 a
注:a 27Al的Al(H2O)63+參比屏蔽常數(shù)為572.6 ppm (δ = 0 ppm),1H的四甲基硅烷(TMS)參比屏蔽常數(shù)為32.0 ppm(δ = 0 ppm);b實驗中得到的27Al NMR數(shù)據(jù)無法區(qū)分4種異構(gòu)體;c甲基中的H原子;d4-吡喃O相鄰C原子上鍵合的H原子;e3-羰基O對位的C原子上鍵合的H原子。
Note:aReference shielding constants of Al(H2O)63+and tetramethyl silane (TMS) are 572.6 ppm (δ = 0 ppm) and 32.0 ppm (δ = 0 ppm) respectively;bThe isomers of Al(ma)3cannot be distinguished in the experiments;cH atom in the methyl group;dH atom is bonded to the C atom which is next to 4-pyronate oxygen;eH atom is in the para-position to 3-oxy oxygen.
表3 1∶3鋁-麥芽酚配合物的紫外和紅外計算結(jié)果Table 3 The calculated ultraviolet spectral data and infrared absorptions of Al(ma)3
注:a文獻[8]中檢測紫外光譜時溶劑為飽和正辛醇的水溶液;b吸光度ε的單位為(mol·L-1)-1·cm-1。
Note:aThe solvent is water saturated with n-octanol for UV in reference [8];bthe unit for ε is (mol·L-1)-1·cm-1.
圖4 Al(ma)3配合物的紅外光譜圖Fig. 4 The IR spectrums of Al(ma)3 complexes
2.2 鋁-麥芽酚配合物的水交換反應(yīng)
表4 1∶1/1∶2鋁-麥芽酚配合物水交換反應(yīng)的結(jié)構(gòu)參數(shù)(?)Table 4 Structural parameters for the water-exchange reaction of 1:1/1:2 Al-maltolate complexes (?)
注:aAl與配位水中O原子的鍵長;bAl與離去水中O原子的鍵長;cAl與配位水中O原子的平均鍵長;dAl與配體麥芽酚中4-吡喃酮O (表示為Op)的(平均)鍵長;eAl與配體麥芽酚中3-羥基O (表示為Oo)的(平均)鍵長;fAl-O鍵長總和;g△Σ(Al-Ligand) = Σ(Al-Ligand)transition state- Σ(Al-Ligand)reactant。
Note:aThe Al-O bond length between Al and the O atom of coordinated water molecules;bthe Al-O bond length between Al and the O atom of leaving water molecule;cthe average Al-OH2bond length;dthe (average) Al-O bond length between Al and 4-pyronate O (Op);ethe (average) Al-O bond length between Al and 3-oxy O (Oo);fthe sum of Al-O bond length;g△Σ(Al-Ligand) = Σ(Al-Ligand)transition state- Σ(Al-Ligand)reactant.
以鋁-麥芽酚配合物1∶1構(gòu)型離去水位于配體鄰位(cis to ma)的水交換反應(yīng)為例,反應(yīng)物中離去水和中心Al原子的距離為2.040 ?,軸向鍵角∠O4-Al1-O5為175.7°,赤道鍵角∠O2-Al1-O3與∠O2-Al1-O6分別為174.9°和87.0°,為一具有八面體結(jié)構(gòu)的六配位化合物。隨著水交換反應(yīng)的進行,水分子逐漸離去到達過渡態(tài),此時Al-OL距離為2.815 ?,且該水分子上O原子與另一配位水分子上H原子形成氫鍵(1.961 ?),虛頻(-85.25 cm-1)下離去水分子在第一和第二水化層之間振動,水交換反應(yīng)過程中軸向鍵角∠O4-Al1-O5基本不變化(175.7°→174.5°),赤道鍵角∠O2-Al1-O3明顯減小(174.9°→147.9°),此時過渡態(tài)構(gòu)型傾向于三角雙錐結(jié)構(gòu)。之后離去水分子進一步遠離Al離子進入第二水化層形成五配位產(chǎn)物(Al-OL距離為3.872 ?),此時軸向鍵角∠O4-Al1-O5變化很小(174.5°→173.9°),赤道鍵角∠O2-Al1-O3與∠O2-Al1-O6分別變?yōu)?17.7°和111.8°,產(chǎn)物為具有三角雙錐結(jié)構(gòu)的五配位配合物。8條水交換反應(yīng)路徑(A→H)的Δ∑(Al-Ligand)均為正值,說明鋁-麥芽酚配合物1∶1/1∶2構(gòu)型的水交換反應(yīng)均屬于解離活化機制[14]。
圖5 1∶1/1∶2鋁-麥芽酚配合物水交換反應(yīng)過渡態(tài)構(gòu)型圖(離去水以白色標記)Fig. 5 The optimized transition state of the water exchange reaction for 1:1 and 1:2 Al-maltolate complexes (The leaving water molecules are white)
表5 1∶1/1∶2鋁-麥芽酚配合物水交換反應(yīng)的活化和反應(yīng)能量參數(shù)Table 5 The active and reaction energies for the water-exchange reaction of 1:1/1:2 Al-maltolate complexes
表6 3種方法預(yù)測鋁-麥芽酚配合物的水交換反應(yīng)速率logkex (s-1)Table 6 The predicted log kex (s-1) of Al-maltolate complexes by three methods
2.3 鋁-麥芽酚配合物毒性與其形態(tài)結(jié)構(gòu)之間關(guān)系的機理分析
致謝:本文的數(shù)值計算在南京大學高性能計算中心的IBM刀片式集群機上完成。
[1] Song B, Sun Q, Li H K, et al. Irreversible denaturation of proteins through aluminum-induced formation of backbone ring structures [J]. Angewandte Chemie International Edition, 2014, 53: 6358-6363
[2] Yu P, Phillips B L, Olmstead M M, et al. Rates of solvent exchange in aqueous aluminium(III)-maltolate complexes [J]. Journal of the Chemical Society, Dalton Transactions, 2002, 43(10): 2119-2125
[3] Liang R F, Li W Q, Wang H, et al. Impact of sub-chronic Al-maltolate exposure on catabolism of amyloid precursor protein in rats [J]. Biomedical and Environmental Sciences, 2013, 26(6): 445-452
[4] Zhou Y Z, Harris W R, Yokel R A. The influence of citrate, maltolate and fluoride on the gastrointestinal absorption of aluminum at a drinking water-relevant concentration: A26Al and14C study [J]. Journal of Inorganic Biochemistry, 2008, 102(4): 798-808
