• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    呈現(xiàn)強鏈內鐵磁耦合的EO-疊氮與羧基雙重橋連一維銅鏈化合物:合成、晶體結構、磁性及DFT計算

    2017-09-12 08:59:35馬曉慧李菲菲岑培培劉翔宇周惠良羅樹常吳玥暐張誠誠宋偉明
    無機化學學報 2017年9期
    關鍵詞:疊氮鐵磁晶體結構

    馬曉慧李菲菲岑培培劉翔宇*,周惠良羅樹常吳玥暐張誠誠宋偉明*,

    呈現(xiàn)強鏈內鐵磁耦合的EO-疊氮與羧基雙重橋連一維銅鏈化合物:合成、晶體結構、磁性及DFT計算

    馬曉慧1李菲菲1岑培培1劉翔宇*,1周惠良1羅樹常*,2吳玥暐1張誠誠1宋偉明*,1

    (1寧夏大學化學化工學院,煤炭高效利用與綠色化工國家重點實驗室,銀川750021)
    (2貴州工程應用技術學院化工系,畢節(jié)551700)

    合成了一例以取代苯甲酸衍生物為輔助配體的疊氮銅化合物[Cu(4-Fb)(N3)(H2O)]n(1)(4-Fb=4-formylbenzoate),并對其結構和磁性進行了表征。單晶結構研究表明,化合物1中的最小不對稱單元包含一個晶體學獨立的Cu離子,中心離子呈現(xiàn)了扭曲的四棱錐幾何構型。相鄰的Cu離子之間通過交替的μ-1,1-(EO)-疊氮和syn,syn-羧酸雙重橋連接成一維線性金屬鏈。磁性研究揭示,雙重橋的超交換反補償效應導致目標化合物中鏈內相鄰的Cu離子之間表現(xiàn)出強的鐵磁耦合作用(J=72.1 cm-1)。但是并沒有觀察到鐵磁有序和慢磁弛豫現(xiàn)象。作為影響磁性能的重要結構參數(shù),化合物中Cu-N-Cu的角度(113.34°)與已報道的含雙重橋的疊氮銅體系相符。對化合物的磁構關系進行了討論和探究。此外,密度泛函理論(DFT)計算結果為化合物中相鄰Cu離子間的鐵磁耦合作用提供了定性的理論解釋。

    疊氮銅;取代苯甲酸;晶體結構;鐵磁性;DFT計算

    0 Introduction

    Themolecularmagnetismhasbeenahot research topic,in which great progress has been achieved[1-2].Research on the structural design and synthesis of molecule-based magnetic materials,including single-molecule magnets(SMMs)[3]and singlechain magnets(SCMs)[4],has made tremendous strides as a significant intersection between chemical synthesis and materials science and continues to be a productive area due to their intriguing structures, unique physical characteristics,and promising novel applications,such as magnetic sensors,magnetic switches and multifunctional magnetic devices[5-6].Since the first example of SCMs in 2001[4a],one-dimensional (1D)molecular assemblies have received considerable attention for the construction of new molecule-based magnets.Such materials are usually assembled by combining paramagnetic centers with suitable organic ligands that regulate the architectures and transmit magnetic exchange coupling[7].

    A popular approach for constructing these types of materials is to employ short ligands capable of efficiently transmitting the magnetic coupling[8].In this sense,the azido ligand with three donor atoms is able to link metal ions in different coordination modes (Scheme 1),which induces rich structural diversity as well as a range of different magnetic properties in the azido-metal complexes[9-14].Especially,the azido-based Cucoordination polymers are among the most important kinds of azido-metal complexes owing to the superiority for understanding the fundamental nature ofmagneticinteractionsandmagneto-structural relationships on the molecular level[15].It is wellestablished that μ-1,3(end-to-end,EE)modes usually propagate antiferromagnetic while μ-1,1(end-on,EO) modes are usually ferromagnetic in the azido-Cucases,although the coupling between metal ions bridged by EO-azido ligands can be antiferromagnetic in the presence of other bridging ligands or for very large metal-N-metal angle[16].It has been suggested that the strongest ferromagnetic coupling in the EO-azido linker occurs at a Cu-N-Cu bond angle close to 108°,and so an antiferromagnetic interaction would probably be found for larger Cu-N-Cu bond angles[17]. Consequently,an effective strategy for tuning the structures of azido-Cucompounds with notable magnetic properties is to introduce coligands into the systems.The most common coligands are carboxylatecontaining organics in which the carboxyl links the Cuions to generate various systems and adopts different bridging modes to transmit diverse superexchange interactions[18].A series of azido/carboxylate/ Cucompounds involving the combinations of μ-1,1-azido ligands and syn,syn-carboxylates have been previously prepared and performed intriguing structures and magnetisms[19].Most importantly,molecular orbital calculations dramatically support the counter complementary effect enforced by the carboxylateligand,which weakens the effect of the antiferromagnetic azido ligand to the point where dominant ferromagnetic behavior is obtained[20].It still remains significant challenge to design and configure the desired system for clarifying the complicated and crucial issues of azido-Cucompounds,such as the key factors influencing the magnetic interactions,the regulation of magneto-structural correlation,and the mechanism of magnetization.

    Scheme 1Coordination modes of bridging azido

    Based on the considerations above,we report the synthesis,structural characterization,and magnetic properties of a 1D azido-Cucoordination polymer, [Cu(4-Fb)(N3)(H2O)]n(1)(4-Fb=4-formylbenzoate),in which the intrachain Cuions are connected by a mixed-bridge of syn,syn-carboxylate and μ-1,1-azido ligand with Cu-N-Cu angle of 113.34°.Magnetic investigations suggest that compound 1 shows strong ferromagnetic coupling between neighboring Cuions, which is further explored by density functional theory (DFT)calculations as well.

    1 Experimental

    1.1 Physical measurements

    Elemental analysis(C,H,N)was performed on a Perkin-Elmer 2400 CHN elemental analyzer.The FTIR spectra were recorded in the range of 400~4 000 cm-1using KBr pellets on an EQUINOX55 FT/IR spectrophotometer.The phase purity of the bulk or polycrystalline samples were verified by powder X-ray diffraction(PXRD)measurements performed on a Rigaku RU200 diffractometer at 60 kV,300 mA and Cu Kα radiation(λ=0.071 073 nm),with a scan speed of 5°·min-1,a step size of 0.02°and a scan range of 5°~50°(2θ).Temperature-dependent magnetic measurement was obtained on poly-crystalline sample using a Quantum Design MPMS-XL7 SQUID magnetometer at temperatures range 1.9~300 K with an applied field of 1 000 Oe(restrained in eicosane to prevent torqueing at high fields).Magnetization measurements were taken at 2.0 K from 0 to 50 kOe.All data were corrected for diamagnetism estimated from Pascal′s constants,and an experimental correction for the sample holder was applied.

    1.2 Materials and methods

    All of the solvents and reagents for synthesis are of analytical grade and are commercially available. Cu(NO3)2·3H2O,4-formylbenzoic acid(4-Fba)and NaN3were purchased from commercial sources and used without further purification.

    Caution!Although we have not experienced any problems in our experiments,azido and its compounds are potentially explosive;only a small amount of material should be prepared and handled with care.

