• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of Geographical Origin and Protein Content of Acacia Gums Using Infrared Spectroscopy and Chemometrics

    2017-10-11 11:36:34ZOUXiaoboAlaaKamalMohmmedKHAIRKHOGLYSHIJiyongMelHOLMES
    食品科學(xué) 2017年20期
    關(guān)鍵詞:阿拉伯膠計量學(xué)基金項目

    ZOU Xiaobo, Alaa Kamal Mohmmed KHAIR KHOGLY, SHI Jiyong, Mel HOLMES

    (1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;2. School of Food Science and Nutrition, the University of Leeds, Leeds LS1 3AB, United Kingdom)

    Determination of Geographical Origin and Protein Content of Acacia Gums Using Infrared Spectroscopy and Chemometrics

    ZOU Xiaobo1, Alaa Kamal Mohmmed KHAIR KHOGLY1, SHI Jiyong1, Mel HOLMES2

    (1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;2. School of Food Science and Nutrition, the University of Leeds, Leeds LS1 3AB, United Kingdom)

    The feasibility of using Fourier transform infrared (FTIR) spectroscopy and chemometrics as a rapid and noninvasive technique to determine the geographical origin and protein content of Sudanese Acacia gums was investigated.Seventy-two samples of Acacia gums were collected from six different regions (12 samples from each region). Linear discriminant analysis (LDA) was used to discriminate the geographical origin of Acacia gums, and backward in terval partial least squares (Bi-PLS) was applied to build a prediction model for the protein content of Acacia gums. The results showed that the recognition rates of LDA for calibration set (48 samples) and prediction set (24 samples) were both 100% when the fi rst 6 principal components were used. In addition, Bi-PLS yielded a good prediction model (RP= 0.937 3 and RMSEP =0.173%) for protein content by using the optimal combination of 4 out of 20 spectral intervals. Hence, FTIR spectroscopy coupled with chemometrics can be considered as a valid approach for the determination of the geographical origin and protein content of Acacia gums.

    Acacia gums; Fourier transform infrared (FTIR) spectroscopy; geographical origin; protein content;linear discriminant analysis (LDA); backward interval partial least squares (Bi-PLS)

    Acacia gums, also called gums Arabic, are the dried exudates extracted from the stem and branches of Acacia trees. They are often used as non-digestible food ingredients in the foodstuffs, such as an emulsifier in the manufacture of soft drinks and a stabilizer in fermentation milk[1]. The chemical composition of gum Arabic is complex and consists of a group of macromolecules characterized by a high proportion of carbohydrates (-97%), which are predominantly composed of D-galactose and L-arabinose units and a low proportion of proteins (<3%)[2]. Acacia gums from different Acacia species exhibited different characteristics, and even gums in the same species bear some difference because of their geographical origin. For example, Acacia senegal(A. senegal) has a higher degree of branching and better emulsifying properties than Acacia seyal (A. seyal), gum does[3]. This is because their biochemical composition and molecular characteristics can vary, depending on internal and external factors (Acacia specie, tree location, or weather conditions) and postharvesting processes (storage conditions,filtration, spray drying, irradiation, or heat treatments)[4].Hence, recognition of these Acacia gums is of great signifi cance for the market and the end use.

    Traditionally, the identifi cation of the speices or quality of Acacia gums can be conducted by sensory analysis, such as observing the color and smelling, which are unfortunately impeded the subjectivity of human. Other physicochemical methods, such as detection of the sugar and nitrogen content[5], and component analysis by using combined gel permeation chromatography and multi-angle laser light scattering (GPC-MALLS)[6], are either destructive to samples or time-consuming. Nuclear magnetic resonance(NMR) was also regarded as an effective technology to identify A. senegal and A. seyal, but it may be inaccessible for industrial high throughput screening purposes[7]. As a result, a rapid, non-invasive and economical method for distinguishing the speices or the quality of Acacia gums is highly desired.

    Fourier transform infrared (FTIR) spectroscopy, which keeps the advantages of being robust, cost-effective and nondestructive to sample, has been widely used as an effective identifi cation and quantitative analysis technique[8]. In recent years, many studies have shown the feasibility of using FTIR spectroscopy in discriminating similar foodstuffs and medicines, such as walnut oil[9], Cortex Eucommiae[10],minced beef[11], and detecting specific components, such as free acids, invertase, moisture, hydroxymethyl furfural,polyphenol oxidase and electrical conductivity[12-14].Quantification of gums is another interesting issue for determining the quality of the gums. For A. senegal and A. seyal gums, one of the most signifi cant difference is their protein content (-2.5% for A. senegal, -1% for A. seyal gums)[15]. Accordingly, the protein content can be used as an imporatant quality index of these Acacia gums.

    Sudan is a dominant leader in Acacia gum production in the world[16]. The aim of the present work is discriminating the A. senegal and A. seyal gums collected from Sudan,and predicting their total protein content by using FTIR spectroscopy and chemometrics.

    1 Materials and Methods

    1.1 Materials

    Two categories of Acacia gum samples (n=72) were collected from different regions in Sudan, namely A. senegal(n=36) (Group (A), n=12∶ West Bara Locality in North Kordofan State; Group (B), n=12∶ Ennuhud Locality in West Kordofan State; Group (D), n=12∶ Acacia gum Ltd., Sudan)and Acacia sayal (n=24) (Group (C), n=12∶ South Kordofan State; Group (E), n=12∶ Acacia gum Ltd., Sudan). One other Acacia gum sample was obtained from China (Group (F),n=12∶ Siyuan Biology Ltd., Henan, China). All other reagents are of analytical grade purchased from Sinopharm Chemical Reagent Co. Ltd., Shanghai, China.

    1.2 Methods

    1.2.1 Determination of total protein content

    Firstly, all raw Acacia gum samples were dried ina forced draught oven (Shanghai Yi-Heng Machine Co.,Shanghai, China) at 50 ℃ for 24 h and then mashed into powder by using a cyclone mill. The total protein contents of the gums were measured by using the Kjeldahl method[17].

