• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳載金屬單原子催化劑

    2018-03-15 10:49:21章海霞閆曉麗許并社郭俊杰
    新型炭材料 2018年1期
    關(guān)鍵詞:俊杰理工大學(xué)太原

    李 海, 章海霞, 閆曉麗, 許并社, 郭俊杰

    (新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,太原理工大學(xué),山西 太原030024)

    1 Introduction

    In heterogeneous catalysis system, supported metal catalysts are widely used in many important industrial catalytic reactions. It has long been recognized that downsizing the metal particles is a key process to improve the performance of the supported metal catalysts (shown in Fig. 1)[1].

    Fig. 1 Specific activity of catalysts as a function of metal loadings and sizes[1].

    Extensive investigations have revealed that sub-nanometer clusters have a better catalytic activity or selectivity than larger particles[2-4]and, in particular, Qiao et al.[5]first prepared a well dispersed Pt single atom catalysts (SACs) supported on iron oxide with an improved catalytic activity and stability in the CO selective oxidation reaction. Isolating metal atoms greatly improved the utilization efficiency of the metal catalyst, and the adsorption/desorption selectivity of the active species on the different molecules can be changed, which affected the reaction kinetics[6]. Accordingly, metal SACs have recently attracted much attention owing to their incredible catalytic behaviors and the potential to explore new catalytic mechanism[7].

    Nevertheless, reducing the size of metal particles to single atom level can result in extremely the high surface free energy[1]. Their high reactivity would lead to serious aggregation and catalyst deactivation in the preparation and catalysis process, which is an enormous challenge in the industrial applications of SACs. Adopting a high-surface-area support material that strongly interacts with the metal atoms could prevent their aggregation, creating finely dispersed stable metal SACs. Till now, in most single atom catalyst systems, the isolated metal atoms are uniformly anchored to supports such as metal surfaces, metal oxides and carbon materials. Recently graphene-based carbon materials have been adopted to disperse nanoparticles or single atoms for novel catalyst[8]owing to their large specific surface area (high catalyst loading), high electrical conductivity (facilitated electron transfer), and potential low manufacturing cost.

    Herein, we introduce recent advances in the selection of carbon substrate, preparation methods, and the anchoring mechanism of metal SACs. Based on the understanding of single atom catalytic activity, we discuss the development trend and application prospect of this research field.

    2 Selection of substrates

    The improvement of catalyst substrate cannot be avoided in designing the catalyst system because the catalytic behavior of the catalyst can be greatly influenced by the properties of the support material. The effects of the substrate on catalysis include decorative effect, electronic effect, new alloy phase formation and generation of new interface sites[6]. When SACs are mentioned, their high mobility would result in serious aggregation and coarsening, interfering with the density of active sites and limiting the catalytic durability and efficiency[9, 10]. Accordingly, it is necessary to screen out suitable carriers to anchor metal single atoms to avoid the catalyst deactivation due to agglomeration.

    Some metals, for example Cu, Au and Pd, have been used as substrates of SACs and exhibit improved catalytic performances[11-15], in which the single atoms interact with the host metal substrate to form monatomic alloys[16]. Various metal oxide, such as iron oxides, hydroxides[17], and oxide of anionic clusters[18], hollandite-type manganese oxide (HMO)[19], aluminum and cluster anions[20], cerium, titanium and zinc oxides, have also been proven to be good substrate candidates for SACs. It is found that surface defects of metal oxide could serve as anchoring sites for metal clusters or even single atoms[21-23]. In addition, molecular sieves[24, 25]have the advantage superior to metal oxides, providing highly homogeneous sites for the attachment of metal active components. Covalent triazine frameworks (CTFs)[26]and CTFs hybridized with carbon nanoparticles[27], silicon oxide[28]and silicate[29]have been used to load SACs. Recently, metal-organic frameworks (MOFs)[30]have also been widely considered as the substrates for SACs, which have great application prospects. However, the above mentioned SAC supports are of disadvantages including low loading density, instability, or poor tolerance, which could be conquered by using carbon materials instead.

    Table 1 Loadings of different metal single atoms on different carriers

    Graphene, a unique structure of two-dimensional (2D) carbon sheet with one-atomic layer thick[47], is considered to be the building block of many carbon materials such as carbon nanotubes, carbon nanoonions[48]and nanoporous carbon[49]. It is expected that graphene-based materials with unique electric and microstructural characteristics will offer a new type of carbon-metal nanocomposite for the next generation of catalysts[50-53]. Sun et al.[54]observed the Pt single atoms and sub-nanometer clusters on graphene nanosheet (GNS) by high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) (Fig. 2). The Pt/GNS sample prepared by atomic layer deposition (ALD) for 50 cycles exhibited a peak current density of 22.9 mA·cm-2, which was 9.5 times higher than Pt/C catalyst (2.41 mA·cm-2). And the CO oxidation peak for 50 ALD Pt/GNS could not be observed until an exposure time of 2 min, indicating the better CO tolerance.

    Fig. 2 (a, b, c) HAADF-STEM images of Pt/GNS samples with 50, 100, and 150 ALD cycles, respectively; (d) CVs of methanol oxidation on Pt/GNS samples; (e) CO stripping voltammogram as a function of CO poisoning time for the sample with 50 ALD cycles[55].

    Yan et al.[56]atomically dispersed Pd on graphene, which showed excellent catalytic performance in selective hydrogenation of 1,3-butadiene (Fig. 3). More importantly, metal atom aggregation was not observed by HAADF-STEM after either 100 h reaction, or annealing at 400 ℃ in Ar for 1 h.

    Fig. 3 HAADF-STEM images of Pd/graphene at (a) low and (b) high magnifications; Catalytic performances of prepared samples in selective hydrogenation of 1,3-butadiene; (c) Butenes selectivity as a function of conversion by changing the reaction temperatures; (d) the distribution of butenes at 95% conversion; (e) Propene conversion and (f) the distribution of butenes at 98% 1,3-butadiene conversion in hydrogenation of 1,3-butadiene in the presence of propene[56].

