• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of Geographical Origin and Protein Content of Acacia Gums Using Infrared Spectroscopy and Chemometrics

    2017-10-11 11:36:34ZOUXiaoboAlaaKamalMohmmedKHAIRKHOGLYSHIJiyongMelHOLMES
    食品科學(xué) 2017年20期
    關(guān)鍵詞:阿拉伯膠計量學(xué)基金項目

    ZOU Xiaobo, Alaa Kamal Mohmmed KHAIR KHOGLY, SHI Jiyong, Mel HOLMES

    (1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;2. School of Food Science and Nutrition, the University of Leeds, Leeds LS1 3AB, United Kingdom)

    Determination of Geographical Origin and Protein Content of Acacia Gums Using Infrared Spectroscopy and Chemometrics

    ZOU Xiaobo1, Alaa Kamal Mohmmed KHAIR KHOGLY1, SHI Jiyong1, Mel HOLMES2

    (1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;2. School of Food Science and Nutrition, the University of Leeds, Leeds LS1 3AB, United Kingdom)

    The feasibility of using Fourier transform infrared (FTIR) spectroscopy and chemometrics as a rapid and noninvasive technique to determine the geographical origin and protein content of Sudanese Acacia gums was investigated.Seventy-two samples of Acacia gums were collected from six different regions (12 samples from each region). Linear discriminant analysis (LDA) was used to discriminate the geographical origin of Acacia gums, and backward in terval partial least squares (Bi-PLS) was applied to build a prediction model for the protein content of Acacia gums. The results showed that the recognition rates of LDA for calibration set (48 samples) and prediction set (24 samples) were both 100% when the fi rst 6 principal components were used. In addition, Bi-PLS yielded a good prediction model (RP= 0.937 3 and RMSEP =0.173%) for protein content by using the optimal combination of 4 out of 20 spectral intervals. Hence, FTIR spectroscopy coupled with chemometrics can be considered as a valid approach for the determination of the geographical origin and protein content of Acacia gums.

    Acacia gums; Fourier transform infrared (FTIR) spectroscopy; geographical origin; protein content;linear discriminant analysis (LDA); backward interval partial least squares (Bi-PLS)

    Acacia gums, also called gums Arabic, are the dried exudates extracted from the stem and branches of Acacia trees. They are often used as non-digestible food ingredients in the foodstuffs, such as an emulsifier in the manufacture of soft drinks and a stabilizer in fermentation milk[1]. The chemical composition of gum Arabic is complex and consists of a group of macromolecules characterized by a high proportion of carbohydrates (-97%), which are predominantly composed of D-galactose and L-arabinose units and a low proportion of proteins (<3%)[2]. Acacia gums from different Acacia species exhibited different characteristics, and even gums in the same species bear some difference because of their geographical origin. For example, Acacia senegal(A. senegal) has a higher degree of branching and better emulsifying properties than Acacia seyal (A. seyal), gum does[3]. This is because their biochemical composition and molecular characteristics can vary, depending on internal and external factors (Acacia specie, tree location, or weather conditions) and postharvesting processes (storage conditions,filtration, spray drying, irradiation, or heat treatments)[4].Hence, recognition of these Acacia gums is of great signifi cance for the market and the end use.

    Traditionally, the identifi cation of the speices or quality of Acacia gums can be conducted by sensory analysis, such as observing the color and smelling, which are unfortunately impeded the subjectivity of human. Other physicochemical methods, such as detection of the sugar and nitrogen content[5], and component analysis by using combined gel permeation chromatography and multi-angle laser light scattering (GPC-MALLS)[6], are either destructive to samples or time-consuming. Nuclear magnetic resonance(NMR) was also regarded as an effective technology to identify A. senegal and A. seyal, but it may be inaccessible for industrial high throughput screening purposes[7]. As a result, a rapid, non-invasive and economical method for distinguishing the speices or the quality of Acacia gums is highly desired.

    Fourier transform infrared (FTIR) spectroscopy, which keeps the advantages of being robust, cost-effective and nondestructive to sample, has been widely used as an effective identifi cation and quantitative analysis technique[8]. In recent years, many studies have shown the feasibility of using FTIR spectroscopy in discriminating similar foodstuffs and medicines, such as walnut oil[9], Cortex Eucommiae[10],minced beef[11], and detecting specific components, such as free acids, invertase, moisture, hydroxymethyl furfural,polyphenol oxidase and electrical conductivity[12-14].Quantification of gums is another interesting issue for determining the quality of the gums. For A. senegal and A. seyal gums, one of the most signifi cant difference is their protein content (-2.5% for A. senegal, -1% for A. seyal gums)[15]. Accordingly, the protein content can be used as an imporatant quality index of these Acacia gums.

    Sudan is a dominant leader in Acacia gum production in the world[16]. The aim of the present work is discriminating the A. senegal and A. seyal gums collected from Sudan,and predicting their total protein content by using FTIR spectroscopy and chemometrics.

    1 Materials and Methods

    1.1 Materials

    Two categories of Acacia gum samples (n=72) were collected from different regions in Sudan, namely A. senegal(n=36) (Group (A), n=12∶ West Bara Locality in North Kordofan State; Group (B), n=12∶ Ennuhud Locality in West Kordofan State; Group (D), n=12∶ Acacia gum Ltd., Sudan)and Acacia sayal (n=24) (Group (C), n=12∶ South Kordofan State; Group (E), n=12∶ Acacia gum Ltd., Sudan). One other Acacia gum sample was obtained from China (Group (F),n=12∶ Siyuan Biology Ltd., Henan, China). All other reagents are of analytical grade purchased from Sinopharm Chemical Reagent Co. Ltd., Shanghai, China.

    1.2 Methods

    1.2.1 Determination of total protein content

    Firstly, all raw Acacia gum samples were dried ina forced draught oven (Shanghai Yi-Heng Machine Co.,Shanghai, China) at 50 ℃ for 24 h and then mashed into powder by using a cyclone mill. The total protein contents of the gums were measured by using the Kjeldahl method[17].