    1.3 Preparation of[Cu(4-Fb)(N3)(H2O)]n(1)

    Compound1washydrothermallysynthesized under autogenous pressure.A mixture of Cu(NO3)2· 3H2O(0.051 g,0.3 mmol),4-Fba(0.045 g,0.3 mmol), NaN3(0.033 g,0.5 mmol)and H2O(8 mL)was sealed in a 15 mL Teflon-lined autoclave and heated to 120℃.After being maintained for 3 days,the reaction vessel was cooled to 20℃in 12 h.Green crystals were collected(Yield:80%,based on Cu).Anal.Calcd.for CuC8H7N3O4(%):C,35.23;H,2.58;N,15.41.Found(%): C,35.21;H,2.57;N,15.39.IR(KBr,cm-1):3 414 (m),2 094(m),1 662(m),1 608(s),1 375(s),1 317 (w),1 225(s),1 179(s),1 063(s),1 037(s),867(w),774 (w),688(m),584(w).

    1.4 Crystallographic data collection and refinement

    Suitable single crystal of the compound was mounted on glass fibers for X-ray measurements. Reflection data were collected at room temperature on a Bruker SMART APEX-CCD-based diffractometer using graphite mono-chromated Mo Kα radiation(λ= 0.071 073 nm).An empirical absorption correction was applied using the SADABS program[21].Data processing was accomplished with the SAINT processing program.The structures were solved by the direct methods and refined with full-matrix least-squares on F2using SHELXTL 97 program[22].All non-hydrogen atoms were refined with anisotropic displacement parameters.Hydrogen atoms were placed in geometrically calculated positions.Selected crystallographic data and structural refinement details for1 are summarized in Table 1.Selected bond lengths and bond angles,and the hydrogen bonds of compound 1are listed in Table S1 and S2,respectively.

    Table1 Selected crystallographic data and structure refinement for compound 1

    CCDC:1496426.

    1.5 Computational methodology

    The following computational methodology was used to calculate the coupling constant in the title compound[23].The spin Hamiltonian suggested originally by Heisenberg can be written as H?=-∑(i>j)JSiSj(where Siand Sjare the spin operators of the paramagnetic centers,Si=Sj=1/2 for Cuion;and the J constant is the coupling constant between the paramagnetic spin carriers),which can be employed to express the exchange coupling between two transition metal ions, the full Hamiltonian matrix for the entire system can be established.The J value was calculated from the energy difference of the two spin states:the broken symmetry(BS)state and the triplet state(HS),the broken symmetry approach along with electron correlations has been widely used to investigate magnetic properties in a large number of magnetic systems[24].The J value was calculated using the following equation:

    where EBSis the energy of the broken symmetry singlet state and EHSis the energy of the triplet state.

    The DFT calculations are implemented with the ORCA 3.0.2 package[25].The BP86 functional proposed by Becke[26]and Perdew[27a]and hybrid B3LYP functional built by Becke[27b]were applied in the calculations,respectively.The double-ξ quality plus polarization def2-SVP basis set and polarized triple-quality basis sets of def2-TZVP,TZVP,and TZV proposed by Ahlrichs and co-workers were respectively performed for all atoms[28].The calculation model for the compound was built from the experimental results.

    2 Results and discussion

    2.1 Crystal structure of 1

    Single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in the monoclinic space group P21/c.The asymmetrical unit of compound 1 is composed by one Cucation,one azido ligand,one 4-Fb ligand and one coordinated water molecule.The penta-coordinated Cucation in the center presents a distorted tetragonal pyramid geometry(Fig.1b).The bottom square is formed by two nitrogen atoms(Cu1-N1 0.199 38 nm,Cu1-N1i0.199 46 nm)from two azido ligands and two oxygen atoms(Cu1-O1 0.194 08 nm,Cu1-O2i0.195 66 nm)from two carboxylate groupsof4-Fbligands.Theapicalpositionis occupied by one oxygen atom(Cu1-O3 0.233 92 nm) from coordinated water molecule(Fig.1a).Adjacent Cucations are mediated by EO-azido,μ2-bridging bidentate carboxylate groups,with a Cu-N-Cu angle of 113.34°and a Cu-Cu distance of 0.333 2 nm to yield a well-isolated 1D copper chain(Fig.1c).And then, the linear metal chains are integrated by interchain hydrogen-bonding between the O atom in the coordinated water and the terminal N atom in the azido anion(O4…N3 0.268 nm)(Fig.1d),constructing the supramolecular network of 1.In addition,the azido moieties are quasi linear with N1-N2-N3 angles of 178.8°,and the bond length of N1-N2(0.121 8 nm)is slightly longer than N2-N3(0.114 2 nm).The nearest distance of interchain Cuions is 0.758 0 nm.

    Fig.1 (a)Structure of 1 with 50%thermal ellipsoids;(b)Simplified tetragonal pyramidal geometry of the center Cucation for 1;(c)1D chain with carboxylate and azido bridges for 1;(d)Hydrogen bonding formed by azido and water molecules between adjacent chains in 1

    2.2 Magnetic studies

    The crystalline sample of 1 was all phase-pure, as confirmed by PXRD(Fig.S1).According to the obtained data,a dominant ferromagnetic coupling between the Cucations in compound 1 can be suggested.

    The magnetic properties of 1 are shown in Fig.2 in the form of a χMT versus T plot(χMis the molar magnetic susceptibility per Cucation).χMT values are observed as 0.54 cm3·K·mol-1for 1 at 300 K, larger than the spin-only value(0.375 cm3·K·mol-1) for an isolated Cucation(S=1/2).Upon cooling,the χMT values increase gradually,and firstly the value increases to 3.99 cm3·K·mol-1at 4 K,suggesting ferromagnetic exchange between Cucations and finally drops to 2.01 cm3·K·mol-1at 1.9 K.The χMT vs T curve illustrates that strongly coupled ferromagneticsystemaccompanieswithantiferromagnetic interaction between the azido-Cuchains in the compound 1,especially at low temperature.The parameters fitted by the Curie-Weiss law above are obtained to be C=0.472 cm3·K·mol-1and θ=43.04 K. The positive θ value supports strong ferromagnetic coupling between the intrachain Cuions.Considering themean-fieldapproximation forinterchain coupling zJ′(Eq.2),the temperature-dependent magn-etic susceptibility data of 1 can be simulated with the formula proposed by Baker et al.(Eq.3)[29]for a ferromagnetic Cuchain(S=1/2)which is achieved from the high temperature series expansion.

    Fig.2 χMT vs T and 1/χMvs T plots for compound 1

    The best fit of the magnetic susceptibility data resulted in:g=2.27,J=72.1 cm-1,zJ′=-0.71 cm-1and R=5.75×10-5(g is the Zeeman factor of the metal ion, J describes the intrachain magnetic interaction,zJ′describes the interchain antiferromagnetic interaction and R accounts for the agreement factor defined as R=∑[(χMT)obsd-(χMT)calcd]2/∑[(χMT)obsd]2).The large J value supports strong ferromagnetic coupling between the Cucenters.The small negative zJ′value indicates the presence of interchain antiferromagnetic interactions,according with the drop in the χMT product at low temperature.In principle,it seems that intrachain antiferromagnetic coupling would be predicted for 1 due to the cooperation of EO-azido with the Cu-N-Cu angle of 113.34°(larger than the critical value of 108°) andthecarboxylategroupwithsyn-synmode. However,according to the proposition from Thompson et al.and Escuer et al.,the counter-complementarity function derived from two kinds of ligands may expound the strong ferromagnetic interaction,not just the total of the two isolated components[20].