    Fig. 4 HAADF-STEM images of the Co-N-C: (a)[57], (b)[58], (c)[59]

    On the other hand, a lot of efforts have been focused on searching for the substitutes for noble metal-based catalysts. Cobalt single atoms on nitrogen-doped graphene (Co-NG)[57]was found to work as extraordinary catalysts towards hydrogen evolution reaction (HER) in both acidic and basic water. Yin et al.[58]achieved stable Co single atoms on nitrogen-doped porous carbon, which exhibited a superior oxygen reduction reaction (ORR) performance with a half-wave potential (0.881 V) to commercial Pt/C. Liu et al.[59]proposed the Co-N4structure in graphene, in which the single Co atom was strongly coordinated with four pyridinic nitrogen atoms within graphitic layers. Such a unique structure exhibited an excellent activity, chemoselectivity and stability for the synthesis of aromatic azo compounds through hydrogenative coupling of nitroarenes.

    Single Fe sites confined in a graphene matrix also showed an excellent catalytic performance for the four-electron reduction of dioxygen to water[60]and oxidation of benzene[61]. The similar structure of FeN4with a Fe atom center and four surrounding N atoms was embedded into the graphene matrix. Qiu et al.[62]synthesized single-atom nickel dopants anchored to three-dimensional nanoporous graphene, which could be used as catalysts of HER in acidic solution. They observed by STEM that the Ni atoms were physically adsorbed onto the hollow centers of the graphene lattice.

    Recently Guo et al. reported the one-step synthesis of Nb SACs[63]and W SACs[64]trapped in onion-like carbon shells as catalysts for the ORR. The atomic scale observation by STEM indicated that metal single atoms incorporated in graphite layers were the active sites responsible for high catalytic ORR performance. This structure effectively ensured the electrochemical stability of catalytically active single atom sites. In addition, high density of defects in carbon shells allowed easy O2penetration and reaction at single metal atom sites. The chronoamperometric curves recorded at -0.40V and a rotation rate of 1 600 rpm in an O2-saturated 0.1 mol/L KOH solution have been used to evaluate the durability of the Nb-in-C complex. The residual current after 30 000 s still remained at 92% of the original value, which indicated that the Nb single atoms were stabilized in graphitic layers (Fig. 5b).

    Fig. 5 ADF images of a single atom (a) Nb-in-C[63] and (c) W-in-C[64]; Chronoamperometric response curve of (b) Nb-in-C complex and (d) WC@C complex in 0.1 mol/L KOH solution with and without the addition of 1 mol/L methanol (CH3OH), at a scan rate of 100 mV·s-1.

    MetalSubstrateMethodLoadingReactionPt[54]GrapheneALD1.52wt%MethanoloxidationPd[55]GrapheneALD0.25wt%Selectivehydrogenationof1,3?butadieneCo[56]N?grapheneImpregnationmethod2.48wt%HERCo[57]N?porouscarbonPyrolysisprocess4wt%ORRCo[58]N?graphiticlayersSupport?sacrificedapproach3.6wt%HydrogenativecouplingofnitroarenesCo[59]GraphiticcarbonNitrideImpregnationmethod?OER/ORRFe[65]N?grapheneWetimpregnation0.5wt%ORRFe[61]N?grapheneBallmillingsynthesis2.7wt%OxidationofbenzeneNi[62]NanoporousgrapheneChemicallyexfoliated0.38at.%HydrogenProductionNb[63]Onion?likecarbonshellArc?discharge?ORRW[64]GraphiticlayersArc?discharge?ORR

    3 Preparation methods

    3.1 Mass-selected soft-landing technique

    The mass-selected soft-landing technique is a powerful method to deposit metal single atoms and nanoparticles on supports. In this method, the metal is gasified by a high frequency laser. Abbet et al.[66]studied the cyclotrimerization of acetylene on size-selected Pdncluster (1≤n≤30) supported on thin MgO(100) films, in which the single Pd atom had a very high activity at low temperature (300 K). However, the ultrahigh vacuum and low production yield had limited its industrial application[1].

    3.2 Impregnation method

    The traditional impregnation method is widely used to prepare heterogeneous catalysts, in which the carrier is impregnated in a precursor solution. The active substance is gradually adsorbed on the surface of the substrate. Fei et al[57]. reported the first achievement of Co SACs on graphene oxide (GO) using CoCl2·6H2O as precursor solution. Catalytically active Pt single atoms onθ-alumina[36, 67]or TiN nanoparticles[68]had also been achieved by this method.

    3.3 Co-precipitation method

    Co-precipitation method is widely used to synthesize the nano-metal catalyst[69-71]by mixing the metal precursor and the carrier, followed by filtering and drying processes. After the Pt single atoms were uniformly dispersed on a FeOxsupport by co-precipitation method[5], Zhang et al. achieved precipitation of different precious metals (Ir[34], Au[40]et al.) on iron oxide. Recently, they synthesized highly active, selective, and extremely stable CeO2-supported Au SACs (Au1/CeO2) for preferential oxidation of CO in H2-rich stream.

    3.4 Atomic layer deposition

    Atomic layer deposition (ALD)[72-74], a process that provides atomic level control of thin film growth using sequential, self-limiting surface reactions, has been widely used to prepare nanomaterials. Yan et al[54]. reported a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the ALD technique. The prepared catalyst showed a much higher activity for methanol oxidation and better CO tolerance than the conventional Pt/C catalyst. Lu et al[56]. reported that atomically dispersed Pd on graphene could be fabricated by ALD technique. The single-atom Pd/graphene catalyst showed a selectivity of about 100% for butenes at a 95% conversion under a mild reaction condition.

    3.5 Solid phase melting method

    Guo et al[75]. reported the Fe?SiO2catalyst prepared by solid phase melting method, which showed a good reactivity after a 60 h test. Single iron sites embedded in the silica matrix could directly convert methane to ethylene and aromatics. They had found that the absence of adjacent iron sites activated the first C—H bond of methane and prevented catalytic C—C coupling.

    3.6 Successive reduction method

    The successive reduction method, also known as the seed mediated growth method, is effective in the size-controlled synthesis of transition metal nanoparticles[76-78]. Zhang et al.[14]synthesized colloidal Au/Pd SACs by a facile successive reduction method, which exhibited a significantly improved catalytic activity (up to 17 times) for glucose oxidation over that of Au nanoclusters (NCs).

    3.7 Arc discharge method

    The traditional carbon arc discharge method was originally used by Iijima[79]to produce multi-walled carbon nanotubes. The direct current arc operates between two graphite electrodes installed in a water-cooled chamber filled with helium gas at subatmospheric pressure. It is a very simple technique and is capable of massive production of carbon/metal nanocomposites[80, 81]. Guo et al.[63]prepared carbon nanoonion-supported Nb SACs by arc discharge between a Nb (99.9%) anode and a carbon cathode. The Nb rod was evaporated by arc-discharging and the product deposited on the chamber wall. They found that single Nb atoms were incorporated into onion-like carbon shells and played a key role in improving ORR catalytic performance.

