• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi2Fe4O9/g-C3N4/UiO-66三元復(fù)合材料的協(xié)同光催化作用

    2017-09-12 08:59:35王芳張勇濤徐艷麗李孫峰王幸劉雪霆魏鳳玉
    無機化學(xué)學(xué)報 2017年9期
    關(guān)鍵詞:王芳異質(zhì)光催化

    王芳張勇濤徐艷麗李孫峰王幸劉雪霆魏鳳玉

    Bi2Fe4O9/g-C3N4/UiO-66三元復(fù)合材料的協(xié)同光催化作用

    王芳張勇濤徐艷麗李孫峰王幸劉雪霆*魏鳳玉*

    (合肥工業(yè)大學(xué)化學(xué)與化工學(xué)院,合肥230009)

    通過水熱法合成具有協(xié)同機制的三元復(fù)合材料Bi2Fe4O9/g-C3N4/UiO-66,研究表明三元復(fù)合光催化劑的催化活性要高于二元材料和純材料。這主要是由于Bi2Fe4O9更易于和g-C3N4結(jié)合形成穩(wěn)定的Z-scheme異質(zhì)結(jié)結(jié)構(gòu),使三元復(fù)合材料增強了可見光響應(yīng)能力,提高了電子-空穴分離能力,增強了空穴和電子的氧化還原能力。

    Bi2Fe4O9;UiO-66;可見光;光催化;協(xié)同作用;固態(tài)Z-scheme異質(zhì)結(jié)

    0 Introduction

    With increasing environmental problems and the energy crisis,photocatalytic degradation of organic pollutants is one of the most important technologies for further efficient use of solar energy[1-3].In this area, the development of high efficient and stable photocatalysts is one of vital mission to be accomplished[4-7].

    Bi2Fe4O9has been considered as one of the most promising semiconductor materials due to its lower band gap,low cost,physical and chemical stability, availability,and can be stimulated by visible light, but,its low adsorption capacity is unfavorable to photocatalysis.In contrast,metal-organic frameworks (MOFs)have high specific surface area[8-10],excellent adsorption[11]performance,and can grow on other photocatalytic materials surface to form composite materials[12-16].UiO-66,as one extensively investigated MOF,is a rarely observed water stable MOF,and exhibits high hydrothermal stability up to 773 K. Hence,it can be considered as an effective adsorbent to remove dyes from water.G-C3N4,as a polymericsemiconductor,has been investigated extensively due to its suitable band gap energy of about 2.70 eV,and has visible-light absorbing ability up to ca.460 nm, moreover,it has low cost,ease of preparation,good stability,and environmental friendly features.It is noteworthy that when g-C3N4wrinkled sheet is combined with other semiconductor,the resulted composite often exhibits solid-state Z-scheme[17-19]heterojunction structure,which can enhance separation and the redox abilityofthephotogeneratedelectron-holepairs. These features are favorable for g-C3N4to obtain potential application in photocatalytic degradation of pollutants.

    In this paper,a novel ternary Bi2Fe4O9/g-C3N4/ UiO-66 composite photocatalyst was prepared.The results of structural characterization and photocatalytic experiments for degradation of RhodamineB dye and colorless phenol solutions show that 2D solid-state Z-scheme Bi2Fe4O9/g-C3N4heterojunction structure is formedbetweenBi2Fe4O9nanosheetandg-C3N4wrinkled sheet,which plays a key role for enhanced photocatalyticactivityofthebinarycomposite. Furthermore,under the synergistic effect of high adsorption capacity of UiO-66,the resulted Bi2Fe4O9/ g-C3N4/UiO-66 ternary composite exhibits the highest photocatalytic activity.

    1 Experimental

    1.1 Materials

    Bismuth nitrate pentahydrate,six water ferric chloride,acetone,ammonia,sodium hydroxide,ZrCl4, dimethylformamide(DMF,99%),chloroform,benzoic acid,1,4-benzenedicarboxylic acid(H2bdc,98.9%), nitric acid.