    1.2.2 FTIR spectroscopy

    FTIR spectra of gum powders were collected by using a FTIR spectrometer (Thermo Scientifi c Nicolet iS50, Thermo Fisher, USA). The spectra were obtained at reflectance mode from 650–4 000 cm?1at a resolution of 4 cm?1and the total number of scans was 32. Three spectra were recorded for each sample and the average spectrum was used for subsequent data analysis.

    1.2.3 Chemometrics

    Pri nciple component analysis (PCA) is a statistical procedure which is able to reduce the dimensions of the data set by using an orthogonal transformation[18]. After PCA, the useful information can be extracted from the original spectral data by eliminating overlapping information and the remained dimensions are defined by principal components (PCs).It is able to provide the visual graphical information for determining differences within and between cluster trends[19].

    Lin ear discriminant analysis (LDA) is a c lassical statistical approach for feature extraction and dimension reduction[20]. LDA can classify the objects into groups by estimating the distance between each observation form all group centers[21]. It manages to find out the optimal transformation (projection) that minimizes the intraclass distance and maximizes the inter-class distance simultaneously in order to achieve the maximum discrimination.

    Partial least squares (PLS) regression is one of the multiple linear regression methods[22]. PLS is useful when number of predictors (i.e. spectral peaks) is much higher than number of samples in data set[23]. Backward interval partial least squares (Bi-PLS) regression is an extension of PLS. The basic principle of Bi-PLS is as follows[24]∶ The fullspectrum region is split into a number of equidistant spectral subintervals. Then, PLS models are calculated with each subinterval left out. The fi rst left out interval is the one that when it gives the poorest performing model with respect to the root mean square error of cross-validation (RMSECV).

    A cross-validation process was used in model validation with leave-one-out method. The performance of the regression models was evaluated according to the correlation coefficient of calibration set (Rc) and prediction set (RP), RMSECV and root mean standard error of prediction set (RMSEP). Gen erally, a good model should have high correlation coefficients along with low RMSECV and RMSEP[25].

    1.3 Data analysis

    Matlab V7.0 (MathWorks, USA) was used for data processing under Windows 7.

    2 Results and Analysis

    2.1 The total protein content of Aca cia gums

    All 72 samples were randomly separated into two subsets, including the calibration set (48 samples) used to build models and the prediction set (24 samples) used to test the robustness of models. The total protein content in Acacia gums is shown in Table 1. It can be seen that the total protein contents of A. senegal (Groups (A), (B), and (D)) and A. sayal (Groups (C) and (E)) were in the range of 1.53%–2.22% and 0.56%–1.87%, respectively. These results are close to the Sud anese Standards and Metrology Organization (SSMO) in which the protein contents for A. senegal and A. sayal gums are recorded to be in the range of 1.50%–2.70% and 0.7%–1.0%, respectively. In comparison,the Acacia gums obtained from Group (D) had the highest protein content, while the Acacia gums obtained from China had the lowest protein content. These difference were closely associated with the species of the Acacia gums and also with the gum origin, age, storage conditions, and so forth[26].

    Table 1 Protein content of Acacia gums

    2.2 Spectra investigation

    The FTIR spectra for the Acacia gum samples acquired in the range of 650–4 000 cm–1are shown in Fig. 1. In order to avoid the strong absorption of water, especially in the amide I band region (1 720–1 580 cm–1)[17], Acacia gums were fully dried before spectra collection. For all of the Acacia gums, there are four main characteristic spectral bands. No significant difference can be observed between the FTIRspectra of different groups. This is because all of them consist of similar kinds of chemical components. Table 2 shows the wavenumbers and attribution of the characteristic spectral bands of these Acacia gums.

    Fig. 1 FTIR spectra of Acacia gums

    Table 2 Wavenumbers and ttribution of the characteristic spectral bands in FTIR spectra of Acacia gums

    2.3 Principle component analysis of FTIR spectra of Acacia gum

    Prior to regression analysis, an exploratory analysis was performed in order to investigate any trend of discrimination among the Acacia gums from different regions. PCA is the most widely applied linear projection method for unsupervised exploratory multivariate data analysis to visualize the similarities and differences between the spectra[29]. Before PCA, the raw mean spectra were preprocessed by using standard normal variate (SNV). Fig. 2a shows the score plot of the two-dimensional component space of six categories of Acacia gum samples. The accumulated variance contribution rates were 99.33% for the top two PCs.The classifi cation trend of these six categories of Acacia gum samples can be also observed from the score plot. The Acacia gum samples obtained from China were clearly separated from that obtained from Sudan, indicating the obvious difference of the chemical constituents between the Acacia gum from different geographical origins. In order to furtherly visualize the difference between Acacia gum collected from Sudan, PCA was conducted for the Acacia gum regardless of Group (F) and the score plot of the two-dimensional was shown in Fig. 2b. It can be seen that the five categories of Acacia gum from Sudan are clearly distinguished from each other, demonstrating their intrinsic difference. Nevertheless,PCA is not able to defi ne the boundaries of the six categories to discriminate the Acacia gum samples so that further analysis was carried out in the next sections.

    Fig. 2 S core cluster plot of top two principal components (PCs) for Acacia gum samples

    2.4 Determination of geographical of Ac acia gum by LDA

    LDA focus on finding the optimal boundaries between the classes[30]. The number of PCs is crucial to the performance of the LDA discrimination model. The discrimination rates by cross-validation were used to optimize the number of PCs. Fig. 3 shows the discrimination rates of LDA model according to different PCs by cross-validation.The optimal LDA models were achieved when the number of PCs was 6, and meanwhile the discrimination rate was up to 100% for both calibration set and prediction set. These results indicated that an ideal separation can be achieved for these six categories of Acacia gum. On the basis of LDA,a cluster analysis was conducted. Samples were grouped in clusters based on their nearness or similarity. Fig. 4 shows the dendrogram of Acacia gum samples. All the Acacia gums in the same group gathered together and were distinguished from other groups. In addition, when all the Acacia gum were clustered into two big groups, Group (E) and Group (F) were defi ned into the same group. This may be due to the reason that Group (E) and (F) had similar protein contents, which were much lower than those of other groups.