    4 Anchoring mechanism of carbon supported metal SACs

    Although it is found that stabilizing metal SACs onto the surface of the substrate is effective to avoid their agglomeration and inactivation, the anchoring mechanism of metal single atoms remains unclear. The anchoring mechanism differs from the choice of substrate. For example, the metal single atoms interact with metal substrate by forming monatomic alloys[11-13]. The surface defects could serve as anchoring sites when the metal oxide is used as the substrate[5, 34, 82]. As carbon material is mentioned, some mechanisms have been proposed based on atomic resolution microscopy observations. Metal single-atom is confirmed to anchor to graphene lattice by direct bonding or with an intermediate bridge (shown in Fig. 6).

    Fig. 6 Anchoring types of single metal atoms on graphene.

    Atomic-resolution microscopy investigation by Guo et al.[83]on graphene-based nanoporous carbons demonstrated that they comprise isotropic, three-dimensional networks of wrinkled one-atom-thick graphene sheets(shown in Fig. 7). In each graphene plane, topological defects induced localized rippling of graphene sheets, which interfered with their graphitic stacking, forming nanopores to enhance adsorptions of molecules or metal atoms.

    In the Nb SAC sample, single niobium atoms were observed by STEM, uniformly dispersed and stabilized in the highly defective graphitic shells (shown in Fig. 8). Based on the simulation, it was found that the single niobium atoms occupied substitutional sites of the carbon planes (Type I in Fig. 6). It was indicated that the most favorable substitution sites for single niobium atoms were the triple vacancy of graphene, which was consistent with the experimental observation. This Nb-in-carbon onion structure not only enhanced the overall conductivity for accelerating the exchange of ions and electrons in ORR, but also suppressed the agglomeration of metal single atom in the process of chemical/thermal reaction. The same anchored mechanism of metal single atoms was confirmed in the metal single atom tungsten catalysts stabilized in graphitic layers[64].

    Qiu et al.[62]observed that Ni single atoms occupied carbon sites in the graphene lattices (Type II in Fig. 6) by STEM. The partial density of states projected to the Ni atom and the three surrounding C atoms, together with their overlapping, indicating strong C-Ni binding (shown in Fig. 9).

    Fig. 7 Atomic-resolution ADF-STEM images of graphene-based nanoporous carbons[83].

    Fig. 8 Direct observation of single niobium atoms trapped in carbon onion structure. The schematic diagram of the most energetically advantageous configuration of single niobium atoms incorporated into defects of single-layer carbon plane[64].

    Fig. 9 HAADF-STEM image of Ni-doped graphene. Inset: Enlarged HAADF-STEM image (white circle), which shows a substitutional Ni atom (bright orange spot) occupying a carbon site in the graphene lattice (white lines)[62].

    On the other hand, nitrogen-doped graphene has been used to stabilize Co[58]or Fe[61]atoms and a unique structure with a metal atom center and four surrounding N atoms embedded into graphene lattice (Type III in Fig. 6) has been suggested (shown in Fig. 10). Recently, this hypothesized structure was directly observed by Lin[84]using gentle STEM. They suggested that the structure tended to trap a series of transition metal atoms (Mg, Al, Ca, Ti, Cr, Mn, and Fe) as individual atoms.

    In addition, Sun and Lu et al. prepared Pt[55], Pd[56]metal single atom by ALD and suggested that metal single atoms were connected to oxygen containing function groups on the surface of graphene (Type IV in Fig. 6). This hypothesis had been proved by the STEM observation of oxygen atoms in oxidized graphene. Guo et al.[85]found that the oxygen atoms constructed stable crown ether configurations within the graphene lattice. It was indicated that the crown ether in graphene tended to selectively bind various metal atoms depending on their ring size (Fig. 11). So their discovery could introduce a new wave of investigations and applications of chemically functionalized graphene.

    Fig. 10 Scheme of a proposed mechanism for synthesis of FeN4/GN via a facile ball milling method[61].

    Fig. 11 Atomic structures of oxygen atoms incorporated in graphene multivacancies[85].

    5 Conclusions and prospects

    The maximum utilization of metal catalyst can be realized by downsizing the metal particles to isolated single atoms. Nevertheless, practical supported metal SACs are normally inhomogeneous and usually consist of a mixture of different sizes from nanoparticles to subnanometer clusters, which limits the accurate test of catalytic behaviors of SACs. Furthermore, most of the current metal SACs are limited by the extremely low metal loading and density of single active sites. The multi-layer of defective graphitic layers are rich in anchoring sites of single atoms, thus increasing the metal loading and catalytic efficiency[58, 59].

    Now, the synthesis and characterization of well dispersed metal single atoms, as well as the test of reaction on single active site have been achieved. The catalytic mechanism may be significantly changed due to the low-coordination environment, quantum size effect, and the improved metal-support interactions. The better understanding of the metal-substrate reaction and single active site catalytic mechanism is necessary for designing new single-atom catalyst.

    In the near future, we could make a significant progress in understanding the fundamental properties of supported metal SACs and realize the ultimate goal of manipulating individual atoms by innovative synthesis method, advanced characterization and theoretical calculation. It is believed that the superior catalytic performance and potential cost advantages will attract increasing attention in the related research fields.

    [1] Yang X F, Wang A Q, Qiao B T, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2012, 46(8): 1740-1748.

    [2] Turner M, Golovko V B, Vaughan O P, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters[J]. Nature, 2008, 454(7207): 981-983.

    [3] Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects[J]. Science, 2010, 328(5975): 224-228.

    [4] Qiao B T, Wang A Q, Li L, et al. Ferric oxide-supported Pt subnano clusters for preferential oxidation of CO in H2-rich gas at room temperature[J]. ACS Catalysis, 2014, 4(7): 2113-2117.

    [5] Qiao B T, Wang A Q, Yang X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.

    [6] Poh C K, Lim S H, Lin J Y, et al. Tungsten carbide supports for single-atom platinum-based fuel-cell catalysts: First-principles study on the metal-support interactions and O2dissociation on WxC low-index surfaces[J]. The Journal of Physical Chemistry C, 2014, 118(25): 13525-13538.