    1.2 Preparation of Bi2Fe4O9and g-C3N4

    Bi2Fe4O9is produced by hydrothermal synthesis method:[Bi(NO3)3·5H2O]and[FeCl3·6H2O]ina stoichiometric ratio(1∶1 in molar ratios),were dissolved in acetone with stirring and ultrasound until completely dissolved.And then distilled water was added into the solution,and ammonia was added slowly until the pH value is up to 10~11.The sediment was washed with distilled water until the pH is neutral.

    The obtained sediment was added into the NaOH (8 mol·L-1)solution with ultrasonic dispersion for 30 min,then the mixture was transferred to a stainless steel teflon-lined autoclave of 50 mL capacity and maintained at 180℃for 72 h.Black powder was obtained by filtration and washed with water and anhydrous ethanol.

    The g-C3N4power was synthesized according to the literature[20].Melamine was heated at 520℃for 4 h in a semi-closed crucible under air condition.The final product was washed with water and ethanol for several times and dried at 80℃for 12 h.Then,g-C3N4was obtained.

    1.3 Synthesis of Bi2Fe4O9/g-C3N4(1∶2)binary composite

    Acid modified g-C3N4[21]:The as-prepared bulk g-C3N4solid(0.500 g)was ground well and then put into 45 mL nitric acid(0.5 mol·L-1).The resulted solution was transferred to a stainless steel teflon-lined autoclave of 50 mL capacity and maintained at 135℃for 6 h. The solid product was then collected by centrifugation and washed with deionized water for several times. Then,the product was dried at 60℃in a vacuum oven.

    Acid modified g-C3N4(0.5 g)and Bi2Fe4O9(1 g) were dispersed in ethanol solution(50 mL)under magnetic stirring for 24 h.The product was dried in an oven[22].

    1.4 Preparation of ternary composite Bi2Fe4O9/g-C3N4/UiO-66

    Bi2Fe4O9/g-C3N4/UiO-66 was synthesized as UiO-66[23]:The content of UiO-66 in composite materials was controlled by the proportion of Bi2Fe4O9/g-C3N4and ZrCl4.For example binary composite materials Bi2Fe4O9/g-C3N4(0.106 g),ZrCl4(0.053 g),terephthalic acid(0.034 g)and benzoic acid(0.530 g)were introduced to N,N-dimethyl formamide solution(42 mL) with ultrasonic dispersion for 30 min,then the solution wastransferredtoastainlesssteelteflon-lined autoclave of 50 mL capacity and then maintained at 393 K for 24 h.The ternary composite Bi2Fe4O9/g-C3N4/ UiO-66(2∶1)(wBi2Fe4O9/g-C3N4∶wUiO-66=2∶1)was obtained after filtration,treatment with DMF and CHCl3severaltimes and drying under reduced pressure.

    1.5 Photocatalytic experiments

    ThephotocatalyticdegradationofRhBwas measured at ambient pressure and 298 K in a set of home-made photochemical reaction equipment.The light source was a PHILIPS 70 W metal halide lamp (λ<380 nm was filtered out by a cut off filter).20 mg of photocatalyst was added into 100 mL RhB(initial concentration,C0=10 mg·L-1)aqueous solution.Before irradiation,the suspension was stirred continuously for 12 h in the dark in order to reach the adsorptiondesorption equilibrium between RhB and the photocatalyst.The supernatant liquid was obtained through filtration by 0.22 μm filter,and examined using a Shimadzu UV-240 spectrophotometer.In order to confirm that RhB was not photodegraded by itself, control experiments were carried out under the same condition but without irradiation or photocatalyst.For comparison,the photocatalytic activities of the asprepared samples were also tested to degradation of colorless model pollutant phenol(10 mg·L-1)under the same conditions with RhB.

    1.6 Photoelectrochemical measurements

    Photocurrent density was measured using a CHI electrochemical analyzer(CH instruments 660e)in a standard three-electrode configuration,with the working electrode(an effective area of 2 cm2),a platinum foil as the counter electrode,and a saturated calomel electrode(SCE)as the reference electrode.Na2SO4(0.01 mol·L-1)was used as the electrolyte.The light source was a PHILIPS 70 W metal halide lamp(λ<380 nm was filtered out by a cut off filter)was used as the visible light source.