    AsshowninFig.3,theisothermalfielddependent magnetization M(H)values at 2 K and fields up to 50 kOe are measured for 1.The magnetization curveincreaseslinearlyunderverylowfield, subsequently climbs up quickly until 10 kOe and rises up gradually to 50 kOe with an effective moment of 1.06Nβ at the high fields,slightly higher than the saturation value(1.0Nβ)of one Cucation.Notably, the S-shaped curve emerges with a critical field of 1 200 Oe at low field(Fig.3,inset),signifying weakly interchain antiferromagnetic exchange and 1 might sustain decoupling effect of external field.

    Fig.3 Magnetization vs H plots for 1

    The dc magnetization is determined at 2,2.5, and 4 K within-7~7 kOe,which is shown in Fig.S2. Whenthetemperaturegoesdownto2K,no hysteresis loop emerges.The field-cooled(FC)and zero-field-cooled(ZFC)magnetization measurements were performed at a low applied field of 10 Oe below the temperature of 20 K(Fig.S3),the FC/ZFC plots with coincident pattern increase rapidly until the temperature drops to 2 K,indicating the absence of the ferromagnetic ordering.In addition,under the oscillatingfieldof3.5Oe,thezero-fieldAC susceptibility experiments for 1 were determined in the range of 1.9~25 K at various frequencies of 1,10, 33,100,333 and 1 000 Hz(Fig.S4).In-phase signal and no out-of-phase signal were observed until thetemperature drops to 2 K,which further verifies intrachain antiferromagnetic coupling and implies that the slow dynamics of magnetization and long-rang ferromagnetic ordering are nonexistent in compound 1. The in-phase(χ′)component of the AC magnetic susceptibility with a peak value at 4 K might explicate that compound 1 behaves as an antiferromagnet with extremely low Néel temperature.

    2.3 Theoretical studies

    In order to further clarify the ferromagnetic nature of the exchange interaction in compound 1,we performed a theoretical study of the isotropic coupling constants J between Cuions based on DFT calculation at BP86 and B3LYP level with the aid of ORCA program.According to the structure of 1, supposing that the dominant magnetic exchange is mediated between adjacent two Cuions through azidoandcarboxylate.Thecalculationsforthe compound were carried out with the model(for comparing)applied to the magnetic fitting by filling-in all the coordination sites of the Cuions(Fig.4).

    The results of the theoretical calculation and the experimental fitting in terms of the coupling constants are listed in Table 2.Based on BP86 and B3LYP functions with def2-SVP,def2-TZVP,TZVP,and TZV basis sets,the calculated J values are unexceptionally found to be moderate positive values and close to the experimentally fitted values,which completely verifies that the strong ferromagnetic coupling is prevailing in compound 1.Obviously,the choices of the methods and basis sets for these calculations are simultaneously suitable for the title compound.Although the calculated values deviate slightly from the fitting values,in all the cases the sign and the relative magnitudes of the exchange parameters agree very well with the experimental results.It is difficult to say in general which basis set works better,but it is clear thattheresultsoftheoreticalcalculationprove qualitativelyandquantificationallythemeasuring data.Therefore,the tiny difference may result from the fact that the real compound is not scatteredentities as has been modeled but is very complicated in the whole structures.

    Fig.4 Magnetic cores of 1 used for computational study

    Table2 Comparison of the experimental(from fitting)and DFT studies

    2.4 Discussion

    In compound 1,two consecutive Cuions are bonded by syn-syn carboxylate and symmetric EO-azido bridges,constituting the 1D chain-like pattern. Intrachain Cu-Cu distances and Cu-N-Cu angles are 0.333 2 nm and 113.34°.The alternating 1D chains areinteractedthroughinterchainhydrogen-bonds derived from the water oxygen atom and the nitrogen atom of the azido group between nearby chains.The nearest interchain Cu…Cu separation is 0.758 0 nm. EO-azido is certainly one of the most interesting magnetic couplers in molecular magnetism,and the magnitude of the J parameter depends on several factors,but mainly the Cu-N-Cu angle(β).According to a number of studies on Cusystems with such bridges[30,17a],the single EO-azido motif could also mediate ferromagnetic coupling,EO-azido bridging Cuions with low β gives rise to ferromagnetic coupling,whereas the coupling is antiferromagnetic if the angle is above a critical β value which has been evaluatedtobeabout108°[19a].Inthissense, antiferromagnetic coupling would be expected for 1, owing to the presence of EO-azido bridges with a large Cu-N-Cu angle of 113.34°,together with the syn-syn carboxylate bridges featured in the chain. However,the fitting magnetic coupling parameter(J) confirmsthattheferromagneticinteractionsare enabled by the single EO-azido bridges in compound 1,probably due to the counter-complementarity effect from the syn-syn carboxylate bridge which usually transmitantiferromagneticinteractionsbetween neighbouring metal ions.

    To deduce a general magneto-structural relationship,we have made a comprehensive comparison of the Cu-azido-benzoate compounds reported in recent years,as shown in Table S3[31-32,19a,33-34].EO-azido compounds with Cu-N-Cu angles of 126.8°[31a],108.2°[31a], 116.8°[31a],109.4°[31c],101.1°[31c],111.9°[31b],and 105.5°[33d]also exhibit strong ferromagnetic coupling.Similarly, in our work,the Cu-N-Cu angle is 113.34°,and the corresponding compound shows ferromagnetic interaction.The coupling constant value(J=72.1 cm-1)for compound 1 is comparable to previous results in the literature[31b,32a].

    3 Conclusions

    In present work,a new azido-copper compound with4-formylbenzoicacidascoligandhasbeen successfullyisolated.Structuralanalysesindicate compound 1 features a 1D two-fold bridged copper chain in which the coordination geometry of center Cuion is distorted tetragonal pyramid and the adjacent two Cuions is bridged by mixed μ-1,1(EO) -azidoandsyn-syn-carboxylateligands.Magnetic investigationsdemonstratethatthecompoundis composed of ferromagnetically coupled ferromagnetic chains.The intrachain behavior reflects how the countercomplementaryeffectimposedbythe carboxylate bridge overcomes the antiferromagnetic effect of the azido bridge resulting in an overall ferromagnetic interaction.DFT calculations qualitatively and quantificationally support the strong ferromagnetic coupling between the Cuions.