    [7] Liu P X, Zhao Y, Qin R X, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352(6287): 797-801.

    [8] Tang L, Wang Y, Li Y, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials, 2009, 19(17): 2782-2789.

    [9] Uzun A, Ortalan V, Hao Y, et al. Nanoclusters of gold on a high-area support: Almost uniform nanoclusters imaged by scanning transmission electron microscopy[J]. ACS Nano, 2009, 3(11): 3691-3695.

    [10] Uzun A, Ortalan V, Browning N D, et al. A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy[J]. Journal of Catalysis, 2010, 269(2): 318-328.

    [11] Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212.

    [12] Lucci F R, Liu J, Marcinkowski M D, et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit[J]. Nature Communications, 2015, 6: 8550.

    [13] Zhang L L, Wang A Q, Miller J T, et al. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water[J]. ACS Catalysis, 2014, 4(5): 1546-1553.

    [14] Zhang H J, Kawashima K, Okumurac M, et al. Colloidal Au single-atom catalysts embedded on Pd nanoclusters[J]. Journal of Materials Chemistry A, 2014, 2(33): 13498-13508.

    [15] Ge J, He D S, Chen W, et al. Atomically dispersed Ru on ultrathin Pd nanoribbons[J]. Journal of the American Chemical Society, 2016.

    [16] Wang Z T, Matthew T D, Andrew J T, et al. Preparation, structure, and surface chemistry of Ni-Au single atom alloys[J]. The Journal of Physical Chemistry C, 2016, 120(25): 13574-13580.

    [17] Lin J, Qiao B T, Liu J Y, et al. Design of a highly active Ir/Fe(OH)xcatalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide[J]. Angewandte Chemie, 2012, 51(12): 2920-2924.

    [18] Yuan Z, Li X N, and He S G. CO oxidation promoted by gold atoms loosely attached in AuFeO3- cluster anions[J]. The Journal of Physical Chemistry Letters, 2014, 5(9): 1585-1590.

    [19] Hu P P, Amghouz Z, Huang Z W, et al. Surface-confined atomic silver centers catalyzing formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(4): 2384-2390.

    [20] Zhao Y X, Li Z Y, Yuan Z, et al. Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4- cluster anions[J]. Angewandte Chemie, 2014, 53(36): 9482-9486.

    [21] Chen M S, Goodman D W. The structure of catalytically active gold on titania[J]. Science, 2004, 306(5694): 252-255.

    [22] Matthey D, Wang J G, Wendt S, et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110)[J]. Science, 2007, 315(5819): 1692-1696.

    [23] Kwak J H, Hu J Z, Mei D H, et al. Coordinatively unsaturated Al3+centers as binding sites for active catalyst phases of platinum on g-Al2O3[J]. Science, 2009, 325(5948): 1670-1673.

    [24] Lu J, Aydin C, Browning N D, et al. Imaging isolated gold atom catalytic sites in zeolite NaY[J]. Angewandte Chemie, 2012, 51(24): 5842-5846.

    [25] Kistler J, Chotigkrai N, Xu P H, et al. A single-site platinum CO oxidation catalyst in zeolite KLTL: Microscopic and spectroscopic determination of the locations of the platinum atoms[J]. Angewandte Chemie, 2014, 53(34): 8904-8907.

    [26] Kamai R, Kamiya K, Hashimoto K, et al. Oxygen-tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction[J]. Angewandte Chemie, 2016, 55(42): 13184-13188.

    [27] Kamiya K, Kamai R, Hashimoto K, et al. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts[J]. Nature Communications, 2014, 5: 5040.

    [28] Pei G X, Liu X Y, Wang A Q, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6): 3717-3725.

    [29] Huang W X, Zhang S R, Tang Y, et al. Low-temperature transformation of methane to methanol on Pd1O4single sites anchored on the internal surface of microporous silicate[J]. Angewandte Chemie, 2016, 55: 1-6.

    [30] Zhang H B, Jing W, Dong J C, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework[J]. Angewandte Chemie, 2016, 55(46): 14310-14314.

    [31] Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212.

    [32] Wei H S, Liu X Y, Wang A Q, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nature Communications, 2014, 5: 5634.

    [33] Shi Y T, Zhao C Y, Wei H S, et al. Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization[J]. Advanced Materials, 2014, 26(48): 8147-8153.

    [34] Lin J, Wang A Q, Qiao B T, et al. Remarkable performance of Ir1/FeOxsingle-atom catalyst in water gas shift reaction[J]. Journal of the American Chemical Society, 2013, 135(41): 15314-15317.

    [35] He Q, Freakley S J, Edwards J K, et al. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation[J]. Nature Communications, 2016, 7: 12905.

    [36] Moses-DeBusk M, Yoon M, Allard L F, et al. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on theta-Al2O3(010) surface[J]. Journal of the American Chemical Society, 2013, 135(34): 12634-12645.

    [37] Ghosh T K, Nair N N. Rh1/γ-Al2O3single-atom catalysis of O2activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size[J]. ChemCatChem, 2013, 5(7): 1811-1821.

    [38] Li Z Y, Yuan Z, Li X N, et al. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters[J]. Journal of the American Chemical Society, 2014, 136(40): 14307-14313.

    [39] Song W Y, Hensen E J M. Structure sensitivity in CO oxidation by a single Au atom supported on ceria[J]. The Journal of Physical Chemistry C, 2013, 117(15): 7721-7726.

    [40] Qiao B T, Liu J X, Wang Y G, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts[J]. ACS Catalysis, 2015, 5(11): 6249-6254.

    [41] Guo L W, Du P P, Fu X P, et al. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation[J]. Nature Communications, 2016, 7: 13481.

    [42] Gao D W, Zhang X, Yang Y, et al. Supported single Au(III) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols[J]. Nano Research, 2016, 9(4): 985-995.

    [43] Jones J, Xiong H F, DeLaRiva A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154.

    [44] Wang L, Zhang S R, Zhu Y, et al. Catalysis and in situ studies of Rh1/Co3O4nanorods in reduction of NO with H2[J]. ACS Catalysis, 2013, 3(5): 1011-1019.

    [45] Li X N, Yuan Z, and He S G. CO oxidation promoted by gold atoms supported on titanium oxide cluster anions[J]. Journal of the American Chemical Society, 2014, 136(9): 3617-3623.