    1.7 Photocatalysts characterization

    X-ray diffraction(XRD)patterns of the samples were determined in the range of 2θ=4°~50°by step scanning on a Rigaku D/max-2500V X-ray diffractometer using Cu Kα(λ=0.154 nm)radiation(U=40 kV, I=100 mA).The morphological analysis of the samples wasstudiedusingaJEM-2100Ffieldemission transmission electron microscopy(FETEM).UV-Vis spectra were recorded at a scanning rate of 3 600 nm·min-1in solid-state on a DUV-3700 spectrometer with the double beam,in which spectral resolution is 0.1 nm,and measure range varies from 165 nm to 3 300 nm depending on application and the use of an integrating sphere and the optional direct detection unit.The valence band X-ray photoelectron spectroscopy(XPS)was conducted using an ESCALAB250 spectrometer.Photoluminescenceemissionspectra (PL)were mea-sured on a PL measurement system (Fluorolog Tau-3)with the excitation wavelength of 320 nm.N2adsorption-desorption was performed on a Tristar II 3020M surface area and porosity analyzer at 77 K.Before the actual measurements,the sample was degassed at 70℃for 3 h.

    2 Results and discussion

    2.1 Characterization

    The microst ructure of the as-prepared samples was investigated by FETEM.As shown in Fig.1(a), UiO-66 has discoid shape with particle size at 15~20 nm.Fig.1(b)indicated that Bi2Fe4O9nanosheet was formed by flake structure with size at about 1~2 μm. A typical thick and wrinkled sheet structure was clearly observed in the pristine g-C3N4in Fig.1(c). Interestingly,it can be seen that the aggregate of g-C3N4and UiO-66 loads on to the surface of Bi2Fe4O9nanosheet in the Fig.1(d).The single-crystal nature of the material can be confirmed from the highresolution TEM image(Fig.1(e)).Inter-planar spacings of 0.594 nm was calculated corres-ponding to the(001) plane of the orthorhombic Bi2Fe4O9which implies the nanosheet crystals grow prefere-ntially along the(001) direction.

    To further observe the combination of Bi2Fe4O9, g-C3N4and UiO-66,FETEM(Fig.2(a))and the EDS mapping(Fig.2(b),(c)and(d))were measured.The N and Zr distribution around the nanosheet shows that the ternary composites are successfully prepared,in which each component is intimately contacted with other two components.

    The XRD patterns of Bi2Fe4O9,g-C3N4and UiO-66 shown in Fig.3 are corresponds to those reported in the literature[24-25],and the composite displays the characteristic peaks of Bi2Fe4O9,g-C3N4and UiO-66.This means the composite consists of the three components.

    Fig.1 TEM images of(a)UiO-66 discoid particles,(b)Bi2Fe4O9nanosheet,(c)g-C3N4wrinkled sheet and (d)Bi2Fe4O9/g-C3N4/UiO-66 ternary composite(e)HRTEM images of the as-prepared sample Bi2Fe4O9/g-C3N4/UiO-66

    Fig.2 (a)FETEM of Bi2Fe4O9/g-C3N4/UiO-66(2∶1);(b)Bi,(c)N,(d)Zr distribution by EDS mapping of Bi2Fe4O9/g-C3N4/UiO-66(2∶1)

    Fig.3 XRD patterns of Bi2Fe4O9,UiO-66,g-C3N4, Bi2Fe4O9/g-C3N4and Bi2Fe4O9/g-C3N4/UiO-66