    Supporting information is available at http://www.wjhxxb.cn

    [1](a)Pei Y,Verdaguer M,Kahn O.J.Am.Chem.Soc.,1986, 108:7428-7430 (b)Miller J S,Calabrese J C,Rommelmann H,et al.J.Am. Chem.Soc.,1987,109:769-781

    [2](a)Wang X Y,Wang Z M,Gao S.Inorg.Chem.,2008,47:5720 -5726 (b)Wang X Y,Wang L,Wang Z M,et al.J.Am.Chem.Soc., 2006,128:674-675 (c)Martín S,Barandika M G,Lezama L,et al.Inorg.Chem., 2001,40:4109-4115

    [3](a)Ungur L,Lin S Y,Tang J K,et al.Chem.Soc.Rev.,2014, 43:6894-6905 (b)Gatteschi D,Sessoli R.Angew.Chem.,Int.Ed.,2003,42: 268-297 (c)Wernsdorfer W,Aliaga-Alcalde N,Hendrickson D N,et al. Nature,2002,416:406-409 (d)Woodruff D N,Winpenny R E,Layfield R A.Chem.Rev., 2013,113:5110-5148(e)Leng J D,Liu J L,Zheng Y Z,et al.Chem.Commun., 2013,49:158-160 (f)Zhang P,Zhang L,Tang J K.Dalton Trans.,2015,44:3923 -3929

    [4](a)Caneschi A,Gatteschi D,Lalioti N,et al.Angew.Chem. Int.Ed.,2001,40:1760-1763 (b)Werner J,Rams M,Tomkowicz Z,et al.Inorg.Chem., 2015,54:2893-2901 (c)Vaz M G,Cassaro R A A,Akpinar H,et al.Chem.-Eur. J.,2014,20:5460-5467 (d)Wang Y Q,Cheng A L,Liu P P,et al.Chem.Commun., 2013,49:6995-6997 (e)Pardo E,Ruiz-García R,Lloret F,et al.Chem.-Eur.J., 2007,13:2054-2066 (f)Dhers S,Feltham H L,Brooker S.Coord.Chem.Rev., 2015,296:24-44

    [5](a)Neville S M,Halder G J,Chapman K W,et al.J.Am. Chem.Soc.,2008,130:2869-2076 (b)Pardo E,Train C,Boubekeur K,et al.Inorg.Chem.,2012, 51:11582-11593 (c)Liu X Y,Qu X N,Zhang S,et al.Inorg.Chem.,2015,54: 11520-11525 (d)LI Hai-Qing(李海清),HUA Jing-Kun(華敬坤),ZHA Li-Qin(查麗琴),et al.Chinese J.Inorg.Chem.(無機化學學報),2015,31(7):1417-1424

    [6](a)Weng D F,Wang Z M,Gao S.Chem.Soc.Rev.,2011,40: 3157-3181 (b)Ferbinteanu M,Miyasaka H,Wernsdorfer W,et al.J.Am. Chem.Soc.,2005,127:3090-3099 (c)Bogani L,Sangregorio C,Sessoli R,et al.Angew.Chem. Int.Ed.,2005,36:5967-5971 (d)Sessoli R,Powell A K.Coord.Chem.Rev.,2009,253:2328 -2341 (e)Jeremies A,Gruschinski S,Meyer M,et al.Inorg.Chem., 2016,55:1843-1853 (f)Liu X Y,Cen P P,Li F F,et al.RSC Adv.,2016,6:96103-96108

    [7](a)Ferlay S,Mallah T,Ouahes R,et al.Nature,1995,378:701 -703 (b)Entley W R,Girolami G S.Science,1995,268:397-400 (c)Liu X Y,Sun L,Zhou H L,et al.Inorg.Chem.,2015,54: 8884-8886 (d)Chen M,Zhao H,Saudo E C,et al.Inorg.Chem.,2016, 55:3715-3717 (e)Liu X Y,Liu H X,Cen P P,et al.Inorg.Chim.Acta, 2016,447:12-17

    [8](a)Lescouzec R,Toma L M,Vaissermann J,et al.Coord.Chem. Rev.,2005,249:2691-2729 (b)Miyasaka H,Julve M,Yamashita M,et al.Inorg.Chem., 2009,48:3420-3437 (c)Bernot K,Luzon J,Sessoli R,et al.J.Am.Chem.Soc., 2008,130:1619-1627 (d)Ding M,Wang B,Wang Z,et al.Chem.-Eur.J.,2012,18: 915-924 (e)Reger D L,Pascui A E,Smith M D,et al.Inorg.Chem., 2015,54:1487-1500 (f)SUN Lin(孫琳),LIU Huai-Xian(劉懷賢),ZHOU Hui-Liang (周惠良),et al.Chinese J.Inorg.Chem.(無機化學學報), 2015,31(6):1207-1214

    [9]Kahn O.Molecular Magnetism.New York:VCH,1993.

    [10](a)Ribas J,Escuer A,Monfort M,et al.Coord.Chem.Rev., 1999,1027:193-195 (b)Zeng Y F,Hu X,Liu F C,et al.Chem.Soc.Rev.,2009, 38:469-480 (c)Adhikary C,Koner S.Coord.Chem.Rev.,2010,254:2933 -2958 (d)BAI Shi-Qiang(白士強),FANG Chen-Jie(房晨婕),YAN Chun-Hua(嚴純華).Chinese J.Inorg.Chem.(無機化學學報),2006,22(12):2123-2134

    [11](a)Hong C S,Do Y.Angew.Chem.,Int.Ed.,1999,38:193-195 (b)Liu T F,Fu D,Gao S,et al.J.Am.Chem.Soc.,2003, 125:13976-13977

    [12]Gao E Q,Bai S Q,Wang Z M,et al.J.Am.Chem.Soc., 2003,125:4984-4985

    [13](a)Yoo H S,Kim I J,Yang N,et al.Inorg.Chem.,2007,46: 9054-9056 (b)Escuer A,Aroms G.Eur.J.Inorg.Chem.,2006,23:4721-4736

    [14](a)Cheng M,Ding Y S,Gao E Q,et al.Dalton Trans.,2016, 45:8028-8035 (b)Schweinfurth D,Sommer M G,Atanasov M,et al.J.Am. Chem.Soc.,2015,137:1993-2005

    [15](a)Liu J,Qin Y L,Qu M,et al.Dalton Trans.,2013,42:11571-11575 (b)Hu K L,Kurmoo M,Wang Z,et al.Chem.-Eur.J.,2009, 15:12050-12064 (c)Li J R,Yu Q,Sanudo C,et al.Chem.Commun.,2007,25: 2602-2604 (d)Liu X Y,Cen P P,Li H,et al.Inorg.Chem.,2014,53: 8088-8097 (e)FAN Yan(范艷),WANG Chen-Min(汪晨敏),QU Zhi-Rong(瞿志榮).Chinese J.Inorg.Chem.(無機化學學報), 2016,32(5):864-870

    [16](a)Kahn O,Sikorav S,Gouteron J,et al.Inorg.Chem.,1983, 22:2877-2883 (b)Cortes R,Urtiaga M K,Lezama L,et al.Dalton Trans., 1993,24:3685-3694 (c)Thompson L K,Tandon S S.Comments Inorg.Chem., 1996,18:125-144 (d)Zhang L,Zuo J L,Gao S,et al.Angew.Chem.Int.Ed., 2000,39:3633-3635

    [17](a)Ruiz E,Cano J,Alvarez S,et al.J.Am.Chem.Soc.,1998,120:11122-11129 (b)Cabrero J,Graaf C,Bordas E,et al.Chem.-Eur.J.,2003, 9:2307-2315 (c)Triki S,García C J G,Ruiz E et al.Inorg.Chem.,2005, 44:5501-5508 (d)Mialane P,Dolbecq A,Marrot J,et al.Chem.-Eur.J., 2005,11:1771-1778 (e)Nanda P K,Aromí G,Ray D.Chem.Commun.,2006,30: 3181-3183