    [46] Xie X W, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4nanorods[J]. Nature, 2009, 458(7239): 746-749.

    [47] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    [48] Guo J J, Wang X M, Yao Y L, et al. Structure of nanocarbons prepared by arc discharge in water[J]. Materials Chemistry and Physics, 2007, 105(2-3): 175-178.

    [49] Guo J J, Morris J R, Ihm Y, et al. Topological defects: Origin of nanopores and enhanced adsorption performance in nanoporous carbon[J]. Small, 2012, 8(21): 3283-3288.

    [50] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [51] Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction[J]. Journal of the American Chemical Society, 2009, 131(23): 8262-8270

    [52] Yin H J, Tang H J, Wang D, et al. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction[J]. ACS Nano, 2012, 6(9): 8288-8297.

    [53] Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catal Sci Technol, 2012, 2(1): 54-75.

    [54] Sun S, Zhang G, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3.

    [55] Sun S H, Zhang G X, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3.

    [56] Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene[J]. Journal of the American Chemical Society, 2015, 137(33): 10484-10487.

    [57] Fei H L, Dong J C, Arellano-Jime M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communications, 2015, 6: 8668.

    [58] Yin P Q, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie, 2016, 55(36): 10800-10805.

    [59] Liu W G, Zhang L L, Yan W S, et al. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chem. Sci., 2016, 7(9): 5758-5764.

    [60] Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9): 937-942.

    [61] Deng D H, Chen X Q, Yu L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature[J]. Science Advances, 2015, 1(11): 1-9.

    [62] Qiu H J, Ito Y, Cong W T, et al. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production[J]. Angewandte Chemie, 2015, 54(47): 14031-14035.

    [63] Zhang X F, Guo J J, Guan P F, et al. Catalytically active single-atom niobium in graphitic layers[J]. Nature Communications, 2013, 4: 1924.

    [64] Guo J J, Mao Z, Yan X L, et al. Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction[J]. Nano Energy, 2016, 28: 261-268.

    [65] Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9): 937-942.

    [66] Abbet S, Sanchez A, Heiz U, et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1≤n≤ 30): one atom is enough![J]. Journal of the American Chemical Society, 2000, 122: 3453-3457.

    [67] Narula C K, Allard L F, Stocks G M, et al. Remarkable NO oxidation on single supported platinum atoms[J]. Scientific Reports, 2014, 4: 7238.

    [68] Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie, 2016, 55(6): 2058-2062.

    [69] Haruta M. Size- and support-dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1): 153-166.

    [70] Akolekar D B, Foranb G, and Bhargava S K. X-ray absorption spectroscopic studies on gold nanoparticles in mesoporous and microporous materials[J]. Journal of Synchrotron Radiation, 2004, 11(3): 284-290.

    [71] Akolekar D B, Bhargava S K, Foran G, et al. Studies on gold nanoparticles supported on iron, cobalt, manganese, and cerium oxide catalytic materials[J]. J Mol Catal Chem, 2005, 238(1-2): 78-87.

    [72] Leskela M, Ritala M. Atomic layer deposition chemistry: recent developments and future challenges[J]. Angewandte Chemie, 2003, 42(45): 5548-5554.

    [73] King J S, Wittstock A, Biener J, et al. Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels[J]. Nano Letters, 2008, 8(8): 2405-2409.

    [74] Liu C, Wang C C, Kei C C, et al. Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells[J]. Small, 2009, 5(13): 1535-1538.

    [75] Guo X G, Fang G Z, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184): 616-619.

    [76] Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles[J]. Langmuir, 2001, 17: 6782-6786.

    [77] Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed[J]. Chem Mater, 2004, 16: 3633-3640.

    [78] Zhou W J, Yang L J. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation[J]. Electrochemistry Communications, 2007, 9(7): 1725-1729.

    [79] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56.

    [80] Hisn Y L, Hwang K C, Chen F R, et al. Production and insitu metal filling of carbon nanotubes in water[J]. Advanced Materials, 2001, 13: 830-835.

    [81] Alekseyev N I, Dyuzhev G A. Fullerene formation in an arc discharge[J]. Carbon, 2003, 41(7): 1343-1348.

    [82] Liang J X, Lin J, Yang X F, et al. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOxfor CO oxidation[J]. The Journal of Physical Chemistry C, 2014, 118(38): 21945-21951.

    [83] Guo J, Morris J R, Contescu C I, et al. Atomic-scale imaging of graphene-based nanoporous carbon[J]. Microscopy and Microanalysis, 2012, 18(S2): 1528-1529.

    [84] Lin Y C, Teng P Y, Yeh C H, et al. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene[J]. Nano Lett, 2015, 15(11): 7408-7413.

    [85] Guo J J, Lee J, Contescu C I, et al. Crown ethers in graphene[J]. Nature Communications, 2014, 5: 5389.