    TheN2adsorption-desorptionisothermsofBi2Fe4O9, g-C3N4,UiO-66 and Bi2Fe4O9/g-C3N4/UiO-66(2∶1)are displayed in Fig.4(a),and the specific surface areas of them are 1,11,838 and 488 m2·g-1,respectively.The N2adsorption-desorption isotherms of UiO-66 shows the typeⅣbehavior,which indicates the presence of mesoporous in the material and that the pore diameter ranges from 2 to 50 nm(Fig.4(b)).In contrast,Bi2Fe4O9doesn′t havethe mesoporous structure,whereas g-C3N4has it,and exhibits higher BET surface area than Bi2Fe4O9。The pore size distribution of the ternary composite is not as uniform as that of UiO-66,but its pore size is even larger as shown in Fig.4(c).Higher specific surface area and larger pore size of the structure can increase the adsorption of dye molecules on the active site,which can improve the photocatalytic activity.As known,the recombina-tion of electronhole pairs will release energy,which can be detected by PL emission.A lower PL intensity is a general indication of a lower recombination of electron-hole pairs,resulting in higher photocatalytic activity,thus PL spectra can be used to detect efficient separation of photogenerated charge carriers.PL spectra of pure materials and composites are showed in Fig.4(d),andthe spectra intensities decrease as follows:UiO-66>g-C3N4>Bi2Fe4O9/g-C3N4/UiO-66(2∶1)>Bi2Fe4O9/g-C3N4>Bi2Fe4O9.As indicated,UiO-66 and g-C3N4both have the relatively high recombination rate of electron-hole pairs,whereas when binary and ternary composites were constructed by the combination of Bi2Fe4O9,the separation efficiency was greatly enhanced.

    Fig.4 (a)N2adsorption-desorption isotherms of Bi2Fe4O9,g-C3N4,UiO-66 and Bi2Fe4O9/g-C3N4/UiO-66(2∶1); BJH pore diameter distribution curves of UiO-66(b)and Bi2Fe4O9/g-C3N4/UiO-66(2∶1)(c); (d)PL spectra of Bi2Fe4O9,g-C3N4,UiO-66,Bi2Fe4O9/g-C3N4and Bi2Fe4O9/g-C3N4/UiO-66(2∶1)

    Fig.5 shows that the Bi2Fe4O9/g-C3N4/UiO-66(2∶1) electrode has a strong instant photoresponse to the visible light irradiation.The short-circuit photocurrent density of the Bi2Fe4O9/g-C3N4/UiO-66(2∶1)electrode is as great as 3 times that of the UiO-66 electrode. Thisdemonstratesthattheseparationrateof photogenerated holes and electrons increases because oftheloadingofg-C3N4andUiO-66.More photogenerated electrons collected from the Bi2Fe4O9/ g-C3N4/UiO-66(2∶1)electrodesuggestthat more photogenerated holes survive from recombination or from the longer lifetime that the holes had.

    Fig.5 Short-circuit photocurrent density versus time plotted(0 V versus SCE)for Bi2Fe4O9/g-C3N4/ UiO-66(2∶1),Bi2Fe4O9,g-C3N4and UiO-66 electrodes in 0.01 mol·L-1Na2SO4solution under visible light irradiation

    Fig.6 (a)shows the UV-Vis absorption spectra of Bi2Fe4O9,g-C3N4and UiO-66.Two absorption bands of Bi2Fe4O9are observed in the visible region,indicating that the sample can serve as a photocatalyst driven by visible light.The first absorption from 400 to 600 nm primarilyresultsfromtwotypesofexcitationsoverlapping each other.The first excitation process is due to the pair excitation process:6A1g+6A1g→4T1g(4G) +4T1g(4G)and the second one is due to the excitation from6A1gto4Eg,4A1g(4G)ligand field transitions(octahedral coordination)and6A1to4T2(4G)ligand field transitions(tetrahedral coordination)as well as the charge transfer band tail.The second absorption from 610 to 770 nm can then be assigned to the d-d transitions of Fe3+[26].There are two absorption bands of UiO-66:the first absorption in the ultraviolet region primarily results from the direct transition of valence electrons and the second absorption from 380 to 600 nm can then be assigned to the crystal lattice defects.G-C3N4wrinkled sheet can absorb light of less than 460 nm and the peak intensity is weaker in ultraviolet region. The band gap energy Egof Bi2Fe4O9,g-C3N4and UiO-66 can be determined using the following equation: αhν=A(hν-Eg)n/2,where α,ν,Egand A are absorption coefficient,light frequency,band gap and a constant, respectively.Among them,n depends on the transition process(n=1 for direct transition or n=4 for indirect transition[27-28]).Bi2Fe4O9has two low band gap Eg:1.84 eV and 1.49 eV,which indicates the response to visible light.The Egof g-C3N4and UiO-66 are 2.81[29]and 3.49 eV(Fig.6(b)),respectively.