    [18](a)Shi W B,Cui A L,Kou H Z.ChemPlusChem,2014,79: 310-317 (b)Zhang S M,Chen Y H,Wang L H,et al.J.Solid State Chem.,2015,226:201-205 (c)Wang Y Q,Tan Q H,Guo X Y,et al.RSC Adv.,2016,6: 72326-72332

    [19](a)Yang L,Zhang S,Liu X Y,et al.CrystEngComm,2014, 16:4194-4201 (b)Stamatatos T C,Vlahopoulou G,Raptopoulou C P,et al. Eur.J.Inorg.Chem.,2012,19:3121-3131 (c)Tangoulis V,Panagoulis D,Raptopoulou C P,et al.Dalton Trans.,2008,5:1752-1760

    [20](a)Thompson L K,Tandon S S,Lloret F,et al.Inorg.Chem., 1997,36:3301-3306 (b)Escuer A,Vicente R,Mautner F A,et al.Inorg.Chem., 1997,36:1233-1236

    [21]Sheldrick G M.SADABS,Program for Empirical Absorption Correction for Area Detector Data,University of G?ttingen, Germany,1996.

    [22]Sheldrick G M.SHELXS-97,Program for the Refinement of Crystal Structures,University of G?ttingen,Germany,1997. [23](a)Ruiz E,Alemany P,Alvarez S,et al.J.Am.Chem.Soc., 1997,119:1297-1303 (b)Ruiz E,Rodríguez-Fortea A,Cano J,et al.J.Comput. Chem.,2003,24:982-989 (c)Ruiz E,Cano J,Alvarez S,et al.J.Comput.Chem.,1999, 20:1391-1400 (d)Ruiz E.Struct.Bonding,2004,113:71-102

    [24](a)Sarkar S,Datta A,Mondal A,et al.J.Phys.Chem.B,2006, 110:12-15 (b)Cremades E,Ruiz E.Inorg.Chem.,2010,49:9641-9648 (c)Gole B,Chakrabarty R,Mukherjee S,et al.Dalton Trans., 2010,39:9766-9778

    [25](a)Neese F.ORCA-an ab initio,Density Functional and Semiempirical Program Package,Ver.3.0.1,University of Bonn,Bonn,Germany,2013. (b)Neese F.WIREs Comput.Mol.Sci.,2012,2:73-78

    [26]Becke A D.Phys.Rev.A,1988,38:3098-3100

    [27](a)Perdew J P.Phys.Rev.B,1986,33:8822-8824 (b)Becke A D.J.Chem.Phys.,1993,98:5648-5652

    [28](a)Sch?fer A,Horn H,Ahlrichs R.J.Chem.Phys.,1992,97: 2571-2577 (b)Schfer A,Huber C,Ahlrichs R.J.Chem.Phys.,1994, 100:5829-5835

    [29]Baker G A,Rushbrooke G S.Phys.Rev.,1964,135:A1272

    [30](a)Tandon S S,Thompson L K,Manuel M E,et al.Inorg. Chem.,1994,33:5555-5570 (b)Thompson L K,Tandon S S,Manuel M E.Inorg.Chem., 1995,34:2356-2366 (c)Sikorav S,Bkouche-Waksman I,Kahn O.Inorg.Chem., 1984,23:490-495

    [31](a)Zhao J P,Hu B W,Saudo E C,et al.Inorg.Chem.,2009, 48:2482-2489 (b)Escuer A,Vicente R,Mautner F A,et al.Inorg.Chem., 1997,36:1233-1236 (c)Zhang X M,Wang Y Q,Song Y,et al.Inorg.Chem.,2011, 50:7284-7294

    [32](a)Kostakis G E,Mondal K C,Abbas G,et al.CrystEngComm, 2009,11:2084-2088 (b)Su Q J,Li S H,Wang L,et al.Inorg.Chem.Commun., 2010,13:1210-1212 (c)Sengupta O,Gole B,Mukherjee S,et al.Dalton Trans., 2010,39:7451-7465 (d)Li X B,Ma Y,Zhang X M,et al.Eur.J.Inorg.Chem., 2011,30:4738-4744 (e)Mukherjee S,Patil Y P,Mukherjee P S.Dalton Trans., 2012,41:54-64 (f)Mukherjee S,Mukherjee P S.Dalton Trans.,2013,42:4019-4030

    [33](a)Zeng Y F,Liu F C,Zhao J P,et al.Chem.Commun., 2006,21:2227-2229 (b)Gu Z G,Song Y,Zuo J L,et al.Inorg.Chem.,2007,46: 9522-9524 (c)Liu F C,Zeng Y F,Zhao J P,et al.Inorg.Chem.,2007, 46:7698-7700 (d)Han Y F,Wang T W,Song Y,et al.Inorg.Chem.Commun., 2008,11:207-209

    [34](a)Sun W W,Qian X B,Tian C Y,et al.Inorg.Chim.Acta, 2009,362:2744-2748 (b)He Z,Wang Z M,Gao S,et al.Inorg.Chem.,2006,45: 6694-6705 (c)Zeng Y F,Zhao J P,Hu B W,et al.Chem.-Eur.J.,2007, 13:9924-9930 (d)Liu X Y,Chen S P,Grancha T,et al.Dalton Trans.,2014, 43:15359-15366 (e)Chakrabarty P P,Giri S,Schollmeyer D,et al.Polyhedron, 2015,89:49-54 (f)Setifi Z,Ghazzali M,Glidewell C,et al.Polyhedron,2016, 117:244-248 (g)Liu X Y,Li F F,Ma X H,et al.Dalton Trans.,2017,46: 1207-1217

    One-Dimensional CuChain Compound with Simultaneous EO-Azido and Carboxylato Bridges Displaying Strong Ferromagnetic Coupling: Synthesis,Crystal Structure,Magnetic Properties with DFT Calculations

    MA Xiao-Hui1LI Fei-Fei1CEN Pei-Pei1LIU Xiang-Yu*,1ZHOU Hui-Liang1LUO Shu-Chang*,2WU Yue-Wei1ZHANG Cheng-Cheng1SONG Wei-Ming*,1
    (1College of Chemistry and Chemical Engineering,State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering,Ningxia University,Yinchuan 750021,China)
    (2School of Chemical Engineering,Guizhou University of Engineering Science,Bijie,Guizhou 551700,China)

    An azido-Cucompound with substituted benzoate derivative,[Cu(4-Fb)(N3)(H2O)]n(1)(4-Fb=4-formylbenzoate),has been successfully synthesized,and then structurally and magnetically characterized.Single crystal structure analysis demonstrates that the asymmetric unit of compound 1 possesses one crystallographically independent Cuion that exhibits distorted tetragonal pyramid geometry.Adjacent Cuions are linked by alternating mixed-bridges of μ-1,1(end-on,EO)azido and syn,syn-carboxylate,forming a linear 1D Cuchainlike motif.Magnetic measurements reveal that the dominant ferromagnetic coupling between adjacent Cuions within each chain due to the counter-complementarity of the dual superexchange pathway is observed in the resulting compounds.However,the interesting plots of magnetic ordering and slow magnetic relaxation are absentin the compound.The critical structural parameter,Cu-N-Cu angle of 113.34°,is corresponding to that of known ferromangetic copper systems containing mixed carboxylate/EO-azido connectors.Magneto-structural correlations are also investigated.Moreover,density functional theory(DFT)calculations(using different methods and basis sets)have been performed on title compound to offer qualitatively theoretical explanation for the ferromagnetic coupling between two Cucenters.CCDC:1496426.