    猜你喜歡
    俊杰理工大學(xué)太原
    昆明理工大學(xué)
    太原清廉地圖
    除夜太原寒甚
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    表演大師
    我的同桌
    我給桌子“洗臉”
    亚洲欧美清纯卡通| 亚洲欧洲日产国产| 国产日韩一区二区三区精品不卡 | 国产白丝娇喘喷水9色精品| 日韩熟女老妇一区二区性免费视频| 亚洲在久久综合| 国产在线视频一区二区| 婷婷色麻豆天堂久久| 国产黄色免费在线视频| 看非洲黑人一级黄片| 亚洲国产av新网站| 青春草亚洲视频在线观看| 亚洲婷婷狠狠爱综合网| a级毛色黄片| 十八禁高潮呻吟视频 | av在线观看视频网站免费| 国产一区二区在线观看日韩| 狂野欧美激情性xxxx在线观看| 国产成人a∨麻豆精品| 乱系列少妇在线播放| 久久精品国产a三级三级三级| 午夜免费观看性视频| 欧美+日韩+精品| 波野结衣二区三区在线| 日韩av在线免费看完整版不卡| 在线观看av片永久免费下载| 欧美日韩一区二区视频在线观看视频在线| 日韩人妻高清精品专区| 极品人妻少妇av视频| 九色成人免费人妻av| 亚洲欧美日韩卡通动漫| 99热这里只有是精品在线观看| 新久久久久国产一级毛片| 国产又色又爽无遮挡免| 两个人的视频大全免费| 亚洲一级一片aⅴ在线观看| 久久综合国产亚洲精品| 最近2019中文字幕mv第一页| 成人美女网站在线观看视频| 亚洲国产精品国产精品| 黄色视频在线播放观看不卡| 欧美精品高潮呻吟av久久| 99热全是精品| 少妇人妻精品综合一区二区| 一本久久精品| 国精品久久久久久国模美| 少妇猛男粗大的猛烈进出视频| 99九九在线精品视频 | 成人国产av品久久久| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区国产| 久久韩国三级中文字幕| 久久 成人 亚洲| 亚洲国产精品成人久久小说| 午夜影院在线不卡| .国产精品久久| 国产精品偷伦视频观看了| 亚洲av福利一区| 免费观看性生交大片5| 精品久久久精品久久久| 亚洲精品中文字幕在线视频 | 一级毛片黄色毛片免费观看视频| 男女边摸边吃奶| 日本午夜av视频| 国产男人的电影天堂91| 性色avwww在线观看| 亚洲欧美日韩另类电影网站| 亚洲av在线观看美女高潮| 亚洲精华国产精华液的使用体验| 黑丝袜美女国产一区| 亚洲精品日韩在线中文字幕| 久久久国产一区二区| 久久久久久久精品精品| 国产亚洲一区二区精品| 久久久精品免费免费高清| 国产黄片美女视频| 中文字幕人妻丝袜制服| 99热国产这里只有精品6| 高清午夜精品一区二区三区| 只有这里有精品99| 黑人猛操日本美女一级片| 99久久综合免费| 国产精品国产三级国产专区5o| 自线自在国产av| 日韩精品免费视频一区二区三区 | 国产黄频视频在线观看| 午夜福利视频精品| 看十八女毛片水多多多| 日本与韩国留学比较| 国产精品免费大片| 在线观看www视频免费| 国产伦在线观看视频一区| 久久99精品国语久久久| 久久国产亚洲av麻豆专区| 在线亚洲精品国产二区图片欧美 | 欧美区成人在线视频| 亚洲av男天堂| 久久国内精品自在自线图片| av视频免费观看在线观看| 亚洲av中文av极速乱| 久久午夜综合久久蜜桃| 如何舔出高潮| 中文字幕人妻丝袜制服| 一级毛片 在线播放| 偷拍熟女少妇极品色| 在现免费观看毛片| 少妇精品久久久久久久| 肉色欧美久久久久久久蜜桃| 国产一区二区在线观看av| 免费观看性生交大片5| 国产乱来视频区| 亚洲精品456在线播放app| 在线观看免费视频网站a站| 欧美三级亚洲精品| 国产精品无大码| 97在线视频观看| 一本大道久久a久久精品| 丝瓜视频免费看黄片| 高清视频免费观看一区二区| av播播在线观看一区| 免费不卡的大黄色大毛片视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 免费高清在线观看视频在线观看| 欧美少妇被猛烈插入视频| 久久国内精品自在自线图片| 插阴视频在线观看视频| 一区二区三区四区激情视频| 日韩成人av中文字幕在线观看| 久久人人爽av亚洲精品天堂| 91久久精品国产一区二区三区| 国产精品人妻久久久影院| 精华霜和精华液先用哪个| 成人毛片60女人毛片免费| 亚洲精品亚洲一区二区| 免费高清在线观看视频在线观看| 黄片无遮挡物在线观看| 国产av码专区亚洲av| 熟女电影av网| 国产在线视频一区二区| 黄色一级大片看看| 久久久久久久久久久免费av| 美女脱内裤让男人舔精品视频| 国产欧美亚洲国产| 少妇的逼水好多| 亚洲欧美一区二区三区黑人 | 欧美精品一区二区免费开放| 亚洲精品,欧美精品| 搡老乐熟女国产| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看 | 日韩制服骚丝袜av| 91久久精品国产一区二区成人| 国产精品国产三级国产专区5o| 欧美97在线视频| 色94色欧美一区二区| 久久国产乱子免费精品| 丰满人妻一区二区三区视频av| 校园人妻丝袜中文字幕| 另类精品久久| 国产欧美亚洲国产| 亚洲伊人久久精品综合| 插阴视频在线观看视频| 日韩电影二区| 日产精品乱码卡一卡2卡三| 18禁裸乳无遮挡动漫免费视频| 激情五月婷婷亚洲| 国产精品久久久久久精品电影小说| 91在线精品国自产拍蜜月| 九色成人免费人妻av| www.