    1.2.2 FTIR spectroscopy

    FTIR spectra of gum powders were collected by using a FTIR spectrometer (Thermo Scientifi c Nicolet iS50, Thermo Fisher, USA). The spectra were obtained at reflectance mode from 650–4 000 cm?1at a resolution of 4 cm?1and the total number of scans was 32. Three spectra were recorded for each sample and the average spectrum was used for subsequent data analysis.

    1.2.3 Chemometrics

    Pri nciple component analysis (PCA) is a statistical procedure which is able to reduce the dimensions of the data set by using an orthogonal transformation[18]. After PCA, the useful information can be extracted from the original spectral data by eliminating overlapping information and the remained dimensions are defined by principal components (PCs).It is able to provide the visual graphical information for determining differences within and between cluster trends[19].

    Lin ear discriminant analysis (LDA) is a c lassical statistical approach for feature extraction and dimension reduction[20]. LDA can classify the objects into groups by estimating the distance between each observation form all group centers[21]. It manages to find out the optimal transformation (projection) that minimizes the intraclass distance and maximizes the inter-class distance simultaneously in order to achieve the maximum discrimination.

    Partial least squares (PLS) regression is one of the multiple linear regression methods[22]. PLS is useful when number of predictors (i.e. spectral peaks) is much higher than number of samples in data set[23]. Backward interval partial least squares (Bi-PLS) regression is an extension of PLS. The basic principle of Bi-PLS is as follows[24]∶ The fullspectrum region is split into a number of equidistant spectral subintervals. Then, PLS models are calculated with each subinterval left out. The fi rst left out interval is the one that when it gives the poorest performing model with respect to the root mean square error of cross-validation (RMSECV).

    A cross-validation process was used in model validation with leave-one-out method. The performance of the regression models was evaluated according to the correlation coefficient of calibration set (Rc) and prediction set (RP), RMSECV and root mean standard error of prediction set (RMSEP). Gen erally, a good model should have high correlation coefficients along with low RMSECV and RMSEP[25].

    1.3 Data analysis

    Matlab V7.0 (MathWorks, USA) was used for data processing under Windows 7.

    2 Results and Analysis

    2.1 The total protein content of Aca cia gums

    All 72 samples were randomly separated into two subsets, including the calibration set (48 samples) used to build models and the prediction set (24 samples) used to test the robustness of models. The total protein content in Acacia gums is shown in Table 1. It can be seen that the total protein contents of A. senegal (Groups (A), (B), and (D)) and A. sayal (Groups (C) and (E)) were in the range of 1.53%–2.22% and 0.56%–1.87%, respectively. These results are close to the Sud anese Standards and Metrology Organization (SSMO) in which the protein contents for A. senegal and A. sayal gums are recorded to be in the range of 1.50%–2.70% and 0.7%–1.0%, respectively. In comparison,the Acacia gums obtained from Group (D) had the highest protein content, while the Acacia gums obtained from China had the lowest protein content. These difference were closely associated with the species of the Acacia gums and also with the gum origin, age, storage conditions, and so forth[26].

    Table 1 Protein content of Acacia gums

    2.2 Spectra investigation

    The FTIR spectra for the Acacia gum samples acquired in the range of 650–4 000 cm–1are shown in Fig. 1. In order to avoid the strong absorption of water, especially in the amide I band region (1 720–1 580 cm–1)[17], Acacia gums were fully dried before spectra collection. For all of the Acacia gums, there are four main characteristic spectral bands. No significant difference can be observed between the FTIRspectra of different groups. This is because all of them consist of similar kinds of chemical components. Table 2 shows the wavenumbers and attribution of the characteristic spectral bands of these Acacia gums.

    Fig. 1 FTIR spectra of Acacia gums

    Table 2 Wavenumbers and ttribution of the characteristic spectral bands in FTIR spectra of Acacia gums

    2.3 Principle component analysis of FTIR spectra of Acacia gum

    Prior to regression analysis, an exploratory analysis was performed in order to investigate any trend of discrimination among the Acacia gums from different regions. PCA is the most widely applied linear projection method for unsupervised exploratory multivariate data analysis to visualize the similarities and differences between the spectra[29]. Before PCA, the raw mean spectra were preprocessed by using standard normal variate (SNV). Fig. 2a shows the score plot of the two-dimensional component space of six categories of Acacia gum samples. The accumulated variance contribution rates were 99.33% for the top two PCs.The classifi cation trend of these six categories of Acacia gum samples can be also observed from the score plot. The Acacia gum samples obtained from China were clearly separated from that obtained from Sudan, indicating the obvious difference of the chemical constituents between the Acacia gum from different geographical origins. In order to furtherly visualize the difference between Acacia gum collected from Sudan, PCA was conducted for the Acacia gum regardless of Group (F) and the score plot of the two-dimensional was shown in Fig. 2b. It can be seen that the five categories of Acacia gum from Sudan are clearly distinguished from each other, demonstrating their intrinsic difference. Nevertheless,PCA is not able to defi ne the boundaries of the six categories to discriminate the Acacia gum samples so that further analysis was carried out in the next sections.

    Fig. 2 S core cluster plot of top two principal components (PCs) for Acacia gum samples

    2.4 Determination of geographical of Ac acia gum by LDA

    LDA focus on finding the optimal boundaries between the classes[30]. The number of PCs is crucial to the performance of the LDA discrimination model. The discrimination rates by cross-validation were used to optimize the number of PCs. Fig. 3 shows the discrimination rates of LDA model according to different PCs by cross-validation.The optimal LDA models were achieved when the number of PCs was 6, and meanwhile the discrimination rate was up to 100% for both calibration set and prediction set. These results indicated that an ideal separation can be achieved for these six categories of Acacia gum. On the basis of LDA,a cluster analysis was conducted. Samples were grouped in clusters based on their nearness or similarity. Fig. 4 shows the dendrogram of Acacia gum samples. All the Acacia gums in the same group gathered together and were distinguished from other groups. In addition, when all the Acacia gum were clustered into two big groups, Group (E) and Group (F) were defi ned into the same group. This may be due to the reason that Group (E) and (F) had similar protein contents, which were much lower than those of other groups.