    Fig. 3 Rec ognition rates of LDA models

    Fig. 4 Dendrogram of Acacia gum samples

    2.5 Prediction of the total protein content in Acacia gum by Bi-PLS

    Fig. 5 Spectral interval selected by Bi-PLS (a) and actual versus predicted protein contents (b) in calibration set and prediction set

    In this study, the Bi-PLS approach was applied for the quantification of the total protein contents in Acacia gums.Bi-PLS aimed to select the most important subintervals in the whole data matrix. The spectra data set was split into some subintervals, and then PLS models were calculated when each subinterval left out. When the whole spectrum region was split into 20 subintervals, the optimal Bi-PLS model for the total protein content was obtained with the combination of four subintervals, resulting in the lowest RMSECV of 0.155%.As shown in Fig. 5a, the optimal subintervals are [1 4 7 19],which correspond to 650–817, 1 152–1 319, 1 652–1 819 and 3 666–3 833 cm–1, respectively. Fig. 5b presents the performance of the Bi-PLS model on the calibration and prediction set. For the prediction set, RPwas 0.937 3 and RMSEP was 0.173%,demonstrating that the Bi-PLS model can be used to predict the total protein content of Acacia gums.

    3 Conclusion

    FTIR spectroscopy technique combined with chemometrics was successfully established and employed to distinguish the geographical origins and predict the total protein contents of Acacia gums. The results showed that the optimal LDA model was achieved in determining the geographic origins with 100% of discrimination rate for both the calibration and prediction set when the number of PCs was 6. The Bi-PLS model showed a good performance in predicting the total protein content (RP= 0.937 3 and RMSEP = 0.173%) by using the optimal combination of 4 spectral subintervals among 20 subintervals. FTIR spectroscopy coupled with chemometrics can be considered as a valid approach for determination of the geographical origin and protein content of Acacia gums.

    [1] DA UQAN E, ABDULLAH A. Utiliz ation of gum Arabic for industries and human health[J]. American Journal of Applied Sciences, 2013,10(10)∶ 1270-1279. DOI∶10.3844/ajassp.2013.1270.1279.

    [2] IS LAM A M, PHILLIPS G O, SLJIVO A, et al. A review of recent developments on the regulatory, structural and functional aspects of gum arabic[J]. Food Hydrocolloids, 1997, 11(4)∶ 493-505.DOI∶10.1016/S0268-005X(97)80048-3.

    [3] EL MANAN M, AL-ASSAF S, PHILLIPS G O, et al. Studies on Acacia exudate gums∶ Part Ⅵ. Interfacial rheology of Acacia senegal and Acacia seyal[J]. Food Hydrocolloids, 2008, 22(4)∶ 682-689.DOI∶10.1016/j.foodhyd.2007.02.008.

    [4] LO PEZ-TORREZ L, NIGEN M, WILLIAMS P, et al. Acacia senegal vs. Acacia seyal gums-Part 1∶ composition and structure of hyperbranched plant exudates[J]. Food Hydrocolloids, 2015, 51∶41-53. DOI∶10.1016/j.foodhyd.2015.04.019.

    [5] DA OUB R M A, ELMUBARAK A H, MISRAN M, et al.Characterization and functional properties of some natural Acacia gums[J]. Journal of the Saudi Society of Agricultural Sciences, 2016.DOI∶10.1016/j.jssas.2016.05.002.

    [6] AL ASSAF S, PHILLIPS G, WILLIAMS P. Studies on Acacia exudate gums∶ part Ⅱ. Molecular weight comparison of the Vulgares and Gummiferae series of Acacia gums[J]. Food Hydrocolloids, 2005,19(4)∶ 661-667. DOI∶10.1016/j.foodhyd.2004.09.003.

    [7] NIE S P, WANG C, CUI S W, et al. The core carbohydrate structure of Acacia seyal var. seyal (gum Arabic)[J]. Food Hydrocolloids, 2013,32(2)∶ 221-227. DOI∶10.1016/j.foodhyd.2012.12.027.

    [8] SI NELLI N, SPINARDI A, EGIDIO V D, et al. Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.)by near and mid-infrared spectroscopy[J]. Postharvest Biology and Technology, 2008, 50(1)∶ 31-36. DOI∶10.1016/j.postharvbio.2008.03.013.

    [9] LI B, WANG H, ZHAO Q, et al. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy∶a comparative study[J]. Food Chemistry, 2015, 181∶ 25-30.DOI∶10.1016/j.foodchem.2015.02.079.

    [10] W ANG X, SHENG D, ZHU Z, et al. Identification of Cortex Eucommiae from different producing areas by FTIR microspectroscopy[J].Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2015, 141∶ 94-98. DOI∶10.1016/j.lwt.2013.01.027.

    [11] A LAMPRESE C, CASALE M, SINELLI N, et al. Detection of minced beef adulteration with turkey meat by UV-vis, NIR and MIR spectroscopy[J]. LWT-Food Science and Technology, 2013, 53(1)∶225-232. DOI∶10.1016/j.lwt.2013.01.027.

    [12] P RADO B M, KIM S, ?ZEN B F, et al. Differentiation of carbohydrate gums and mixtures using Fourier transform infrared spectroscopy and chemometrics[J]. Journal of Agricultural and Food Chemistry, 2005, 53(8)∶ 2823-2829. DOI∶10.1021/jf0485537.

    [13] KO NG J, YU S. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimica et Biophysica Sinica,2007, 39(8)∶ 549-559. DOI∶10.1111/j.1745-7270.2007.00320.x.