    Fig.6 (a)UV-Vis absorption spectra of Bi2Fe4O9,UiO-66 and g-C3N4;(b)Band-gaps of Bi2Fe4O9,UiO-66 and g-C3N4

    The valence band of UiO-66 is 2.49 eV[30],and those of g-C3N4and Bi2Fe4O9are 1.51 and 2.51 eV, respectively according to Wang[31].Combined with the energy gap and valence band,the CB positions of UiO-66,g-C3N4and Bi2Fe4O9can be calculated to be -1.00,-1.30 and 0.67 eV,respectively.The middle band of Bi2Fe4O9is 1.02 eV.CB positions for g-C3N4and UiO-66 are more negative than O2/·O2-(-0.33 eV)and O2/HOO·(-0.037 eV),indicating that it is possible for the transfer of photogenerated electrons from CB to O2to form·O2-,and then become·OH free radicals.

    2.2 Adsorption activity of Bi2Fe4O9,g-C3N4, UiO-66 and the composites

    UiO-66 and Bi2Fe4O9/g-C3N4/UiO-66(2∶1)display high adsorption capacity,and rapid adsorption process happens in the first three hours,and then reaches to balance(Fig.7(a)).Bi2Fe4O9and g-C3N4display poor adsorption capacity of RhB in contrast with UiO-66 which is due to a large BET surface area of UiO-66. As shown in Fig.7(b),the adsorption activities of composites are between those of Bi2Fe4O9and UiO-66,and increase with the increasing of the UiO-66 content.

    RhB dye was used as probing molecules to explore the photocatalytic degradation property of the as-prepared samples.For low concentration pollutants, the pseudo-first order kinetic model can be adopted according to the following equation:

    where Ctis the concentration of pollutant(mg·L-1)in the time of t,C0is the adsorption equilibrium concentration of pollutant before irradiation(mg·L-1),t is the reaction time(min),and k is the reaction rate constant (min-1).As shown in Fig.8(a),the photocatalyticactivities are increased as the following order:g-C3N4<Bi2Fe4O9<UiO-66<Bi2Fe4O9/g-C3N4<Bi2Fe4O9/g-C3N4/ UiO-66(2∶1).The photocatalytic performance of ternary composites with the different ratios was also investigated,and they generally display better photodegradation activity than pure materials and binary composite(Fig.8(b)).It can be seen that the mass ratio of 2∶1 is the optimum value to achieve high photodegradation activity.

    These behaviors indicate that Bi2Fe4O9,g-C3N4and UiO-66 have the lower photodegradation efficiencies,which can be interpreted as their lower adsorption ability or due to the higher recombination rate of electron-hole pairs,resulting in poor photocatalytic degradation efficiency.

    Fig.7 (a)Adsorption capacity of RhB onto Bi2Fe4O9, g-C3N4,UiO-66,Bi2Fe4O9/g-C3N4and Bi2Fe4O9/ g-C3N4/UiO-66(2∶1);(b)Adsorption capacity of RhB onto the ternary composites with different mass ratios of Bi2Fe4O9/g-C3N4to UiO-66

    In addition,phenol,as a colorless substance without absorbing visible-light,was used as the second model pollutant to further evaluate the visible light photocatalytic performance of the as-prepared samples under visible light,and the obtained results are illustrated in Fig.8(c).It is clear that the photodegradation efficiency follows the same order:g-C3N4<Bi2Fe4O9<UiO-66<Bi2Fe4O9/g-C3N4<Bi2Fe4O9/g-C3N4/ UiO-66(2∶1),as compared to photodegradation of RhB. After 180 min irradiation,about 65%percent of phenol was removed over Bi2Fe4O9/g-C3N4/UiO-66(2∶1)composites.By comparing Fig.7(a)with Fig.7(c),one cansee that the photocatalytic activity for phenol is lower than that for RhB.This phenomenon is often observed for photocatalytic study.