    Fig. 3 Rec ognition rates of LDA models

    Fig. 4 Dendrogram of Acacia gum samples

    2.5 Prediction of the total protein content in Acacia gum by Bi-PLS

    Fig. 5 Spectral interval selected by Bi-PLS (a) and actual versus predicted protein contents (b) in calibration set and prediction set

    In this study, the Bi-PLS approach was applied for the quantification of the total protein contents in Acacia gums.Bi-PLS aimed to select the most important subintervals in the whole data matrix. The spectra data set was split into some subintervals, and then PLS models were calculated when each subinterval left out. When the whole spectrum region was split into 20 subintervals, the optimal Bi-PLS model for the total protein content was obtained with the combination of four subintervals, resulting in the lowest RMSECV of 0.155%.As shown in Fig. 5a, the optimal subintervals are [1 4 7 19],which correspond to 650–817, 1 152–1 319, 1 652–1 819 and 3 666–3 833 cm–1, respectively. Fig. 5b presents the performance of the Bi-PLS model on the calibration and prediction set. For the prediction set, RPwas 0.937 3 and RMSEP was 0.173%,demonstrating that the Bi-PLS model can be used to predict the total protein content of Acacia gums.

    3 Conclusion

    FTIR spectroscopy technique combined with chemometrics was successfully established and employed to distinguish the geographical origins and predict the total protein contents of Acacia gums. The results showed that the optimal LDA model was achieved in determining the geographic origins with 100% of discrimination rate for both the calibration and prediction set when the number of PCs was 6. The Bi-PLS model showed a good performance in predicting the total protein content (RP= 0.937 3 and RMSEP = 0.173%) by using the optimal combination of 4 spectral subintervals among 20 subintervals. FTIR spectroscopy coupled with chemometrics can be considered as a valid approach for determination of the geographical origin and protein content of Acacia gums.

    [1] DA UQAN E, ABDULLAH A. Utiliz ation of gum Arabic for industries and human health[J]. American Journal of Applied Sciences, 2013,10(10)∶ 1270-1279. DOI∶10.3844/ajassp.2013.1270.1279.

    [2] IS LAM A M, PHILLIPS G O, SLJIVO A, et al. A review of recent developments on the regulatory, structural and functional aspects of gum arabic[J]. Food Hydrocolloids, 1997, 11(4)∶ 493-505.DOI∶10.1016/S0268-005X(97)80048-3.

    [3] EL MANAN M, AL-ASSAF S, PHILLIPS G O, et al. Studies on Acacia exudate gums∶ Part Ⅵ. Interfacial rheology of Acacia senegal and Acacia seyal[J]. Food Hydrocolloids, 2008, 22(4)∶ 682-689.DOI∶10.1016/j.foodhyd.2007.02.008.

    [4] LO PEZ-TORREZ L, NIGEN M, WILLIAMS P, et al. Acacia senegal vs. Acacia seyal gums-Part 1∶ composition and structure of hyperbranched plant exudates[J]. Food Hydrocolloids, 2015, 51∶41-53. DOI∶10.1016/j.foodhyd.2015.04.019.

    [5] DA OUB R M A, ELMUBARAK A H, MISRAN M, et al.Characterization and functional properties of some natural Acacia gums[J]. Journal of the Saudi Society of Agricultural Sciences, 2016.DOI∶10.1016/j.jssas.2016.05.002.

    [6] AL ASSAF S, PHILLIPS G, WILLIAMS P. Studies on Acacia exudate gums∶ part Ⅱ. Molecular weight comparison of the Vulgares and Gummiferae series of Acacia gums[J]. Food Hydrocolloids, 2005,19(4)∶ 661-667. DOI∶10.1016/j.foodhyd.2004.09.003.

    [7] NIE S P, WANG C, CUI S W, et al. The core carbohydrate structure of Acacia seyal var. seyal (gum Arabic)[J]. Food Hydrocolloids, 2013,32(2)∶ 221-227. DOI∶10.1016/j.foodhyd.2012.12.027.

    [8] SI NELLI N, SPINARDI A, EGIDIO V D, et al. Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.)by near and mid-infrared spectroscopy[J]. Postharvest Biology and Technology, 2008, 50(1)∶ 31-36. DOI∶10.1016/j.postharvbio.2008.03.013.

    [9] LI B, WANG H, ZHAO Q, et al. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy∶a comparative study[J]. Food Chemistry, 2015, 181∶ 25-30.DOI∶10.1016/j.foodchem.2015.02.079.

    [10] W ANG X, SHENG D, ZHU Z, et al. Identification of Cortex Eucommiae from different producing areas by FTIR microspectroscopy[J].Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2015, 141∶ 94-98. DOI∶10.1016/j.lwt.2013.01.027.

    [11] A LAMPRESE C, CASALE M, SINELLI N, et al. Detection of minced beef adulteration with turkey meat by UV-vis, NIR and MIR spectroscopy[J]. LWT-Food Science and Technology, 2013, 53(1)∶225-232. DOI∶10.1016/j.lwt.2013.01.027.

    [12] P RADO B M, KIM S, ?ZEN B F, et al. Differentiation of carbohydrate gums and mixtures using Fourier transform infrared spectroscopy and chemometrics[J]. Journal of Agricultural and Food Chemistry, 2005, 53(8)∶ 2823-2829. DOI∶10.1021/jf0485537.

    [13] KO NG J, YU S. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimica et Biophysica Sinica,2007, 39(8)∶ 549-559. DOI∶10.1111/j.1745-7270.2007.00320.x.