    [14] BALTACIOGLU H, BAYINDIRLI A, SEVERCAN F. Secondary structure and conformational change of mushroom polyphenol oxidase during thermosonication treatment by using FTIR spectroscopy[J]. Food Chemistry, 2017, 214∶ 507-514. DOI∶10.1016/j.foodchem.2016.07.021.

    [15] GA SHUA I B, WILLIAMS P A, BALDWIN T C. Molecular characteristics, association and interfacial properties of gum Arabic harvested from both Acacia senegal and Acacia seyal[J]. Food Hydrocolloids, 2016, 61∶ 514-522. DOI∶10.1016/j.foodhyd.2016.06.005.

    [16] OL AWALE A B H, OKEGBILE J, MOHAMMED A, et al. Effect of starch and gum arabic binders in the combustion characteristics of briquette prepared from sawdust[J]. International Journal of Scientifi c &Engineering Research, 2014, 5(3)∶ 1005-1009.

    [17] RE NARD D, LAVENANT-GOURGEON L, RALET M C, et al. Acacia senegal∶ continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges[J].Biomacromolecules, 2006, 7(9)∶ 2637-2649. DOI∶10.1021/bm060145j.

    [18] TAN ASKOVI? I, GOLOBOCANIN D, MILJEVI? N. Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters[J]. Journal of Geochemical Exploration, 2012, 112(1)∶ 226-234.DOI∶10.1016/j.gexplo.2011.08.014.

    [19] TEYE E, HUANG X, DAI H, et al. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classifi cation[J].Spectrochimica Acta Part A∶ Molecular and Biomolecular Spectroscopy,2013, 114(10)∶ 183-189. DOI∶10.1016/j.saa.2013.05.063.

    [20] JIA S Q, YANG L G, AN D, et al. Feasibility of analyzing frostdamaged and non-viable maize kernels based on near infrared spectroscopy and chemometrics[J]. Journal of Cereal Science, 2016,69∶ 145-150. DOI∶10.1016/j.jcs.2016.02.018.

    [21] MARQU ES A S, CASTRO J N, COSTA F J, et al. Near-infrared spectroscopy and variable selection techniques to discriminate Pseudomonas aeruginosa strains in clinical samples[J]. Microchemical Journal, 2016, 124∶ 306-310. DOI∶10.1016/j.microc.2015.09.006.

    [22] WOLD S, SJOSTROM M, ERIKSSON L. PLS-regression∶ a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2)∶ 109-130. DOI∶10.1016/S0169-7439(01)00155-1.

    [23] OLESZ KO A, HARTWICH J, WOJTOWICZ A, et al. Comparison of FTIR-ATR and Raman spectroscopy in determination of VLDL triglycerides in blood serum with PLS regression[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2017, 183∶239-246. DOI∶10.1016/j.saa.2017.04.020.

    [24] ZOU X B, ZHAO J W, LI Y X. Selection of the effi cient wavelength regions in FT-NIR spectroscopy for determination of SSC of ‘Fuji’apple based on BiPLS and FiPLS models[J]. Vibrational Spectroscopy,2007, 44(2)∶ 220-227. DOI∶10.1016/j.vibspec.2006.11.005.

    [25] WU D, SUN D W, HE Y. Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet[J]. Innovative Food Science & Emerging Technologies, 2012,16(39)∶ 361-372. DOI∶10.1016/j.ifset.2012.08.003.

    [26] ALASS AF S, ANDRESBRULL M, CIRRE J, et al. Structural changes following industrial processing of Acacia gums[M]//KENNEDY J F, PHILLIPS G O, WILLIAMS P A. Gum Arabic.Special publication∶ Royal Society of Chemistry, 2011∶ 153-168.DOI∶10.1039/9781849733106-00153.

    [27] BHUSHETTE P R, ANNAPURE U S. Comparative study of Acacia nilotica exudate gum and Acacia gum[J]. International Journal of Biological Macromolecules, 2017, 102∶ 266-271. DOI∶10.1016/j.ijbiomac.2017.03.178.

    [28] ADERIBIGBE B A, VARAPRASAD K, SADIKU E R, et al.Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels[J]. International Journal of Biological Macromolecules, 2015, 73∶ 115-123. DOI∶10.1016/j.ijbiomac.2014.10.064.

    [29] DONG Y J, SRENSEN K M, HE S, et al. Gum Arabic authentication and mixture quantification by near infrared spectroscopy[J]. Food Control, 2017, 78∶ 144-149. DOI∶10.1016/j.foodcont.2017.02.002.

    [30] CHEN Q S, ZHAO J W, LIN H. Study on discrimination of Roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition[J].Spectrochimica Acta Part A∶ Molecular and Biomolecular Spectroscopy, 2009, 72(4)∶ 845-850. DOI∶10.1016/j.saa.2008.12.002.

    應(yīng)用紅外光譜結(jié)合化學(xué)計量學(xué)方法檢測阿拉伯膠產(chǎn)地和蛋白質(zhì)含量

    鄒小波1,Alaa Kamal Mohmmed KHAIR KHOGLY1,石吉勇1,Mel HOLMES2
    (1.江蘇大學(xué)食品與生物工程學(xué)院,江蘇 鎮(zhèn)江 212013;2.利茲大學(xué)食品科學(xué)與營養(yǎng)學(xué)院,英國 利茲 LS1 3AB)