    azido-copper;benzoate;crystal structure;magnetic property;DFT calculation

    O614.121

    A

    1001-4861(2017)09-1639-10

    10.11862/CJIC.2017.174

    2017-04-13。收修改稿日期:2017-05-17。

    國家自然科學基金(No.21463020),寧夏自然科學基金(No.NZ16035),寧夏高等學校優(yōu)秀青年教師培育項目(No.NGY2016063)和國家級大學生創(chuàng)新創(chuàng)業(yè)訓練計劃(No.201710749003)資助。

    *通信聯(lián)系人。E-mail:xiangyuliu432@126.com,songwm@nxu.edu.cn,luosc@gues.edu.cn

    猜你喜歡
    疊氮鐵磁晶體結構
    關于兩類多分量海森堡鐵磁鏈模型的研究
    化學軟件在晶體結構中的應用
    降低乏燃料后處理工藝中HN3 含量的方法研究
    兩種不同結構納米疊氮化銅的含能特性研究
    火工品(2018年1期)2018-05-03 02:27:56
    齊多夫定生產中疊氮化工藝優(yōu)化
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結構及量子化學研究
    你好,鐵磁
    你好,鐵磁
    學生天地(2016年27期)2016-04-16 05:15:41
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進
    合成化學(2015年9期)2016-01-17 08:57:14
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結構及催化性能
    火炸藥學報(2014年3期)2014-03-20 13:17:39
    欧美激情极品国产一区二区三区| 免费在线观看影片大全网站 | 中文字幕av电影在线播放| 少妇的丰满在线观看| 丝袜人妻中文字幕| 最近最新中文字幕大全免费视频 | 久久ye,这里只有精品| 精品欧美一区二区三区在线| 国产精品秋霞免费鲁丝片| 一区二区三区精品91| 老鸭窝网址在线观看| 少妇裸体淫交视频免费看高清 | 老司机午夜十八禁免费视频| 欧美激情 高清一区二区三区| 晚上一个人看的免费电影| 老司机亚洲免费影院| 一本综合久久免费| 久久99热这里只频精品6学生| 高清不卡的av网站| 国产av国产精品国产| 亚洲 欧美一区二区三区| 日日夜夜操网爽| 色播在线永久视频| 91九色精品人成在线观看| 下体分泌物呈黄色| 国产亚洲av高清不卡| 精品少妇一区二区三区视频日本电影| 亚洲精品中文字幕在线视频| 在线亚洲精品国产二区图片欧美| 99久久人妻综合| 91成人精品电影| 国产亚洲精品第一综合不卡| 亚洲男人天堂网一区| 免费在线观看影片大全网站 | 亚洲中文字幕日韩| 好男人视频免费观看在线| 久久久久精品国产欧美久久久 | 久久精品国产亚洲av涩爱| 午夜影院在线不卡| 久久久久久人人人人人| 爱豆传媒免费全集在线观看| 成年人黄色毛片网站| 亚洲欧美一区二区三区黑人| 看免费成人av毛片| 亚洲精品久久成人aⅴ小说| 女人被躁到高潮嗷嗷叫费观| 国产片特级美女逼逼视频| 91精品国产国语对白视频| 美女福利国产在线| 在线观看免费午夜福利视频| 一级毛片黄色毛片免费观看视频| 熟女av电影| 亚洲成人免费av在线播放| 亚洲欧美色中文字幕在线| 久久人人97超碰香蕉20202| 曰老女人黄片| 精品卡一卡二卡四卡免费| 亚洲国产精品一区三区| 日韩大片免费观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 母亲3免费完整高清在线观看| 欧美日韩亚洲综合一区二区三区_| 久久精品国产亚洲av涩爱| 成人午夜精彩视频在线观看| 午夜视频精品福利| 丰满饥渴人妻一区二区三| 下体分泌物呈黄色| 一级毛片女人18水好多 | 精品少妇久久久久久888优播| 国产男女内射视频| 精品久久久久久电影网| 久久精品亚洲av国产电影网| 最近最新中文字幕大全免费视频 | 又粗又硬又长又爽又黄的视频| 99精品久久久久人妻精品| 汤姆久久久久久久影院中文字幕| 天天添夜夜摸| 欧美日韩黄片免| 欧美国产精品va在线观看不卡| 9191精品国产免费久久| 99国产精品99久久久久| 91老司机精品| 亚洲精品国产色婷婷电影| 日韩中文字幕视频在线看片| 国产精品秋霞免费鲁丝片| 精品少妇久久久久久888优播| 男人添女人高潮全过程视频| 精品人妻一区二区三区麻豆| 晚上一个人看的免费电影| 性色av一级| 97人妻天天添夜夜摸| 超碰成人久久| 精品久久久精品久久久| 午夜91福利影院| 免费一级毛片在线播放高清视频 | 免费av中文字幕在线| 中文字幕色久视频| 首页视频小说图片口味搜索 | 男人舔女人的私密视频| 亚洲欧美精品综合一区二区三区| 男人爽女人下面视频在线观看| 9191精品国产免费久久| 99久久综合免费| 好男人视频免费观看在线| 日日摸夜夜添夜夜爱| 亚洲欧美日韩高清在线视频 | 精品人妻在线不人妻| 日韩电影二区| 国产av一区二区精品久久| 考比视频在线观看| 免费看不卡的av| 精品人妻在线不人妻| 午夜免费观看性视频| 涩涩av久久男人的天堂| 日韩中文字幕欧美一区二区 | 大话2 男鬼变身卡| 亚洲av日韩在线播放| 国产成人精品久久久久久| 成年美女黄网站色视频大全免费| 男女下面插进去视频免费观看| 高清黄色对白视频在线免费看| 一级毛片黄色毛片免费观看视频| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区91| 在线观看免费日韩欧美大片| 婷婷色麻豆天堂久久| 亚洲精品久久久久久婷婷小说| 青草久久国产| 操出白浆在线播放| 国产成人一区二区三区免费视频网站 | 日韩精品免费视频一区二区三区| 国产xxxxx性猛交| 日韩视频在线欧美| 在线观看免费视频网站a站| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜制服| 免费人妻精品一区二区三区视频| 免费高清在线观看视频在线观看| 观看av在线不卡| 日韩制服骚丝袜av| 日韩大片免费观看网站| 精品少妇久久久久久888优播| 欧美激情高清一区二区三区| 99精国产麻豆久久婷婷| 国产高清不卡午夜福利| 免费观看av网站的网址| 伊人亚洲综合成人网| 一级片免费观看大全| 最新的欧美精品一区二区| 久久九九热精品免费| 国产极品粉嫩免费观看在线| 免费不卡黄色视频| 成人国产av品久久久| 18禁裸乳无遮挡动漫免费视频| 久久久久久免费高清国产稀缺| 亚洲自偷自拍图片 自拍| 91精品国产国语对白视频| 久久影院123| 丰满人妻熟妇乱又伦精品不卡| 一级片'在线观看视频| 成人国产av品久久久| 