    [14] BALTACIOGLU H, BAYINDIRLI A, SEVERCAN F. Secondary structure and conformational change of mushroom polyphenol oxidase during thermosonication treatment by using FTIR spectroscopy[J]. Food Chemistry, 2017, 214∶ 507-514. DOI∶10.1016/j.foodchem.2016.07.021.

    [15] GA SHUA I B, WILLIAMS P A, BALDWIN T C. Molecular characteristics, association and interfacial properties of gum Arabic harvested from both Acacia senegal and Acacia seyal[J]. Food Hydrocolloids, 2016, 61∶ 514-522. DOI∶10.1016/j.foodhyd.2016.06.005.

    [16] OL AWALE A B H, OKEGBILE J, MOHAMMED A, et al. Effect of starch and gum arabic binders in the combustion characteristics of briquette prepared from sawdust[J]. International Journal of Scientifi c &Engineering Research, 2014, 5(3)∶ 1005-1009.

    [17] RE NARD D, LAVENANT-GOURGEON L, RALET M C, et al. Acacia senegal∶ continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges[J].Biomacromolecules, 2006, 7(9)∶ 2637-2649. DOI∶10.1021/bm060145j.

    [18] TAN ASKOVI? I, GOLOBOCANIN D, MILJEVI? N. Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters[J]. Journal of Geochemical Exploration, 2012, 112(1)∶ 226-234.DOI∶10.1016/j.gexplo.2011.08.014.

    [19] TEYE E, HUANG X, DAI H, et al. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classifi cation[J].Spectrochimica Acta Part A∶ Molecular and Biomolecular Spectroscopy,2013, 114(10)∶ 183-189. DOI∶10.1016/j.saa.2013.05.063.

    [20] JIA S Q, YANG L G, AN D, et al. Feasibility of analyzing frostdamaged and non-viable maize kernels based on near infrared spectroscopy and chemometrics[J]. Journal of Cereal Science, 2016,69∶ 145-150. DOI∶10.1016/j.jcs.2016.02.018.

    [21] MARQU ES A S, CASTRO J N, COSTA F J, et al. Near-infrared spectroscopy and variable selection techniques to discriminate Pseudomonas aeruginosa strains in clinical samples[J]. Microchemical Journal, 2016, 124∶ 306-310. DOI∶10.1016/j.microc.2015.09.006.

    [22] WOLD S, SJOSTROM M, ERIKSSON L. PLS-regression∶ a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2)∶ 109-130. DOI∶10.1016/S0169-7439(01)00155-1.

    [23] OLESZ KO A, HARTWICH J, WOJTOWICZ A, et al. Comparison of FTIR-ATR and Raman spectroscopy in determination of VLDL triglycerides in blood serum with PLS regression[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2017, 183∶239-246. DOI∶10.1016/j.saa.2017.04.020.

    [24] ZOU X B, ZHAO J W, LI Y X. Selection of the effi cient wavelength regions in FT-NIR spectroscopy for determination of SSC of ‘Fuji’apple based on BiPLS and FiPLS models[J]. Vibrational Spectroscopy,2007, 44(2)∶ 220-227. DOI∶10.1016/j.vibspec.2006.11.005.

    [25] WU D, SUN D W, HE Y. Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet[J]. Innovative Food Science & Emerging Technologies, 2012,16(39)∶ 361-372. DOI∶10.1016/j.ifset.2012.08.003.

    [26] ALASS AF S, ANDRESBRULL M, CIRRE J, et al. Structural changes following industrial processing of Acacia gums[M]//KENNEDY J F, PHILLIPS G O, WILLIAMS P A. Gum Arabic.Special publication∶ Royal Society of Chemistry, 2011∶ 153-168.DOI∶10.1039/9781849733106-00153.

    [27] BHUSHETTE P R, ANNAPURE U S. Comparative study of Acacia nilotica exudate gum and Acacia gum[J]. International Journal of Biological Macromolecules, 2017, 102∶ 266-271. DOI∶10.1016/j.ijbiomac.2017.03.178.

    [28] ADERIBIGBE B A, VARAPRASAD K, SADIKU E R, et al.Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels[J]. International Journal of Biological Macromolecules, 2015, 73∶ 115-123. DOI∶10.1016/j.ijbiomac.2014.10.064.

    [29] DONG Y J, SRENSEN K M, HE S, et al. Gum Arabic authentication and mixture quantification by near infrared spectroscopy[J]. Food Control, 2017, 78∶ 144-149. DOI∶10.1016/j.foodcont.2017.02.002.

    [30] CHEN Q S, ZHAO J W, LIN H. Study on discrimination of Roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition[J].Spectrochimica Acta Part A∶ Molecular and Biomolecular Spectroscopy, 2009, 72(4)∶ 845-850. DOI∶10.1016/j.saa.2008.12.002.

    應(yīng)用紅外光譜結(jié)合化學(xué)計量學(xué)方法檢測阿拉伯膠產(chǎn)地和蛋白質(zhì)含量

    鄒小波1,Alaa Kamal Mohmmed KHAIR KHOGLY1,石吉勇1,Mel HOLMES2
    (1.江蘇大學(xué)食品與生物工程學(xué)院,江蘇 鎮(zhèn)江 212013;2.利茲大學(xué)食品科學(xué)與營養(yǎng)學(xué)院,英國 利茲 LS1 3AB)

    研究利用傅里葉紅外光譜結(jié)合化學(xué)計量學(xué)方法來實現(xiàn)對蘇丹阿拉伯膠的產(chǎn)地和蛋白質(zhì)含量的快速無損檢測的可行性。采集自6 個不同的產(chǎn)地,每個產(chǎn)地12 個,總計72 個阿拉伯膠樣本,作為研究對象,運用線性判別分析(linear discriminant analysis,LDA)和反向區(qū)間偏最小二乘(backward interval partial least squares,Bi-PLS)法分別實現(xiàn)對蘇丹阿拉伯膠的產(chǎn)地區(qū)分和蛋白質(zhì)含量檢測。結(jié)果表明,當(dāng)主成分?jǐn)?shù)為6時,LDA對樣本的訓(xùn)練集(48 個樣本)和預(yù)測集(24 個樣本)的識別率都為100%。Bi-PLS法回歸聯(lián)合20 個光譜子區(qū)間中的4 個子區(qū)間得到最佳的蛋白質(zhì)預(yù)測模型,其預(yù)測集相關(guān)系數(shù)為0.937 3,均方根誤差為0.173%。因此,利用傅里葉紅外光譜結(jié)合化學(xué)計量學(xué)方法可實現(xiàn)對蘇丹阿拉伯膠的產(chǎn)地以及蛋白質(zhì)的含量的快速無損檢測。