    研究利用傅里葉紅外光譜結(jié)合化學(xué)計量學(xué)方法來實現(xiàn)對蘇丹阿拉伯膠的產(chǎn)地和蛋白質(zhì)含量的快速無損檢測的可行性。采集自6 個不同的產(chǎn)地,每個產(chǎn)地12 個,總計72 個阿拉伯膠樣本,作為研究對象,運用線性判別分析(linear discriminant analysis,LDA)和反向區(qū)間偏最小二乘(backward interval partial least squares,Bi-PLS)法分別實現(xiàn)對蘇丹阿拉伯膠的產(chǎn)地區(qū)分和蛋白質(zhì)含量檢測。結(jié)果表明,當(dāng)主成分?jǐn)?shù)為6時,LDA對樣本的訓(xùn)練集(48 個樣本)和預(yù)測集(24 個樣本)的識別率都為100%。Bi-PLS法回歸聯(lián)合20 個光譜子區(qū)間中的4 個子區(qū)間得到最佳的蛋白質(zhì)預(yù)測模型,其預(yù)測集相關(guān)系數(shù)為0.937 3,均方根誤差為0.173%。因此,利用傅里葉紅外光譜結(jié)合化學(xué)計量學(xué)方法可實現(xiàn)對蘇丹阿拉伯膠的產(chǎn)地以及蛋白質(zhì)的含量的快速無損檢測。

    阿拉伯膠;傅里葉紅外光譜;產(chǎn)地;蛋白質(zhì)含量;線性判別分析;反向區(qū)間偏最小二乘法

    TS201.1

    A

    1002-6630(2017)20-0229-06

    nces:

    2017-05-08

    “十二五”國家科技支撐計劃項目(2015BAD17B04);“十三五”國家重點研發(fā)計劃重點專項(2016YFD0401104);

    鄒小波(1974—),男,教授,博士,研究方向為食品與農(nóng)產(chǎn)品無損檢測。E-mail:zou_xiaobo@ujs.edu.cn

    國家自然科學(xué)基金面上項目(31671844);國家自然科學(xué)基金青年科學(xué)基金項目(31601543);

    中國博士后科學(xué)基金項目(2014T70483;2016M590422);江蘇省自然科學(xué)基金項目(BK20160506;BE2016306);

    江蘇省國際科技合作項目(BZ2016013);蘇州市科技發(fā)展計劃項目(SNG201503);

    江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目(PAPD)

    ZOU Xiaobo, KHAIR KHOGLY A K M, SHI Jiyong, et al. Determination of geographical origin and protein content of Acacia gums using infrared spectroscopy and chemometrics[J]. 食品科學(xué), 2017, 38(20)∶ 229-234. DOI∶10.7506/spkx1002-6630-201720033. http∶//www.spkx.net.cn

    ZOU Xiaobo, KHAIR KHOGLY A K M, SHI Jiyong, et al. Determination of geographical origin and protein content of Acacia gums using infrared spectroscopy and chemometrics[J]. Food Science, 2017, 38(20)∶ 229-234. DOI∶10.7506/spkx1002-6630-201720033. http∶//www.spkx.net.cn