99九九在线精品视频| 亚洲色图综合在线观看| 日韩av免费高清视频| 精品一区二区三区四区五区乱码 | 欧美中文综合在线视频| 亚洲精品乱久久久久久| 18禁黄网站禁片午夜丰满| 欧美成狂野欧美在线观看| 18在线观看网站| 亚洲精品自拍成人| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区黑人| 精品国产乱码久久久久久男人| 女性生殖器流出的白浆| 在线天堂中文资源库| 尾随美女入室| 日韩精品免费视频一区二区三区| 国产xxxxx性猛交| 美女午夜性视频免费| 新久久久久国产一级毛片| 老熟女久久久| 人人妻,人人澡人人爽秒播 | 国产不卡av网站在线观看| h视频一区二区三区| av在线app专区| 女人高潮潮喷娇喘18禁视频| 亚洲图色成人| 午夜免费成人在线视频| 成年av动漫网址| 亚洲图色成人| 欧美性长视频在线观看| a 毛片基地| 久久久久久久国产电影| 亚洲精品美女久久av网站| 久久久亚洲精品成人影院| 人人妻人人澡人人看| 国产亚洲欧美精品永久| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人手机| 又紧又爽又黄一区二区| 成年av动漫网址| 考比视频在线观看| 夫妻性生交免费视频一级片| 亚洲精品自拍成人| 性少妇av在线| 亚洲情色 制服丝袜| 久久久久网色| 18禁观看日本| 亚洲男人天堂网一区| 亚洲欧美一区二区三区黑人| 精品国产乱码久久久久久小说| 欧美中文综合在线视频| 一级毛片我不卡| 免费在线观看影片大全网站 | 亚洲av日韩精品久久久久久密 | 午夜激情久久久久久久| 亚洲国产欧美网| 韩国高清视频一区二区三区| 波多野结衣av一区二区av| 欧美人与善性xxx| 久久精品国产亚洲av高清一级| 18禁黄网站禁片午夜丰满| av一本久久久久| 又黄又粗又硬又大视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲视频免费观看视频| 大香蕉久久成人网| 美女扒开内裤让男人捅视频| 9191精品国产免费久久| 建设人人有责人人尽责人人享有的| h视频一区二区三区| 最近中文字幕2019免费版| 亚洲国产av影院在线观看| 男男h啪啪无遮挡| av线在线观看网站| 99国产综合亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| 欧美日韩亚洲综合一区二区三区_| 久久久久久亚洲精品国产蜜桃av| 国产成人a∨麻豆精品| 丝袜在线中文字幕| 亚洲国产日韩一区二区| 久久九九热精品免费| 久久久国产一区二区| 亚洲色图综合在线观看| 丝袜脚勾引网站| 乱人伦中国视频| 免费在线观看完整版高清| 亚洲九九香蕉| 两性夫妻黄色片| 18禁裸乳无遮挡动漫免费视频| 校园人妻丝袜中文字幕| 成人手机av| 午夜av观看不卡| 高清av免费在线| 美女福利国产在线| 亚洲中文字幕日韩| 自线自在国产av| 熟女av电影| 亚洲精品日韩在线中文字幕| 国产成人欧美在线观看 | 久久影院123| 高清欧美精品videossex| 久久久久久久大尺度免费视频| 精品人妻在线不人妻| 亚洲成色77777| 嫁个100分男人电影在线观看 | 好男人电影高清在线观看| avwww免费| 国产男女超爽视频在线观看| 久久性视频一级片| 2018国产大陆天天弄谢| 99九九在线精品视频| 丝袜在线中文字幕| 考比视频在线观看| 成年美女黄网站色视频大全免费| 观看av在线不卡| 国产人伦9x9x在线观看| 热99国产精品久久久久久7| 好男人电影高清在线观看| 亚洲第一青青草原| 国产女主播在线喷水免费视频网站| 国产97色在线日韩免费| av一本久久久久| 精品卡一卡二卡四卡免费| 老司机亚洲免费影院| 久久人人97超碰香蕉20202| 天天影视国产精品| 久久av网站| 51午夜福利影视在线观看| 欧美日韩视频精品一区| 国产成人啪精品午夜网站| 久久 成人 亚洲| 侵犯人妻中文字幕一二三四区| 涩涩av久久男人的天堂| 深夜精品福利| 天天操日日干夜夜撸| 人人妻人人澡人人看| 亚洲精品国产色婷婷电影| 亚洲国产欧美网| 少妇 在线观看| 国产欧美日韩一区二区三区在线| 在线观看免费视频网站a站| 午夜福利免费观看在线| 亚洲黑人精品在线| 国产成人一区二区三区免费视频网站 | 午夜免费观看性视频| 亚洲av电影在线进入| 久久精品亚洲av国产电影网| 亚洲精品乱久久久久久| av在线播放精品| 亚洲欧美日韩另类电影网站| 亚洲专区中文字幕在线| 免费少妇av软件| 精品人妻熟女毛片av久久网站| 肉色欧美久久久久久久蜜桃| 亚洲天堂av无毛| 可以免费在线观看a视频的电影网站| 精品一区二区三区av网在线观看 | 午夜两性在线视频| 女人被躁到高潮嗷嗷叫费观| 久久久国产欧美日韩av| 久久天堂一区二区三区四区| 亚洲久久久国产精品| 叶爱在线成人免费视频播放| 一级,二级,三级黄色视频| 日本wwww免费看| 国产一区亚洲一区在线观看| 大片电影免费在线观看免费| xxxhd国产人妻xxx| 人妻人人澡人人爽人人| 久久国产精品影院| 成年av动漫网址| 久久女婷五月综合色啪小说| 超色免费av| 少妇人妻 视频| 国产精品 欧美亚洲| 黄色a级毛片大全视频| 丰满少妇做爰视频| 亚洲中文字幕日韩| 在线观看一区二区三区激情| 无遮挡黄片免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 老熟女久久久| 免费少妇av软件| 五月开心婷婷网| 久久久久久久久久久久大奶| 日韩人妻精品一区2区三区| 捣出白浆h1v1| 亚洲av成人精品一二三区| 激情五月婷婷亚洲| 亚洲三区欧美一区| 一本一本久久a久久精品综合妖精| 成年人黄色毛片网站| 91精品伊人久久大香线蕉| 免费看av在线观看网站| 亚洲图色成人| 国产精品.久久久| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 日本五十路高清| 中文字幕人妻丝袜制服| 亚洲精品乱久久久久久| 手机成人av网站| 国产精品国产av在线观看| 青草久久国产| 一级毛片我不卡| 精品人妻在线不人妻| 日本午夜av视频| 咕卡用的链子| 久久狼人影院| 又大又爽又粗| xxxhd国产人妻xxx| 新久久久久国产一级毛片| 国产成人精品久久二区二区91| 欧美中文综合在线视频| 国产无遮挡羞羞视频在线观看| 日韩熟女老妇一区二区性免费视频| 最新在线观看一区二区三区 | 婷婷成人精品国产| 老司机影院毛片| 中国国产av一级| 一二三四在线观看免费中文在| 亚洲国产精品999| 久久久精品国产亚洲av高清涩受| 高清欧美精品videossex| 久久久精品免费免费高清| 99精品久久久久人妻精品| 一边摸一边抽搐一进一出视频| 欧美黄色片欧美黄色片| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| 久久国产精品大桥未久av| 国产高清videossex| 飞空精品影院首页| 亚洲av日韩在线播放| 