    阿拉伯膠;傅里葉紅外光譜;產(chǎn)地;蛋白質(zhì)含量;線性判別分析;反向區(qū)間偏最小二乘法

    TS201.1

    A

    1002-6630(2017)20-0229-06

    nces:

    2017-05-08

    “十二五”國家科技支撐計劃項目(2015BAD17B04);“十三五”國家重點研發(fā)計劃重點專項(2016YFD0401104);

    鄒小波(1974—),男,教授,博士,研究方向為食品與農(nóng)產(chǎn)品無損檢測。E-mail:zou_xiaobo@ujs.edu.cn

    國家自然科學(xué)基金面上項目(31671844);國家自然科學(xué)基金青年科學(xué)基金項目(31601543);

    中國博士后科學(xué)基金項目(2014T70483;2016M590422);江蘇省自然科學(xué)基金項目(BK20160506;BE2016306);

    江蘇省國際科技合作項目(BZ2016013);蘇州市科技發(fā)展計劃項目(SNG201503);

    江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目(PAPD)

    ZOU Xiaobo, KHAIR KHOGLY A K M, SHI Jiyong, et al. Determination of geographical origin and protein content of Acacia gums using infrared spectroscopy and chemometrics[J]. 食品科學(xué), 2017, 38(20)∶ 229-234. DOI∶10.7506/spkx1002-6630-201720033. http∶//www.spkx.net.cn

    ZOU Xiaobo, KHAIR KHOGLY A K M, SHI Jiyong, et al. Determination of geographical origin and protein content of Acacia gums using infrared spectroscopy and chemometrics[J]. Food Science, 2017, 38(20)∶ 229-234. DOI∶10.7506/spkx1002-6630-201720033. http∶//www.spkx.net.cn