    Fig.8 Kinetics of RhB photodegradation on:(a)Bi2Fe4O9, g-C3N4,UiO-66,Bi2Fe4O9/g-C3N4and Bi2Fe4O9/ g-C3N4/UiO-66;(b)Ternary composites with the different ratios;Kinetics of phenol(10 mg·L-1) photodegradation on:(c)Bi2Fe4O9,g-C3N4,UiO-66, Bi2Fe4O9/g-C3N4and Bi2Fe4O9/g-C3N4/UiO-66(2∶1)

    The regeneration of the photocatalyst is one of theimportantstepsforconsideringinpractical applications.The stability of Bi2Fe4O9/g-C3N4/UiO-66 (2∶1)was investigated,and after each photodegradation,it was separated from solution by centrifuge,and can be reused without considerable amount of mass loss.As shown in Fig.9(a),(b),after three cycles of degradationRhB,thephotodegradationkinetics constant of Bi2Fe4O9/g-C3N4/UiO-66(2∶1)is 87%of the first cycle and after three cycles of photodegradation of phenol(10 mg·L-1),the k value stabilizes at about 0.119 min-1,which is 85.6%of the first cycle.indicating that composite material has the good regeneration performance.

    Fig.9 (a)Kinetics of RhB photodegradation on the recycled Bi2Fe4O9/g-C3N4/UiO-66(2∶1), (b)Kinetics of phenol photodegradation on the recycled Bi2Fe4O9/g-C3N4/UiO-66(2∶1)

    2.3 Photocatalytic mechanism of Bi2Fe4O9/g-C3N4/ UiO-66

    To investigate the active ingredient in photocatalytic process of Bi2Fe4O9/g-C3N4/UiO-66,EDTA-2Na,t-BuOH and BQ were as the probe molecules[32-33].After adding each probe molecule,the photodegradation rate of the ternary composite is generally decreased, and the inhibition degree is decreased in the following order:EDTA-2Na>BQ>t-BuOH.As shown in Fig.10, h+radicals are the main active oxygen species in the degradation of RhB,followed by·O2-radicals and·OH radicals[34-36].

    Fig.10 Species trapping experiments for degradation of RhB over Bi2Fe4O9/g-C3N4/UiO-66(2∶1)

    The ESR technique was further used to detect the presence of·OH and·O2-radicals in the Bi2Fe4O9/g-C3N4/UiO-66(2∶1)photocatalytic reaction systems under visible light.As shown in Fig.10,for Bi2Fe4O9/ g-C3N4/UiO-66(2∶1)samples,the four characteristic peaks of the DMPO-·OH adducts(Fig.11(a))and six characteristic peaks of DMPO-·O2-adducts(Fig.11(b)) are observed,Therefore,according to the above results of the active species trapping experiments and this ESR analysis,it can be inferred that the·O2-played a major role in the Bi2Fe4O9/g-C3N4/UiO-66(2∶1)photocatalytic reactions rather than the·OH.

    Fig.11 DMPO spin-trapping ESR spectra for Bi2Fe4O9/ g-C3N4/UiO-66(2∶1):(a)in aqueous dispersion for DMPO-·OH,(b)in methanol dispersion for DMPO-·O2-

    In summary,a possible mechanism of photocatalysis is proposed.As shown in Fig.12,Bi2Fe4O9and g-C3N4were inspired by the visible light,and photoproduction electrons are transferred from valence band (VB)via the calculated band-gap to the conduction band(CB).The VB edges of g-C3N4is 1.51 eV which had no sufficient force to drive-OH oxidation to form ·OH,however the CB of Bi2Fe4O9is 0.67 eV,then the dissolved O2can not capture the photogenerated electron at CB of Bi2Fe4O9to yield the superoxide radical anion,·O2-,to degrade RhB.On the other hand,the h+radicals on VB of g-C3N4have too low oxidation capacity to degrade RhB.However,Bi2Fe4O9/ g-C3N4may act as a solid Z-scheme photocatalyst,in which the photogenerated electrons on the CB of Bi2Fe4O9can combine with h+on the VB of g-C3N4,as a result,VB of Bi2Fe4O9for h+is more positive than VB of g-C3N4,meanwhile CB of g-C3N4for e-is more negative than CB of Bi2Fe4O9.In other words,h+left on VB of Bi2Fe4O9has higher oxidation capacity to degrade RhB,and e-left onCB of g-C3N4can be more readily trapped by O2to yield·O2-.After forming ternary composite,e-on the CB of g-C3N4transfers to the CB of UiO-66,and the dissolved O2captures e-on the CB of UiO-66 to yield the superoxide radical anion, ·O2-,and then the HOO·radical upon protonation. The·OH radical can be produced from the trapped electron after formation of the HOO·radical by the following equations[37].