亚洲,一卡二卡三卡| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 日本欧美国产在线视频| 日本黄色日本黄色录像| 亚洲国产欧美在线一区| 亚洲av综合色区一区| 久久人妻熟女aⅴ| 亚洲av电影在线观看一区二区三区| 新久久久久国产一级毛片| 欧美亚洲 丝袜 人妻 在线| 国精品久久久久久国模美| 亚洲av在线观看美女高潮| 一级毛片黄色毛片免费观看视频| 亚洲国产中文字幕在线视频| 建设人人有责人人尽责人人享有的| www.av在线官网国产| 在线av久久热| 亚洲精品成人av观看孕妇| 成年人免费黄色播放视频| 日韩一卡2卡3卡4卡2021年| 91精品伊人久久大香线蕉| 国产片特级美女逼逼视频| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| av国产久精品久网站免费入址| 精品视频人人做人人爽| 成年人黄色毛片网站| 精品卡一卡二卡四卡免费| 国产精品香港三级国产av潘金莲 | 欧美 亚洲 国产 日韩一| 国产主播在线观看一区二区 | 亚洲精品第二区| 成人免费观看视频高清| 狂野欧美激情性xxxx| 亚洲成人免费电影在线观看 | 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看| 日韩av不卡免费在线播放| 亚洲精品av麻豆狂野| 国产成人系列免费观看| 久久99精品国语久久久| 五月天丁香电影| 成年av动漫网址| 最近最新中文字幕大全免费视频 | 在线观看一区二区三区激情| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 国产免费又黄又爽又色| 欧美精品一区二区免费开放| 亚洲av片天天在线观看| 久久精品aⅴ一区二区三区四区| 久久性视频一级片| 国语对白做爰xxxⅹ性视频网站| 99国产精品一区二区蜜桃av | 亚洲一码二码三码区别大吗| 9色porny在线观看| 午夜精品国产一区二区电影| 纵有疾风起免费观看全集完整版| 免费一级毛片在线播放高清视频 | 美女福利国产在线| 少妇精品久久久久久久| 成年人黄色毛片网站| 热99国产精品久久久久久7| 捣出白浆h1v1| 国产亚洲欧美精品永久| 女人被躁到高潮嗷嗷叫费观| 大话2 男鬼变身卡| av在线播放精品| 成年动漫av网址| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 看免费成人av毛片| 国产成人啪精品午夜网站| 自线自在国产av| 美女大奶头黄色视频| 午夜日韩欧美国产| 80岁老熟妇乱子伦牲交| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 大话2 男鬼变身卡| 美女福利国产在线| kizo精华| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久大尺度免费视频| 国产精品久久久久久人妻精品电影 | 黄色视频在线播放观看不卡| 亚洲精品美女久久av网站| 男女边吃奶边做爰视频| 99久久人妻综合| 成人手机av| 亚洲精品第二区| 免费观看av网站的网址| 亚洲国产欧美在线一区| 高清黄色对白视频在线免费看| 亚洲av美国av| 十分钟在线观看高清视频www| 久久久久久免费高清国产稀缺| 亚洲七黄色美女视频| 丝袜美足系列| www.999成人在线观看| 啦啦啦在线观看免费高清www| 日本五十路高清| 波多野结衣一区麻豆| 日韩 亚洲 欧美在线| 一级毛片黄色毛片免费观看视频| 日本av手机在线免费观看| 久久狼人影院| e午夜精品久久久久久久| 啦啦啦啦在线视频资源| 老鸭窝网址在线观看| 亚洲一区中文字幕在线| 国产精品九九99| 精品一区在线观看国产| videos熟女内射| 亚洲熟女精品中文字幕| 曰老女人黄片| 国产三级黄色录像| www.熟女人妻精品国产| 91成人精品电影| 大话2 男鬼变身卡| 中文字幕av电影在线播放| 午夜福利一区二区在线看| 日韩一卡2卡3卡4卡2021年| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 啦啦啦中文免费视频观看日本| 久久狼人影院| 国产一区二区在线观看av| 国产亚洲av高清不卡| 成年美女黄网站色视频大全免费| 一区二区三区四区激情视频| 精品人妻在线不人妻| 女人精品久久久久毛片| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 两人在一起打扑克的视频| 精品少妇一区二区三区视频日本电影| 国产精品一区二区在线观看99| 多毛熟女@视频| 亚洲国产精品国产精品| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品成人久久小说| 看免费成人av毛片| 777米奇影视久久| 久久久久久人人人人人| 亚洲av日韩在线播放| 色播在线永久视频| 人人妻人人爽人人添夜夜欢视频| av又黄又爽大尺度在线免费看| 建设人人有责人人尽责人人享有的| 精品国产乱码久久久久久男人| av在线播放精品| 18禁国产床啪视频网站| 巨乳人妻的诱惑在线观看| 久久久久久人人人人人| 国产成人影院久久av| 久久精品亚洲熟妇少妇任你| 精品久久久久久久毛片微露脸 | 欧美亚洲 丝袜 人妻 在线| 97人妻天天添夜夜摸| 欧美在线一区亚洲| 亚洲国产精品成人久久小说| 交换朋友夫妻互换小说| 男人爽女人下面视频在线观看| 天堂中文最新版在线下载| 久久ye,这里只有精品| 久久狼人影院| 久久久国产一区二区| 97在线人人人人妻| 操出白浆在线播放| 国产欧美日韩一区二区三区在线| 成人黄色视频免费在线看| 久久久久久免费高清国产稀缺| 久久精品成人免费网站| 丝袜脚勾引网站| 久久久久久久久久久久大奶| 亚洲午夜精品一区,二区,三区| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 日韩av在线免费看完整版不卡| 午夜激情av网站| 久久人妻福利社区极品人妻图片 | 国产淫语在线视频| 又粗又硬又长又爽又黄的视频| 国产免费又黄又爽又色| 婷婷丁香在线五月| 男人添女人高潮全过程视频| 婷婷丁香在线五月| 日韩 欧美 亚洲 中文字幕| 一边亲一边摸免费视频| 国产精品香港三级国产av潘金莲 | 亚洲av在线观看美女高潮| 精品国产一区二区久久| 日本五十路高清| 一本色道久久久久久精品综合| 亚洲国产毛片av蜜桃av| 精品久久蜜臀av无| 久久国产精品男人的天堂亚洲| 操美女的视频在线观看| videos熟女内射| 亚洲成国产人片在线观看| 国产成人系列免费观看| 中文精品一卡2卡3卡4更新| 一区福利在线观看| 黑人猛操日本美女一级片| 久久久欧美国产精品| 久久影院123| 中文字幕人妻丝袜一区二区| 校园人妻丝袜中文字幕| 国产在线免费精品| 精品国产国语对白av| 最近中文字幕2019免费版| 免费在线观看视频国产中文字幕亚洲 | 妹子高潮喷水视频| 免费观看a级毛片全部|