    DOI∶10.7506/spkx1002-6630-201720033

    猜你喜歡
    阿拉伯膠計量學(xué)基金項目
    阿拉伯膠,食品添加劑里的“魔術(shù)師”
    生物化學(xué)計量學(xué)原理在離散生物動力系統(tǒng)的應(yīng)用
    云南化工(2021年5期)2021-12-21 07:41:34
    針刺治療失眠癥的文獻(xiàn)計量學(xué)分析
    常見基金項目的英文名稱(二)
    常見基金項目的英文名稱(一)
    維吾爾藥阿拉伯膠和乳香藥材摻偽的鑒別研究
    基于科學(xué)計量學(xué)的公安院??蒲信c評價
    2004-2013年中醫(yī)藥治療性早熟的文獻(xiàn)計量學(xué)分析
    阿拉伯膠的性質(zhì)和研究進(jìn)展
    河南科技(2014年12期)2014-02-27 14:10:29
    阿拉伯膠和羧甲基纖維素鈉對蕎麥面團(tuán)發(fā)酵流變學(xué)及烘焙特性的影響
    爱豆传媒免费全集在线观看| 狠狠婷婷综合久久久久久88av| 下体分泌物呈黄色| 日韩有码中文字幕| 国产精品 国内视频| 亚洲中文av在线| 久久热在线av| 首页视频小说图片口味搜索| 日韩制服丝袜自拍偷拍| 一本综合久久免费| 中文精品一卡2卡3卡4更新| 男女之事视频高清在线观看| 黑人巨大精品欧美一区二区mp4| 男女国产视频网站| 午夜福利在线观看吧| 中国美女看黄片| 成年av动漫网址| 国产精品国产三级国产专区5o| 欧美少妇被猛烈插入视频| 超色免费av| 欧美激情 高清一区二区三区| 久久久久久免费高清国产稀缺| 少妇的丰满在线观看| 国产成人精品无人区| 久久国产精品男人的天堂亚洲| 欧美性长视频在线观看| 久久久久国产一级毛片高清牌| 嫁个100分男人电影在线观看| 男女床上黄色一级片免费看| 亚洲精品av麻豆狂野| 18禁国产床啪视频网站| 动漫黄色视频在线观看| 中文字幕高清在线视频| 久久这里只有精品19| 精品久久久久久久毛片微露脸 | 天天躁夜夜躁狠狠躁躁| 国产一区二区在线观看av| 亚洲性夜色夜夜综合| 一区二区日韩欧美中文字幕| av国产精品久久久久影院| 美女主播在线视频| 精品久久久久久久毛片微露脸 | 窝窝影院91人妻| 两人在一起打扑克的视频| av网站免费在线观看视频| 啦啦啦 在线观看视频| 国产精品久久久人人做人人爽| 久久久精品区二区三区| 美女福利国产在线| av网站在线播放免费| 中国美女看黄片| 黄色视频不卡| 99久久人妻综合| 免费日韩欧美在线观看| 午夜免费鲁丝| 免费在线观看黄色视频的| 亚洲中文av在线| 丝袜喷水一区| 97人妻天天添夜夜摸| av天堂久久9| 99香蕉大伊视频| 成在线人永久免费视频| 国产精品麻豆人妻色哟哟久久| 精品一区在线观看国产| tocl精华| 中文字幕人妻丝袜制服| 精品一区二区三卡| 亚洲精品在线美女| 国产精品国产三级国产专区5o| 国产成人av激情在线播放| 狂野欧美激情性xxxx| 高清av免费在线| 制服人妻中文乱码| 两个人看的免费小视频| 亚洲精品久久午夜乱码| 啦啦啦在线免费观看视频4| 国产av国产精品国产| 王馨瑶露胸无遮挡在线观看| 亚洲欧美清纯卡通| 亚洲午夜精品一区,二区,三区| 女性被躁到高潮视频| 免费日韩欧美在线观看| 男人爽女人下面视频在线观看| 色老头精品视频在线观看| 亚洲中文日韩欧美视频| 黄色毛片三级朝国网站| 午夜福利视频精品| 中文字幕高清在线视频| 在线十欧美十亚洲十日本专区| 美女国产高潮福利片在线看| 一本大道久久a久久精品| 欧美日韩国产mv在线观看视频| 国产免费视频播放在线视频| 亚洲精品av麻豆狂野| 夜夜骑夜夜射夜夜干| 97人妻天天添夜夜摸| 妹子高潮喷水视频| 12—13女人毛片做爰片一| 国产在线一区二区三区精| 老熟女久久久| 亚洲伊人色综图| 精品欧美一区二区三区在线| 亚洲人成77777在线视频| 欧美激情高清一区二区三区| 91av网站免费观看| 国产成人精品无人区| 美女大奶头黄色视频| 这个男人来自地球电影免费观看| 在线观看免费日韩欧美大片| 后天国语完整版免费观看| av福利片在线| 欧美黄色淫秽网站| 亚洲免费av在线视频| 老司机福利观看| 久久久精品94久久精品| 脱女人内裤的视频| 精品高清国产在线一区| 亚洲精品国产av成人精品| a 毛片基地| 建设人人有责人人尽责人人享有的| 国产日韩欧美视频二区| 又紧又爽又黄一区二区| 韩国高清视频一区二区三区| 亚洲国产成人一精品久久久| 久久久久久久国产电影| 无遮挡黄片免费观看| 宅男免费午夜| 精品少妇黑人巨大在线播放| 久久国产精品大桥未久av| 老鸭窝网址在线观看| 青草久久国产| 菩萨蛮人人尽说江南好唐韦庄| 国产成人免费观看mmmm| 久久久国产一区二区| 国产成人欧美在线观看 | a 毛片基地| 欧美 日韩 精品 国产| 国产亚洲av片在线观看秒播厂| av欧美777| 国产一区二区三区综合在线观看| 国产精品一区二区在线观看99| 肉色欧美久久久久久久蜜桃| 亚洲天堂av无毛| 国产成人免费观看mmmm| 成人影院久久| 咕卡用的链子| 韩国高清视频一区二区三区| 91成人精品电影| 80岁老熟妇乱子伦牲交| 美女高潮到喷水免费观看| 99国产精品一区二区蜜桃av | 欧美国产精品va在线观看不卡| 天堂俺去俺来也www色官网| 女人高潮潮喷娇喘18禁视频| 精品人妻在线不人妻| 国产精品二区激情视频| 亚洲av日韩在线播放| 成年人黄色毛片网站| 精品欧美一区二区三区在线| 亚洲情色 制服丝袜| 亚洲精品av麻豆狂野| 国产精品一区二区精品视频观看| 999久久久国产精品视频| 亚洲精品久久成人aⅴ小说| av有码第一页| 亚洲欧美精品自产自拍| 国产成人影院久久av| 国产欧美日韩综合在线一区二区| √禁漫天堂资源中文www| 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一出视频| 性色av一级| videos熟女内射| 两个人免费观看高清视频| 国产欧美亚洲国产| 纵有疾风起免费观看全集完整版| 最黄视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 日本av手机在线免费观看| 中文字幕精品免费在线观看视频| 国产精品国产三级国产专区5o| 午夜免费成人在线视频| 蜜桃在线观看..