    The active oxygen species·O2-,HOO·and·OH radicals have taken part in the degradation of RhB, meanwhile,the photogenerated holes in the VB of Bi2Fe4O9play a major role,and can directly destroy the adsorbed RhB or react with H2O to yield·OH radicals.

    Fig.12 Mechanism diagram of the RhB photodegradation on Bi2Fe4O9/g-C3N4/UiO-66 ternary composite

    3 Conclusions

    Insummary,Bi2Fe4O9/g-C3N4/UiO-66ternary composites were synthesized by a facile solvothermal method,and exhibit higher visible light photocatalytic activities for degradation of RhB dye and colorless phenol solutions as compared with purity materials and binary composite materials.The synergistic effect of photocatalysis is due to big adsorption capacity of UiO-66 and the effective separation of electron-hole pair and their strong redox capability generated by Z-scheme Bi2Fe4O9/g-C3N4heterojunction B.

    Acknowledgements:The research gains the financial supports by the Anhui Provincial Natural Science Foundation (GrantNo.1508085MB28),theNationalNaturalScience Foundation of China(Grant No.51372062).

    [1]Sastre F,Puga A V,Liu L,et al.J.Am.Chem.Soc.,2014,136: 6798-6801

    [2]Lin C H,Chao J H,Liu C H,et al.Langmuir,2008,24:9907 -9915

    [3]Zhang Y H,Tang Z R,Fu X Z,et al.ACS Nano,2010,4: 7303-7314

    [4]Dolbecq A,Mialane P,Keita B,et al.Mater.Chem.,2012, 22:24509-24521

    [5]Kubacka A,Fernández-García M,Colón G.Chem.Rev., 2012,112:1555-1614

    [6]Fan W Q,Zhang Q H,Wang Y.Phys.Chem.Chem.Phys., 2013,15:2632-2649

    [7]Chen X B,Shen S H,Guo L J,et al.Chem.Rev.,2010,110: 6503-6570

    [8]Eddaoudi M,Kim J,Rosi N,et al.Science,2002,295:469-472

    [9]Horcajada P,Serre C,Vallet-Regí M,et al.Angew.Chem., 2006,118:6120-6124

    [10]Lee Y R,Kim J,Ahn W S.Korean J.Chem.Eng.,2013,30: 1667-1680

    [11]Hasegawa S,Horike S,Matsuda R S,et al.J.Am.Chem. Soc.,2007,129:2607-2614

    [12]Li H L,Eddaoudi M,O′Keeffe M,et al.Nature,1999,402: 276-279

    [13]Yaghi O M,O′Keeffe M,Ockwig N W,et al.Nature,2003, 423:705-714

    [14]Kitagawa S,Kitaura R,Noro S I.Angew.Chem.Int.Ed., 2004,43:2334-2375

    [15]Kitagawa S,Matsuda R.Chem.Rev.,2007,251:2490-2509

    [16]Férey G.Chem.Soc.Rev.,2008,37:191-214

    [17]Bai Y,Wang P Q,Liu J Y,et al.RSC Adv.,2014,4:19456-19461

    [18]Zhou P,Yu J G,Jaroniec M.Adv.Mater.,2014,26:4920-4935

    [19]Sasaki Y,Kato H,Kudo A.J.Am.Chem.Soc.,2013,135: 5441-5449

    [20]He Y M,Zhang L H,Fan M H,et al.Sol.Energy Mater. Sol.Cells,2015,137:175-184

    [21]Zhang L G,Liu D,Guan J.et al.Mater.Res.Bull.,2014, 59:84-92

    [22]Zang Y P,Li L P,Li X G,et al.Chem.Eng.J.,2014,246: 277-286