色视频.com| 亚洲美女黄色视频免费看| 亚洲精品日韩av片在线观看| 亚洲精品中文字幕在线视频 | 曰老女人黄片| 韩国av在线不卡| 丰满饥渴人妻一区二区三| 亚洲精品日本国产第一区| 日韩免费高清中文字幕av| 久久精品久久精品一区二区三区| 亚洲美女黄色视频免费看| 纵有疾风起免费观看全集完整版| 国产免费一级a男人的天堂| 欧美日韩在线观看h| 欧美国产精品一级二级三级 | 国产免费福利视频在线观看| 两个人的视频大全免费| 少妇被粗大猛烈的视频| 精品久久久久久久久亚洲| 亚洲熟女精品中文字幕| 免费不卡的大黄色大毛片视频在线观看| freevideosex欧美| 日韩一本色道免费dvd| 汤姆久久久久久久影院中文字幕| 免费观看a级毛片全部| 精品国产乱码久久久久久小说| 最近最新中文字幕免费大全7| 免费久久久久久久精品成人欧美视频 | 国产无遮挡羞羞视频在线观看| 少妇熟女欧美另类| 国产91av在线免费观看| 十八禁高潮呻吟视频 | 少妇被粗大的猛进出69影院 | √禁漫天堂资源中文www| 高清av免费在线| 有码 亚洲区| 18禁在线无遮挡免费观看视频| 免费看av在线观看网站| 国产精品国产av在线观看| 亚洲成人av在线免费| 极品人妻少妇av视频| 精品国产国语对白av| 一级黄片播放器| 国产成人午夜福利电影在线观看| 男女免费视频国产| a级毛片免费高清观看在线播放| 欧美日韩亚洲高清精品| 老熟女久久久| 99九九线精品视频在线观看视频| 午夜视频国产福利| 一级爰片在线观看| 伊人久久精品亚洲午夜| 精品一区二区三卡| 欧美97在线视频| 日韩一区二区视频免费看| kizo精华| 看免费成人av毛片| 亚洲成人av在线免费| 高清午夜精品一区二区三区| 女性生殖器流出的白浆| 精品人妻偷拍中文字幕| 国产一区二区在线观看日韩| 亚洲自偷自拍三级| 亚洲精品国产av成人精品| 日韩av免费高清视频| 亚洲精品国产成人久久av| 91久久精品国产一区二区三区| 亚洲国产色片| 亚洲国产欧美日韩在线播放 | 国产一区有黄有色的免费视频| 国产成人freesex在线| 男女免费视频国产| 视频区图区小说| 美女国产视频在线观看| 大码成人一级视频| 99九九线精品视频在线观看视频| 91精品国产国语对白视频| 男女边吃奶边做爰视频| 97在线视频观看| 日日摸夜夜添夜夜爱| 在现免费观看毛片| 国产69精品久久久久777片| 老熟女久久久| 日韩精品免费视频一区二区三区 | 欧美xxⅹ黑人| 亚洲精品,欧美精品| 国产熟女午夜一区二区三区 | av在线观看视频网站免费| 亚洲欧美成人综合另类久久久| 国国产精品蜜臀av免费| 我要看黄色一级片免费的| 极品少妇高潮喷水抽搐| 少妇的逼水好多| av有码第一页| 中文天堂在线官网| 最近最新中文字幕免费大全7| av天堂久久9| 嫩草影院入口| 少妇人妻精品综合一区二区| 亚洲精品乱码久久久v下载方式| 午夜免费观看性视频| 看免费成人av毛片| 亚洲国产精品一区二区三区在线| 日本与韩国留学比较| 99久久中文字幕三级久久日本| 青春草亚洲视频在线观看| 人妻人人澡人人爽人人| 人妻系列 视频| 亚洲国产欧美日韩在线播放 | 成人黄色视频免费在线看| 国产亚洲91精品色在线| 久久97久久精品| 黄色视频在线播放观看不卡| 高清毛片免费看| 尾随美女入室| 成年人免费黄色播放视频 | 国内少妇人妻偷人精品xxx网站| av又黄又爽大尺度在线免费看| 高清不卡的av网站| 青春草国产在线视频| 国产乱人偷精品视频| 黄色欧美视频在线观看| 国产毛片在线视频| 国产免费福利视频在线观看| 日韩精品有码人妻一区| 一级二级三级毛片免费看| 老司机亚洲免费影院| 99久久人妻综合| 日本黄色日本黄色录像| 大话2 男鬼变身卡| 日本色播在线视频| 91久久精品国产一区二区三区| 亚洲国产精品成人久久小说| 亚洲av在线观看美女高潮| 国产毛片在线视频| 天天操日日干夜夜撸| 国内揄拍国产精品人妻在线| 狂野欧美激情性xxxx在线观看| 一级毛片我不卡| 极品教师在线视频| 少妇的逼水好多| 免费观看在线日韩| 日韩不卡一区二区三区视频在线| 日韩强制内射视频| 99久久精品国产国产毛片| 亚洲国产成人一精品久久久| 赤兔流量卡办理| 九九在线视频观看精品| 黄片无遮挡物在线观看| 色哟哟·www| 亚洲婷婷狠狠爱综合网| 性色av一级| av视频免费观看在线观看| 九九在线视频观看精品| 日韩中字成人| 啦啦啦中文免费视频观看日本| 精品人妻熟女av久视频| 乱人伦中国视频| 波野结衣二区三区在线| 成人国产麻豆网| 国产成人a∨麻豆精品| 狂野欧美白嫩少妇大欣赏| av在线老鸭窝| 欧美日韩综合久久久久久| 3wmmmm亚洲av在线观看| 久久午夜福利片| 老女人水多毛片| 男女边摸边吃奶| 日韩三级伦理在线观看| 精品卡一卡二卡四卡免费| 亚洲av综合色区一区| 尾随美女入室| av在线观看视频网站免费| 精品一区在线观看国产| 最近2019中文字幕mv第一页| 精品一品国产午夜福利视频| 两个人的视频大全免费| 亚洲国产欧美在线一区| 欧美日韩av久久| 国产伦理片在线播放av一区| 日本wwww免费看| 精品久久久精品久久久| 久久狼人影院| 免费高清在线观看视频在线观看| 少妇熟女欧美另类| 欧美精品高潮呻吟av久久| 纵有疾风起免费观看全集完整版| 最近最新中文字幕免费大全7| 男的添女的下面高潮视频| 97超视频在线观看视频| 简卡轻食公司| 国产毛片在线视频| 少妇丰满av| 欧美 亚洲 国产 日韩一| 欧美97在线视频| 久久人妻熟女aⅴ| 日韩大片免费观看网站| 丰满少妇做爰视频| 国产乱人偷精品视频| 亚洲成色77777| 国产伦精品一区二区三区视频9| 中文字幕av电影在线播放| 一级av片app| 精品少妇黑人巨大在线播放| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 久久精品久久久久久久性| 国产伦理片在线播放av一区| 亚洲精品久久久久久婷婷小说| 成人影院久久| 51国产日韩欧美| av视频免费观看在线观看| 男人舔奶头视频| 99九九线精品视频在线观看视频| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 精品久久久噜噜| 美女大奶头黄色视频| 美女xxoo啪啪120秒动态图| 亚洲av不卡在线观看| 女性生殖器流出的白浆| 又大又黄又爽视频免费| 高清不卡的av网站| 熟妇人妻不卡中文字幕| 色94色欧美一区二区| 精品久久久久久电影网| 插阴视频在线观看视频| 亚洲第一av免费看| 亚洲av欧美aⅴ国产| 男女国产视频网站| 日本黄色片子视频| 久久久久国产网址| 少妇人妻 视频| 婷婷色综合www| 久久婷婷青草| 国产亚洲5aaaaa淫片| 久久99热这里只频精品6学生| 在线亚洲精品国产二区图片欧美 | 美女视频免费永久观看网站| 免费大片黄手机在线观看| 草草在线视频免费看| 美女cb高潮喷水在线观看| 美女中出高潮动态图| freevideosex欧美| 国产日韩一区二区三区精品不卡 | 在线观看国产h片| 