    DOI∶10.7506/spkx1002-6630-201720033

    猜你喜歡
    阿拉伯膠計量學(xué)基金項目
    阿拉伯膠,食品添加劑里的“魔術(shù)師”
    生物化學(xué)計量學(xué)原理在離散生物動力系統(tǒng)的應(yīng)用
    云南化工(2021年5期)2021-12-21 07:41:34
    針刺治療失眠癥的文獻(xiàn)計量學(xué)分析
    常見基金項目的英文名稱(二)
    常見基金項目的英文名稱(一)
    維吾爾藥阿拉伯膠和乳香藥材摻偽的鑒別研究
    基于科學(xué)計量學(xué)的公安院??蒲信c評價
    2004-2013年中醫(yī)藥治療性早熟的文獻(xiàn)計量學(xué)分析
    阿拉伯膠的性質(zhì)和研究進(jìn)展
    河南科技(2014年12期)2014-02-27 14:10:29
    阿拉伯膠和羧甲基纖維素鈉對蕎麥面團(tuán)發(fā)酵流變學(xué)及烘焙特性的影響
    又黄又爽又免费观看的视频| 男女视频在线观看网站免费| 又爽又黄无遮挡网站| 欧美一级a爱片免费观看看| 免费无遮挡裸体视频| 国产三级中文精品| 嫩草影院精品99| 亚洲四区av| 午夜福利成人在线免费观看| 看十八女毛片水多多多| 国产精品av视频在线免费观看| 欧美性猛交╳xxx乱大交人| 精品人妻熟女av久视频| 亚洲人成网站在线观看播放| 国产精品久久久久久亚洲av鲁大| 男女边吃奶边做爰视频| 男人的好看免费观看在线视频| 欧美成人精品欧美一级黄| 亚洲欧美成人精品一区二区| 深夜a级毛片| 国产一区二区三区在线臀色熟女| 天天躁日日操中文字幕| 一进一出抽搐动态| 大香蕉久久网| 色5月婷婷丁香| 欧美最新免费一区二区三区| 大型黄色视频在线免费观看| 日韩欧美精品v在线| av免费在线看不卡| 综合色av麻豆| 亚洲av熟女| 久久九九热精品免费| 秋霞在线观看毛片| 亚洲图色成人| 精品久久久久久久人妻蜜臀av| 午夜免费男女啪啪视频观看 | 亚洲,欧美,日韩| 国产成人freesex在线 | 综合色丁香网| 女人十人毛片免费观看3o分钟| 天美传媒精品一区二区| 天天躁日日操中文字幕| 成人av在线播放网站| 别揉我奶头~嗯~啊~动态视频| 国产视频内射| 老司机福利观看| 亚洲人与动物交配视频| 久久久久性生活片| 精品日产1卡2卡| 欧美激情国产日韩精品一区| 91av网一区二区| 欧美性猛交╳xxx乱大交人| 99热全是精品| 中文资源天堂在线| 最新中文字幕久久久久| 亚洲精品国产av成人精品 | 长腿黑丝高跟| 99热6这里只有精品| 天堂av国产一区二区熟女人妻| 亚洲中文字幕一区二区三区有码在线看| 免费电影在线观看免费观看| 最近在线观看免费完整版| 免费观看精品视频网站| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 午夜激情欧美在线| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 中国美女看黄片| 级片在线观看| 日韩欧美 国产精品| 哪里可以看免费的av片| 欧美色欧美亚洲另类二区| 在线播放无遮挡| 国产三级在线视频| 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| 日韩人妻高清精品专区| 国产黄色小视频在线观看| 中出人妻视频一区二区| 高清午夜精品一区二区三区 | 99久国产av精品国产电影| 精品久久久噜噜| 国产精品一区二区性色av| 亚洲内射少妇av| 人妻少妇偷人精品九色| 搞女人的毛片| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 国产精品野战在线观看| 国产精品无大码| 狠狠狠狠99中文字幕| 色av中文字幕| 精品福利观看| 免费高清视频大片| 韩国av在线不卡| 成人永久免费在线观看视频| 国产伦精品一区二区三区视频9| 亚洲精品影视一区二区三区av| 直男gayav资源| 高清午夜精品一区二区三区 | 午夜爱爱视频在线播放| 国产探花极品一区二区| 高清日韩中文字幕在线| 一级黄片播放器| 伦精品一区二区三区| 成人毛片a级毛片在线播放| 午夜福利高清视频| 精品一区二区三区视频在线| 日本欧美国产在线视频| 国产美女午夜福利| 亚洲国产精品国产精品| 真人做人爱边吃奶动态| 欧美日韩综合久久久久久| 两个人的视频大全免费| 看非洲黑人一级黄片| a级毛片a级免费在线| videossex国产| 桃色一区二区三区在线观看| 内地一区二区视频在线| 国产 一区 欧美 日韩| 国产激情偷乱视频一区二区| 99视频精品全部免费 在线| 午夜影院日韩av| 欧美精品国产亚洲| 亚洲最大成人av| 欧美xxxx性猛交bbbb| 99热这里只有精品一区| 亚洲精华国产精华液的使用体验 | 又黄又爽又免费观看的视频| 成人毛片a级毛片在线播放| 久久久成人免费电影| 欧美性猛交╳xxx乱大交人| 搡老妇女老女人老熟妇| 亚洲av免费高清在线观看| 亚洲av电影不卡..在线观看| 伦精品一区二区三区| 成人特级黄色片久久久久久久| 日本色播在线视频| 变态另类丝袜制服| 日韩高清综合在线| 国产不卡一卡二| 一区福利在线观看| 六月丁香七月| 日本撒尿小便嘘嘘汇集6| 国产在视频线在精品| 天天一区二区日本电影三级| 国产三级中文精品| 精品乱码久久久久久99久播| 91在线精品国自产拍蜜月| 久久久国产成人精品二区| 青春草视频在线免费观看| 变态另类成人亚洲欧美熟女| www日本黄色视频网| 深爱激情五月婷婷| 免费在线观看成人毛片| 成人一区二区视频在线观看| 小说图片视频综合网站| 日韩人妻高清精品专区| 久久综合国产亚洲精品| 午夜激情福利司机影院| 国产在线精品亚洲第一网站| 欧美绝顶高潮抽搐喷水| 欧美三级亚洲精品| 日韩制服骚丝袜av| 久久久精品欧美日韩精品| 久久国内精品自在自线图片| 十八禁国产超污无遮挡网站| 在线国产一区二区在线| 亚洲第一区二区三区不卡| 亚洲精品日韩av片在线观看| a级毛片免费高清观看在线播放| 亚洲精品久久国产高清桃花| 特大巨黑吊av在线直播| 日本三级黄在线观看| 在线天堂最新版资源| 国产一区二区在线观看日韩| 俄罗斯特黄特色一大片| 久久精品夜色国产| 青春草视频在线免费观看| 国产视频一区二区在线看| 国产一区二区三区av在线 | 一级毛片久久久久久久久女| 成人鲁丝片一二三区免费| 亚洲丝袜综合中文字幕| 中文亚洲av片在线观看爽| 我的女老师完整版在线观看| 日韩av在线大香蕉| 欧美激情在线99| 51国产日韩欧美| 国产精品久久电影中文字幕| 亚洲性久久影院| 国产免费一级a男人的天堂| 日本 av在线| 国产男人的电影天堂91| 在线观看午夜福利视频| 国产视频内射| 欧美成人免费av一区二区三区| 一本精品99久久精品77| 大又大粗又爽又黄少妇毛片口| av福利片在线观看| 成人三级黄色视频| 床上黄色一级片| 国产成人a∨麻豆精品| 秋霞在线观看毛片| 啦啦啦观看免费观看视频高清| av.