| 免费高清在线观看日韩| 最近最新中文字幕大全免费视频| 母亲3免费完整高清在线观看| 国产精品成人在线| 狂野欧美激情性xxxx| 亚洲欧洲日产国产| 精品国内亚洲2022精品成人 | 久久久精品免费免费高清| 成人免费观看视频高清| 中亚洲国语对白在线视频| 日韩有码中文字幕| av一本久久久久| 欧美性长视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 热99久久久久精品小说推荐| 人人妻人人澡人人爽人人夜夜| 色精品久久人妻99蜜桃| 国产成人一区二区三区免费视频网站| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人一区二区三| 啦啦啦啦在线视频资源| tube8黄色片| 91成年电影在线观看| 日本精品一区二区三区蜜桃| 天天操日日干夜夜撸| 精品国产乱码久久久久久小说| 成人影院久久| 麻豆乱淫一区二区| 国产精品国产av在线观看| 男女之事视频高清在线观看| 国产一区二区在线观看av| 久久99热这里只频精品6学生| 久久精品亚洲熟妇少妇任你| 久久精品国产a三级三级三级| 精品乱码久久久久久99久播| 亚洲精品自拍成人| 国产片内射在线| 国产日韩欧美视频二区| 久久毛片免费看一区二区三区| 亚洲成av片中文字幕在线观看| 美女高潮到喷水免费观看| 美女扒开内裤让男人捅视频| 成年av动漫网址| 色精品久久人妻99蜜桃| 99国产精品一区二区三区| 亚洲国产精品999| 性少妇av在线| 飞空精品影院首页| 桃红色精品国产亚洲av| 男人爽女人下面视频在线观看| 国产精品九九99| 欧美另类一区| 日本五十路高清| 亚洲精品久久久久久婷婷小说| 91九色精品人成在线观看| 午夜福利,免费看| 首页视频小说图片口味搜索| 日韩制服丝袜自拍偷拍| 久久久久国内视频| 黄色视频在线播放观看不卡| 俄罗斯特黄特色一大片| 国精品久久久久久国模美| 日韩 欧美 亚洲 中文字幕| 69精品国产乱码久久久| 777久久人妻少妇嫩草av网站| 91成年电影在线观看| 亚洲欧洲精品一区二区精品久久久| videos熟女内射| 免费高清在线观看视频在线观看| 中文字幕精品免费在线观看视频| 久久久欧美国产精品| 在线观看免费日韩欧美大片| 老司机亚洲免费影院| 国产精品九九99| 国产人伦9x9x在线观看| 久久精品熟女亚洲av麻豆精品| 99久久国产精品久久久| 午夜视频精品福利| 欧美精品一区二区免费开放| 国产精品99久久99久久久不卡| 大陆偷拍与自拍| av天堂久久9| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 亚洲国产精品成人久久小说| 男女之事视频高清在线观看| 欧美乱码精品一区二区三区| 男女床上黄色一级片免费看| 91大片在线观看| 精品国产一区二区三区四区第35| 国产97色在线日韩免费| 精品亚洲乱码少妇综合久久| 99久久国产精品久久久| 在线亚洲精品国产二区图片欧美| 久久天躁狠狠躁夜夜2o2o| 精品国产国语对白av| 国产91精品成人一区二区三区 | 老司机午夜福利在线观看视频 | 国产在线观看jvid| 色婷婷av一区二区三区视频| 日韩中文字幕欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 搡老熟女国产l中国老女人| 国产在线视频一区二区| 777米奇影视久久| 亚洲伊人色综图| 欧美人与性动交α欧美精品济南到| 黄色视频在线播放观看不卡| 久久精品国产亚洲av高清一级| 亚洲av片天天在线观看| 国产欧美亚洲国产| 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| √禁漫天堂资源中文www| 91成人精品电影| 成人黄色视频免费在线看| 久久国产精品影院| 欧美在线一区亚洲| 欧美国产精品va在线观看不卡| 亚洲av日韩精品久久久久久密| 免费av中文字幕在线| 97在线人人人人妻| 精品一区二区三区四区五区乱码| 自线自在国产av| 69精品国产乱码久久久| 热re99久久精品国产66热6| 亚洲av欧美aⅴ国产| 91九色精品人成在线观看| 亚洲中文av在线| xxxhd国产人妻xxx| 亚洲男人天堂网一区| av一本久久久久| 国产xxxxx性猛交| 日韩大片免费观看网站| 波多野结衣av一区二区av| 国产一区二区在线观看av| 三上悠亚av全集在线观看| 国产成人影院久久av| 在线 av 中文字幕| 男女免费视频国产| 国产精品熟女久久久久浪| 欧美日韩亚洲综合一区二区三区_| 黄色怎么调成土黄色| 国产又色又爽无遮挡免| svipshipincom国产片| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 亚洲精品中文字幕在线视频| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 色精品久久人妻99蜜桃| 少妇 在线观看| 国产精品久久久久久人妻精品电影 | www.熟女人妻精品国产| 国产欧美日韩一区二区三 | 国产精品影院久久| 亚洲国产av影院在线观看| 男人舔女人的私密视频| 国产国语露脸激情在线看| 婷婷成人精品国产| 大香蕉久久成人网| 国产日韩欧美视频二区| 日本av免费视频播放| 动漫黄色视频在线观看| 一区二区三区精品91| 亚洲欧美激情在线| 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 69精品国产乱码久久久| 91字幕亚洲| 欧美日韩视频精品一区| 国产成人欧美| 欧美日韩一级在线毛片| 老熟女久久久| 亚洲精品粉嫩美女一区| 亚洲精品国产色婷婷电影| 国产主播在线观看一区二区| av网站在线播放免费| 美女午夜性视频免费| 国产成人欧美在线观看 | 欧美日韩亚洲高清精品| 亚洲一卡2卡3卡4卡5卡精品中文| 91字幕亚洲| 午夜老司机福利片| 国产亚洲av片在线观看秒播厂| 热99re8久久精品国产| www.