超碰97精品在线观看| 国产白丝娇喘喷水9色精品| 桃花免费在线播放| 丝袜脚勾引网站| 免费看光身美女| 99热国产这里只有精品6| av国产久精品久网站免费入址| 中文字幕人妻熟人妻熟丝袜美| 男女边摸边吃奶| 国产成人a∨麻豆精品| 久久精品熟女亚洲av麻豆精品| 国产精品福利在线免费观看| 嫩草影院新地址| 亚洲图色成人| 91久久精品电影网| 国产综合精华液| 久久精品国产鲁丝片午夜精品| 两个人的视频大全免费| 青青草视频在线视频观看| 精品亚洲乱码少妇综合久久| 午夜福利网站1000一区二区三区| 美女xxoo啪啪120秒动态图| 伊人久久国产一区二区| 亚洲精品自拍成人| 91在线精品国自产拍蜜月| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲5aaaaa淫片| 午夜91福利影院| 久久狼人影院| 深夜a级毛片| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| 黄片无遮挡物在线观看| 久久这里有精品视频免费| 成人毛片a级毛片在线播放| 一级二级三级毛片免费看| 久热久热在线精品观看| 国产熟女欧美一区二区| 夫妻午夜视频| 中文字幕免费在线视频6| 男女免费视频国产| 综合色丁香网| 精品一区二区三卡| 一本色道久久久久久精品综合| 熟妇人妻不卡中文字幕| 久久国产精品大桥未久av | 亚洲av在线观看美女高潮| 午夜日本视频在线| 能在线免费看毛片的网站| 免费看不卡的av| 国内揄拍国产精品人妻在线| 午夜激情福利司机影院| 成年美女黄网站色视频大全免费 | 有码 亚洲区| 极品教师在线视频| 大话2 男鬼变身卡| 久久精品久久精品一区二区三区| 又黄又爽又刺激的免费视频.| 日产精品乱码卡一卡2卡三| 久久午夜福利片| 91精品一卡2卡3卡4卡| 我的女老师完整版在线观看| 韩国高清视频一区二区三区| 99视频精品全部免费 在线| 国产精品一区二区在线不卡| 免费黄频网站在线观看国产| 国产精品福利在线免费观看| 欧美 亚洲 国产 日韩一| 亚洲中文av在线| 青春草亚洲视频在线观看| 精品久久久噜噜| 国模一区二区三区四区视频| 97超碰精品成人国产| 丰满人妻一区二区三区视频av| 三上悠亚av全集在线观看 | 日本爱情动作片www.在线观看| 久久国产精品男人的天堂亚洲 | 纯流量卡能插随身wifi吗| 亚洲精品aⅴ在线观看| 91精品国产国语对白视频| av视频免费观看在线观看| 中文精品一卡2卡3卡4更新| 十八禁高潮呻吟视频 | 国产精品99久久99久久久不卡 | 青春草视频在线免费观看| av.在线天堂| 最近中文字幕高清免费大全6| 亚洲精品国产av蜜桃| 亚洲欧美日韩东京热| av又黄又爽大尺度在线免费看| 美女视频免费永久观看网站| 成人毛片60女人毛片免费| 91久久精品国产一区二区成人| 欧美变态另类bdsm刘玥| 美女国产视频在线观看| 免费看av在线观看网站| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 18+在线观看网站| 中国三级夫妇交换| 亚洲国产成人一精品久久久| 男女边摸边吃奶| 中文字幕精品免费在线观看视频 | 亚洲欧洲精品一区二区精品久久久 | 插阴视频在线观看视频| 在线精品无人区一区二区三| 精品久久国产蜜桃| 一级爰片在线观看| 18禁裸乳无遮挡动漫免费视频| 国产爽快片一区二区三区| 亚洲精品视频女| 麻豆成人午夜福利视频| 国产精品久久久久久久电影| 免费观看无遮挡的男女| 中国美白少妇内射xxxbb| 又粗又硬又长又爽又黄的视频| 国产亚洲av片在线观看秒播厂| 少妇被粗大猛烈的视频| 中文乱码字字幕精品一区二区三区| 三级经典国产精品| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 亚洲一级一片aⅴ在线观看| 久久久久久久大尺度免费视频| 亚洲一区二区三区欧美精品| 国产亚洲精品久久久com| 亚洲经典国产精华液单| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 自拍欧美九色日韩亚洲蝌蚪91 | 国产极品天堂在线| 国产片特级美女逼逼视频| 久久女婷五月综合色啪小说| 国产午夜精品一二区理论片| 亚洲av福利一区| 国产在线一区二区三区精| 国产欧美日韩综合在线一区二区 | 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站| 自线自在国产av| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| av免费观看日本| 纯流量卡能插随身wifi吗| 亚洲精品日韩av片在线观看| 国产视频内射| 在线观看免费日韩欧美大片 | 亚洲欧美清纯卡通| av天堂中文字幕网| 美女福利国产在线| 国产探花极品一区二区| 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| 日韩电影二区| 亚洲内射少妇av| 日韩精品免费视频一区二区三区 | 婷婷色综合www| 精品国产露脸久久av麻豆| 国产成人a∨麻豆精品| 亚洲欧美日韩东京热| 色视频在线一区二区三区| 午夜福利,免费看| 国产精品一区二区在线不卡| 久久毛片免费看一区二区三区| 一级a做视频免费观看| 午夜影院在线不卡| 18禁裸乳无遮挡动漫免费视频| 精品人妻一区二区三区麻豆| 亚洲怡红院男人天堂| 高清毛片免费看| 成人国产麻豆网| 国产爽快片一区二区三区| 26uuu在线亚洲综合色| 亚洲av不卡在线观看| 最黄视频免费看| 中文字幕亚洲精品专区| 国产一区二区在线观看日韩| 晚上一个人看的免费电影| 免费观看a级毛片全部| 亚洲成人一二三区av| 免费播放大片免费观看视频在线观看| 亚洲国产精品国产精品| 精品午夜福利在线看| 欧美精品高潮呻吟av久久| 亚洲欧洲日产国产| 国产精品不卡视频一区二区| 亚洲欧洲精品一区二区精品久久久 | 晚上一个人看的免费电影| 美女主播在线视频| 亚洲精品国产av蜜桃| 亚洲欧美成人综合另类久久久| 熟妇人妻不卡中文字幕| 亚洲美女视频黄频| 伊人久久国产一区二区| 最近最新中文字幕免费大全7| 久久久国产欧美日韩av| 亚洲精品色激情综合|