[5] Tapparo A, Soldà L, Bombi G G, et al. Analytical validation of a general protocol for the preparation of dose-controlled solutions in aluminium toxicology [J]. Analyst, 1995, 120: 2425-2429
[6] Zambenedetti P, Tisato F, Corain B, et al. Reactivity of Al(III) with membrane phospholipids: A NMR approach [J]. BioMetals, 1994, 7(3): 244-252
[7] Tapparo A, Perazzolo M. N-octanl/water partition coefficients of the acetylacetonate and maltolate complexes of Al(III), Cr(III) and Fe(III) and of aluminum lactate [J]. International Journal Environmental Analytical Chemistry, 1989, 36(1): 13-16
[8] Finnegan M M, Lutz T G, Nelson W O, et al. Neutral water-soluble post-transition-metal chelate complexes of medical interest: Aluminum and gallium tris (3-hydroxy-4-pyronates) [J]. Inorganic Chemistry, 1987, 26(13): 2171-2176
[9] Finnegan M M, Rettig S J, Orvig C. A neutral water-soluble aluminum complex of neurological interest [J]. Journal of American Chemical Society, 1986, 108(16): 5033-5035
[10] Shi W J, Jin X Y, Dong S N, et al. Theoretical investigation of the thermodynamic structures and kinetic water-exchange reactions of aqueous Al(III)-salicylate complexes [J]. Geochimica et Cosmochimica Acta, 2013, 121(6): 41-53
[11] Bock C W, Markham G D, Katz A K, et al. The arrangement of first- and second-shell water molecules in trivalent aluminum complexes: Results from density functional theory and structural crystallography [J]. Inorganic Chemistry, 2003, 42: 1538-1548
[12] Wang J W, Rustad J R, Casey W H. Calculation of water-exchange rates on aqueous polynuclear clusters and at oxide-water interfaces [J]. Inorganic Chemistry, 2007, 46: 2962-2964
[13] Jin X Y, Yan Y, Shi W J, et al. Density functional theory studies on the structures and water-exchange reactions of aqueous Al(III)-oxalate complexes [J]. Environmental Science & Technology, 2011, 45: 10082-10090
[14] Rotzinger F P. Treatment of substitution and rearrangement mechanisms of transition metal complexes with quantum chemical methods [J]. Chemical Reviews, 2005, 105: 2003-2037
[15] 梁瑞峰, 牛僑. 麥芽酚鋁的神經(jīng)毒性研究[J]. 毒理學雜志, 2011, 25(6): 467-470
Liang R F, Niu Q. Neurotoxicity of aluminum maltolate [J]. Journal of Toxicology, 2011, 25(6): 467-470 (in Chinese)
[16] Liang R F, Li W Q, Wang X H, et al. Aluminium-maltolate-induced impairment of learning, memory and hippocampal long-term potentiation in rants [J]. Industrial Health, 2012, 50: 428-436
[17] Zhu M M, Li B F, Ma X, et al. Folic acid protected neural cells against aluminum-maltolate-induced apoptosis by preventing miR-19 downregulation [J]. Neurochemical Research, 2016, 41: 2110-2118
[18] Pikaar I, Sharma K R, Hu S, et al. Reducing sewer corrosion through integrated urban water management [J]. Science, 2014, 345(6198): 812-814
[19] Rauch W, Kleidorfer M. Replace contamination, not the pipes [J]. Science, 2014, 345(6198): 734-735
[20] Laird B D, Peak D, Siciliano S D. Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant [J]. Environmental Science & Technology, 2011, 45: 4139-4144
◆
InvestigationoftheConfigurationCharacteristicsandWater-ExchangeReactionsofAluminium(III)-MaltolateComplexesbyDensityFunctionalTheory
Zhang Jing, Dong Shaonan, Hou Xiaoxia, Bi Shuping*
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
10.7524/AJE.1673-5897.20170114005
2017-01-14錄用日期2017-05-31
1673-5897(2017)3-261-12
X171.5
A
畢樹平(1961-),男,分析化學博士,教授,博士生導(dǎo)師,主要從事環(huán)境分析化學和環(huán)境表界面電化學研究。
國家自然科學基金(No.21177054)
張婧(1991-),女,碩士研究生,研究方向為環(huán)境分析化學,E-mail: april_91@126.com;
*通訊作者(Corresponding author), E-mail: bisp@nju.edu.cn
張婧, 董紹楠, 侯曉霞, 等. 密度泛函理論方法研究鋁-麥芽酚配合物的形態(tài)結(jié)構(gòu)與水交換反應(yīng)[J]. 生態(tài)毒理學報,2017, 12(3): 261-272
Zhang J, Dong S N, Hou X X, et al. Investigation of the configuration characteristics and water- exchange reactions of aluminium(III)-maltolate complexes by density functional theory [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 261-272 (in Chinese)