自偷自拍.com| 日韩一卡2卡3卡4卡2021年| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 国产在线一区二区三区精| 亚洲国产av新网站| 精品人妻一区二区三区麻豆| 亚洲第一欧美日韩一区二区三区 | 久久毛片免费看一区二区三区| 男女高潮啪啪啪动态图| 亚洲男人天堂网一区| 精品一区二区三区av网在线观看 | 国产精品一区二区在线观看99| 免费一级毛片在线播放高清视频 | 日本vs欧美在线观看视频| 伊人久久大香线蕉亚洲五| 久久久精品国产亚洲av高清涩受| 在线观看人妻少妇| 大码成人一级视频| 精品一品国产午夜福利视频| 欧美国产精品一级二级三级| 亚洲男人天堂网一区| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 一区二区三区乱码不卡18| 肉色欧美久久久久久久蜜桃| 老熟妇乱子伦视频在线观看 | 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 午夜激情av网站| 中国美女看黄片| 一区二区三区激情视频| 麻豆国产av国片精品| 少妇粗大呻吟视频| 久久这里只有精品19| av在线app专区| 狂野欧美激情性xxxx| 欧美97在线视频| 国产精品欧美亚洲77777| 国产av一区二区精品久久| av天堂久久9| 在线精品无人区一区二区三| 丁香六月欧美| 少妇裸体淫交视频免费看高清 | 日韩视频一区二区在线观看| av电影中文网址| 狠狠狠狠99中文字幕| 色老头精品视频在线观看| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| 黄色片一级片一级黄色片| 国产精品影院久久| 久久久国产一区二区| 午夜福利乱码中文字幕| 成人18禁高潮啪啪吃奶动态图| 人妻一区二区av| 黄色毛片三级朝国网站| 少妇裸体淫交视频免费看高清 | 99国产综合亚洲精品| 亚洲国产欧美网| 欧美激情高清一区二区三区| 色老头精品视频在线观看| 国产黄色免费在线视频| 999精品在线视频| 国产成人一区二区三区免费视频网站| 亚洲欧美色中文字幕在线| 亚洲国产中文字幕在线视频| a级片在线免费高清观看视频| 91大片在线观看| 亚洲精品粉嫩美女一区| 亚洲自偷自拍图片 自拍| 日韩人妻精品一区2区三区| 亚洲欧美日韩另类电影网站| 国产欧美日韩一区二区精品| 午夜福利免费观看在线| 制服人妻中文乱码| 日韩,欧美,国产一区二区三区| 亚洲国产欧美网| 高清黄色对白视频在线免费看| 国产精品久久久久久精品电影小说| 人成视频在线观看免费观看| 国产精品国产三级国产专区5o| 大香蕉久久成人网| 成年av动漫网址| 爱豆传媒免费全集在线观看| kizo精华| 大片免费播放器 马上看| 国产免费福利视频在线观看| 国产亚洲av高清不卡| 国产欧美日韩一区二区精品| 免费黄频网站在线观看国产| √禁漫天堂资源中文www| 91精品三级在线观看| 黑人操中国人逼视频| 永久免费av网站大全| 国产视频一区二区在线看| 国产熟女午夜一区二区三区| 极品少妇高潮喷水抽搐| 美女扒开内裤让男人捅视频| 人人妻人人爽人人添夜夜欢视频| 啦啦啦在线免费观看视频4| 黑丝袜美女国产一区| 欧美日韩精品网址| 别揉我奶头~嗯~啊~动态视频 | 国产人伦9x9x在线观看| 视频区欧美日本亚洲| 欧美日韩国产mv在线观看视频| cao死你这个sao货| 黄色 视频免费看| 亚洲国产av影院在线观看| 男人添女人高潮全过程视频| 精品第一国产精品| 久久女婷五月综合色啪小说| 成年人午夜在线观看视频| 亚洲精华国产精华精| 日韩一区二区三区影片| 满18在线观看网站| 韩国高清视频一区二区三区| 免费不卡黄色视频| 久久久精品免费免费高清| 日日夜夜操网爽| 性色av乱码一区二区三区2| 狂野欧美激情性bbbbbb| 99久久国产精品久久久| 久久亚洲精品不卡| 一级毛片女人18水好多| 亚洲欧美精品自产自拍| 亚洲中文字幕日韩| 夜夜夜夜夜久久久久| 在线永久观看黄色视频| 亚洲成人手机| 中亚洲国语对白在线视频| 老司机靠b影院| 久久久久视频综合| 国产精品二区激情视频| 老司机深夜福利视频在线观看 | www.自偷自拍.com| 欧美亚洲 丝袜 人妻 在线| 韩国精品一区二区三区| svipshipincom国产片| 大香蕉久久网| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 久久精品国产a三级三级三级| 亚洲欧洲日产国产| 欧美日韩中文字幕国产精品一区二区三区 | 丁香六月欧美| 交换朋友夫妻互换小说| 精品国产超薄肉色丝袜足j| 国产国语露脸激情在线看| 在线观看免费视频网站a站| 一级毛片精品| 最近最新中文字幕大全免费视频| 日韩一区二区三区影片| 国产区一区二久久| 国产91精品成人一区二区三区 | 波多野结衣av一区二区av| 亚洲国产精品一区三区| 国产男女超爽视频在线观看| 黑人巨大精品欧美一区二区mp4| 一区二区av电影网| 午夜免费观看性视频| 在线观看免费高清a一片| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区三区在线| 国产男女内射视频| 黄色视频不卡| 老司机在亚洲福利影院| 精品国产一区二区久久| 日韩精品免费视频一区二区三区| 久久久久久久精品精品| 永久免费av网站大全| 三上悠亚av全集在线观看| 亚洲avbb在线观看| 欧美激情极品国产一区二区三区| 在线 av 中文字幕| 女警被强在线播放| 在线观看免费视频网站a站| 在线观看免费高清a一片| 色精品久久人妻99蜜桃| 精品人妻一区二区三区麻豆| 9色porny在线观看| 亚洲七黄色美女视频| 少妇粗大呻吟视频| 欧美中文综合在线视频| 亚洲人成77777在线视频| 久热爱精品视频在线9| 日本vs欧美在线观看视频| 精品乱码久久久久久99久播| 欧美 亚洲 国产 日韩一| 国产黄频视频在线观看| 亚洲成人免费av在线播放| 久久国产精品人妻蜜桃| 欧美日韩亚洲综合一区二区三区_| 性色av一级| 大码成人一级视频| 美女高潮到喷水免费观看| 久久国产精品影院| 一本—道久久a久久精品蜜桃钙片| 91麻豆精品激情在线观看国产 | 大香蕉久久成人网| 久久国产精品男人的天堂亚洲| 精品国产乱子伦一区二区三区 | 999久久久精品免费观看国产| 欧美一级毛片孕妇| 日韩熟女老妇一区二区性免费视频| 亚洲欧美日韩另类电影网站| 首页视频小说图片口味搜索| 亚洲精品美女久久av网站| 水蜜桃什么品种好| 女人精品久久久久毛片| 美女高潮喷水抽搐中文字幕| 岛国在线观看网站| 99热国产这里只有精品6| 久久久精品免费免费高清| 精品久久久精品久久久| 波多野结衣一区麻豆| 日韩欧美一区视频在线观看| 精品久久久精品久久久| 免费观看a级毛片全部| 人妻 亚洲 视频| 精品国产国语对白av| 欧美成狂野欧美在线观看| 国产xxxxx性猛交| 色播在线永久视频| 丝袜人妻中文字幕| 国产xxxxx性猛交| 精品少妇内射三级| 久久九九热精品免费| 日本欧美视频一区| 一级毛片精品| 免费人妻精品一区二区三区视频| 欧美97在线视频| 黑人操中国人逼视频| 成人黄色视频免费在线看| 久久久精品免费免费高清| 一本久久精品| 99热国产这里只有精品6| 欧美老熟妇乱子伦牲交| 亚洲一区中文字幕在线| 热99re8久久精品国产| 欧美黑人欧美精品刺激| 97人妻天天添夜夜摸| 18禁裸乳无遮挡动漫免费视频| 亚洲中文av在线| 亚洲精品在线美女|