在线天堂| 热99在线观看视频| 校园人妻丝袜中文字幕| 亚洲欧美日韩高清专用| 老司机福利观看| 国产毛片a区久久久久| 22中文网久久字幕| 男女做爰动态图高潮gif福利片| 国产一区亚洲一区在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久精品夜色国产| 国产欧美日韩精品一区二区| 熟女电影av网| 18禁黄网站禁片免费观看直播| 亚洲内射少妇av| 欧美色视频一区免费| 联通29元200g的流量卡| 久久鲁丝午夜福利片| 自拍偷自拍亚洲精品老妇| 露出奶头的视频| 亚洲国产色片| 国产在视频线在精品| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 欧美日韩乱码在线| 久99久视频精品免费| 天堂网av新在线| 两个人的视频大全免费| 国产一区亚洲一区在线观看| 在线观看午夜福利视频| 一级av片app| 少妇高潮的动态图| 精品国产三级普通话版| 男女之事视频高清在线观看| 99热6这里只有精品| 亚洲在线自拍视频| 日本-黄色视频高清免费观看| 久久久久久伊人网av| aaaaa片日本免费| 精品日产1卡2卡| 午夜精品一区二区三区免费看| 网址你懂的国产日韩在线| 99久久精品热视频| 日日干狠狠操夜夜爽| 国产v大片淫在线免费观看| 天天一区二区日本电影三级| 91午夜精品亚洲一区二区三区| 成人特级av手机在线观看| 桃色一区二区三区在线观看| 亚洲av五月六月丁香网| 午夜福利在线在线| 日日干狠狠操夜夜爽| 99热这里只有精品一区| 老熟妇乱子伦视频在线观看| 精品人妻视频免费看| 婷婷六月久久综合丁香| 色综合站精品国产| 国产高清有码在线观看视频| 久久久久国内视频| 啦啦啦啦在线视频资源| 免费无遮挡裸体视频| 一区福利在线观看| 色播亚洲综合网| 国产中年淑女户外野战色| 国产亚洲精品综合一区在线观看| 亚洲成人精品中文字幕电影| 成年女人永久免费观看视频| 日韩 亚洲 欧美在线| 真实男女啪啪啪动态图| 久久鲁丝午夜福利片| 亚洲自拍偷在线| 亚洲精品粉嫩美女一区| 午夜激情欧美在线| 国产激情偷乱视频一区二区| 永久网站在线| 国产精品久久久久久精品电影| а√天堂www在线а√下载| 能在线免费观看的黄片| 国产精品野战在线观看| 亚洲成人精品中文字幕电影| 亚洲精品影视一区二区三区av| 亚洲在线自拍视频| 久久99热这里只有精品18| 一级av片app| 久久精品人妻少妇| 国产真实乱freesex| 小说图片视频综合网站| 精品久久久久久久末码| 少妇高潮的动态图| 欧美激情在线99| 搡老熟女国产l中国老女人| 亚洲av成人av| 成人综合一区亚洲| 日韩欧美三级三区| 久久人妻av系列| 热99在线观看视频| 91精品国产九色| av天堂在线播放| 在线免费十八禁| 九九在线视频观看精品| videossex国产| 黄色一级大片看看| 99国产精品一区二区蜜桃av| 黄色配什么色好看| 丝袜美腿在线中文| 看免费成人av毛片| 狠狠狠狠99中文字幕| 亚洲无线观看免费| 一级毛片久久久久久久久女| 久久久欧美国产精品| 亚洲熟妇熟女久久| 美女被艹到高潮喷水动态| 黑人高潮一二区| 日本三级黄在线观看| 五月伊人婷婷丁香| 午夜福利成人在线免费观看| 黄片wwwwww| 啦啦啦啦在线视频资源| 国产一区二区三区av在线 | 99久久精品一区二区三区| 高清日韩中文字幕在线| 老女人水多毛片| www.色视频.com| 亚洲人成网站在线播| 97人妻精品一区二区三区麻豆| 97超级碰碰碰精品色视频在线观看| 久久久久久九九精品二区国产| 给我免费播放毛片高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 在线观看午夜福利视频| 熟女电影av网| 给我免费播放毛片高清在线观看| 寂寞人妻少妇视频99o| 久久久久国内视频| 夜夜看夜夜爽夜夜摸| av卡一久久| 99久久九九国产精品国产免费| 69人妻影院| 亚洲性久久影院| 欧美性猛交╳xxx乱大交人| 久久久欧美国产精品| 丰满乱子伦码专区| 国产精品不卡视频一区二区| 俄罗斯特黄特色一大片| 熟妇人妻久久中文字幕3abv| 天美传媒精品一区二区| 黄色配什么色好看| 欧美成人a在线观看| 黄色一级大片看看| av视频在线观看入口| 欧美人与善性xxx| 噜噜噜噜噜久久久久久91| 久久久久久久久中文| 亚洲无线在线观看| 亚洲国产日韩欧美精品在线观看| 国产精品女同一区二区软件| 久久久久久久久久成人| 男女之事视频高清在线观看| 又黄又爽又免费观看的视频| 嫩草影院入口| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片| 免费av不卡在线播放| 国产成人a∨麻豆精品| 国产白丝娇喘喷水9色精品| 少妇猛男粗大的猛烈进出视频 | 草草在线视频免费看| 精品日产1卡2卡| 国产一区二区在线观看日韩| 亚洲图色成人| 国产精品国产三级国产av玫瑰| 亚洲天堂国产精品一区在线| 五月玫瑰六月丁香| 看片在线看免费视频| 亚洲无线在线观看| 国产精品亚洲美女久久久| 欧美性猛交╳xxx乱大交人| 久久亚洲国产成人精品v| 欧美一区二区亚洲| 伊人久久精品亚洲午夜| 99久久无色码亚洲精品果冻| 插逼视频在线观看| 精品一区二区三区视频在线| 男人舔奶头视频| 少妇熟女欧美另类| 97人妻精品一区二区三区麻豆| 亚洲欧美精品综合久久99| 一a级毛片在线观看| 精品久久久久久成人av| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 亚洲精品国产成人久久av| 午夜日韩欧美国产| 观看美女的网站| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 国产精品亚洲一级av第二区| 麻豆国产av国片精品| 99久久久亚洲精品蜜臀av| 狂野欧美白嫩少妇大欣赏| 蜜臀久久99精品久久宅男| 成人二区视频| 久久亚洲精品不卡| 中文在线观看免费www的网站| 免费电影在线观看免费观看| 欧美一级a爱片免费观看看| 精品久久久久久久久av| 91狼人影院| 搡老妇女老女人老熟妇| .国产精品久久| 男人的好看免费观看在线视频| 国产成人精品久久久久久| 熟女人妻精品中文字幕| 2021天堂中文幕一二区在线观| 欧美3d第一页| 搡女人真爽免费视频火全软件 | 看非洲黑人一级黄片| 亚洲国产精品久久男人天堂| 五月玫瑰六月丁香| 欧美高清成人免费视频www| 欧美性猛交╳xxx乱大交人| 国产成人freesex在线 | 日韩精品青青久久久久久| 桃色一区二区三区在线观看| 日韩精品有码人妻一区| 精品人妻一区二区三区麻豆 | 欧美国产日韩亚洲一区| 精品午夜福利在线看| 亚洲av中文字字幕乱码综合| 搡老妇女老女人老熟妇| 精品不卡国产一区二区三区| 在线免费十八禁| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 给我免费播放毛片高清在线观看| 此物有八面人人有两片| 亚洲av不卡在线观看| 日日撸夜夜添| 真人做人爱边吃奶动态| 69人妻影院| 欧美日韩综合久久久久久| 久久久色成人| 人人妻人人澡欧美一区二区| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 亚洲在线自拍视频| 乱人视频在线观看| 黄色一级大片看看| 亚洲av免费高清在线观看| 日韩精品青青久久久久久| 免费看日本二区| 99久久精品热视频| 国产av麻豆久久久久久久| 欧美性感艳星| 三级男女做爰猛烈吃奶摸视频| 一本一本综合久久| 午夜福利在线在线| 高清毛片免费看| 亚洲精品色激情综合| 真人做人爱边吃奶动态| 美女xxoo啪啪120秒动态图| 天天一区二区日本电影三级| 久久久久国内视频| 91午夜精品亚洲一区二区三区| 国产单亲对白刺激| 国产私拍福利视频在线观看| 国产男人的电影天堂91| 国产精品人妻久久久久久| 欧美日韩乱码在线| 欧美区成人在线视频| 乱系列少妇在线播放| 国产 一区精品| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区在线av高清观看| 亚洲成av人片在线播放无| 日韩av在线大香蕉| 色哟哟哟哟哟哟| 色视频www国产| 99久久精品热视频| 午夜视频国产福利| 69av精品久久久久久| 国产一级毛片七仙女欲春2| 久久精品国产亚洲网站| 久久精品夜夜夜夜夜久久蜜豆| av在线老鸭窝| 99九九线精品视频在线观看视频| 在线观看66精品国产| 国产片特级美女逼逼视频| 色在线成人网| 国产综合懂色| 亚洲无线在线观看| 国语自产精品视频在线第100页| 男人和女人高潮做爰伦理| 99国产极品粉嫩在线观看| 日本三级黄在线观看| 有码 亚洲区| 日韩,欧美,国产一区二区三区 | 99国产精品一区二区蜜桃av| 麻豆久久精品国产亚洲av| 国产单亲对白刺激| 国产一区亚洲一区在线观看| 伦精品一区二区三区| 最后的刺客免费高清国语| 国产乱人视频| 亚洲不卡免费看| 精品久久国产蜜桃| 欧美不卡视频在线免费观看| 亚洲欧美日韩高清专用| 18禁黄网站禁片免费观看直播| 日本一本二区三区精品| 亚洲av一区综合| 你懂的网址亚洲精品在线观看 | 亚洲国产精品成人久久小说 | 欧美zozozo另类| 身体一侧抽搐| 精品午夜福利视频在线观看一区| 免费高清视频大片| 久久久久国产网址| 成人性生交大片免费视频hd| 色噜噜av男人的天堂激情| 青春草视频在线免费观看| 日日干狠狠操夜夜爽| 国产免费一级a男人的天堂| 99久国产av精品| 亚洲熟妇中文字幕五十中出| 日韩,欧美,国产一区二区三区 | 国模一区二区三区四区视频| 嫩草影视91久久| 99热这里只有精品一区| 久久精品综合一区二区三区| 国语自产精品视频在线第100页| 国产精品美女特级片免费视频播放器| 久久精品久久久久久噜噜老黄 | 国产色爽女视频免费观看| 偷拍熟女少妇极品色| av.在线天堂| 欧美3d第一页| 波多野结衣高清作品| 欧美激情国产日韩精品一区| 国产精品嫩草影院av在线观看| 欧美日韩在线观看h| 淫妇啪啪啪对白视频| 超碰av人人做人人爽久久| 永久网站在线| 精品日产1卡2卡| 亚洲精品粉嫩美女一区| h日本视频在线播放| 美女 人体艺术 gogo| 草草在线视频免费看| 免费av观看视频| 国产精品久久视频播放| 人人妻人人澡欧美一区二区| 男女那种视频在线观看| 69人妻影院| 国产精品综合久久久久久久免费| 国产91av在线免费观看| 亚洲无线在线观看| 亚洲人成网站在线播放欧美日韩| 欧美3d第一页| 长腿黑丝高跟| 国产黄片美女视频| 在线看三级毛片| 免费电影在线观看免费观看| 内射极品少妇av片p| 精品一区二区三区视频在线| 亚洲欧美成人综合另类久久久 | 亚洲av成人精品一区久久| 69人妻影院| 久久热精品热| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院精品99| 久久久久国产精品人妻aⅴ院| 一级毛片我不卡| 97碰自拍视频| 国产又黄又爽又无遮挡在线| 成人特级av手机在线观看| 天天一区二区日本电影三级| 一级毛片我不卡| av天堂在线播放| 精品一区二区三区av网在线观看| 最近中文字幕高清免费大全6| 22中文网久久字幕| 午夜久久久久精精品| 国产黄色小视频在线观看| 欧美一区二区精品小视频在线| 久久精品国产鲁丝片午夜精品| 久久综合国产亚洲精品| 成人av一区二区三区在线看| 亚洲久久久久久中文字幕| 嫩草影院精品99| 身体一侧抽搐| 亚洲图色成人| 免费观看人在逋| 久久久久久九九精品二区国产| 久久久久精品国产欧美久久久| 国产精品女同一区二区软件| 国产女主播在线喷水免费视频网站 | 在线播放无遮挡| 给我免费播放毛片高清在线观看| 男女下面进入的视频免费午夜| 18+在线观看网站| 亚洲av免费高清在线观看| 搡女人真爽免费视频火全软件 | 久久久久久国产a免费观看| 国产亚洲精品久久久久久毛片| 晚上一个人看的免费电影| 露出奶头的视频| 亚洲一区二区三区色噜噜|