    [23]Cavka J H,Jakobsen S,Olsbye U N,et al.J.Am.Chem. Soc.,2008,130:13850-13851

    [24]Liu Y,Zuo R.Particuology,2013,11:581-587

    [25]Zhou J J,Wang R,Liu X L,et al.Appl.Surf.Sci.,2015, 346:278-283

    [26]Sherman D M.Phys.Chem.Miner.,1985,12:161-175

    [27]Butler M A.J.Appl.Phys.,1914,48:1914-1920

    [28]Lin J,Lin J,Zhu Y F.Inorg.Chem.,2007,46:8372-8378

    [29]Yan T,Tian J,Guan W,et al.Appl.Catal.B:Environ.,2017, 202:84-94

    [30]Li S,Wang X,Chen Q,et al.RSC Adv.,2015,5:53198-53206

    [31]Wang X,Zhang M,Tian P,et al.Appl.Surf.Sci.,2014,321: 144-149

    [32]Chen D,Jiang Z,Geng J,et al.Ind.Eng.Chem.Res.,2007, 46:2741-2746

    [33]Mohapatra L,Parida K,Satpathy M.J.Phys.Chem.C,2012, 116:13063-13070

    [34]Xiong P,Chen Q,He M Y,et al.J.Mater.Chem.,2012,22: 17485-17493

    [35]Xiong P,Wan L J,Sun X Q,et al.Ind.Eng.Chem.Res., 2013,53:10105-10113

    [36]Chen Q,He Q Q,Lü M M,et al.Appl.Surf.Sci.,2014,311: 230-238

    [37]Su F Z,Mathew S C,Lipner G,et al.J.Am.Chem.Soc., 2010,132:16299-16301

    Synergistic Photocatalysis of Bi2Fe4O9/g-C3N4/UiO-66 Ternary Composites

    WANG FangZHANG Yong-TaoXU Yan-LiLI Sun-Feng WANG XingLIU Xue-Ting*WEI Feng-Yu*
    (School of Chemistry and Chemical Engineering,Hefei University of Technology,Hefei 230009,China)

    Bi2Fe4O9/g-C3N4/UiO-66 ternary composites synthesized by a facile hydrothermal method possess synergistically enhanced visible-light photocatalytic performance for degradation of both RhodamineB dye and colorless phenol solutions as compared with purity materials of g-C3N4,Bi2Fe4O9and UiO-66.The ternary composite materials show increased visible light absorption,efficient separation of charge carriers,strong redox capability via Z-scheme Bi2Fe4O9/g-C3N4heterojunction and high adsorption ability.

    Bi2Fe4O9;UiO-66;visible-light;photocatalysis;synergistic effect;solid-state Z-scheme heterojunction

    TB321

    A

    1001-4861(2017)09-1510-11

    10.11862/CJIC.2017.191

    2017-02-21。收修改稿日期:2017-07-04。

    國家自然科學(xué)基金(No.51372026)和安徽省自然科學(xué)基金(No.1508085MB28)資助項目。*

    。E-mail:wmlxt@163.com

    猜你喜歡
    王芳異質(zhì)光催化
    最佳波段組合的典型地物信息提取
    王芳:帶貨“一姐”如何煉就?
    出版人(2020年10期)2020-10-26 06:26:52
    立秋吃什么
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    The Application of Storytelling in English Writing
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    可見光光催化降解在有機污染防治中的應(yīng)用
    隨機與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見光光催化性能
    MoS2/ZnO異質(zhì)結(jié)的光電特性
    物理實驗(2015年10期)2015-02-28 17:36:52
    少妇裸体淫交视频免费看高清| 国产又色又爽无遮挡免费看| 观看免费一级毛片| 麻豆国产av国片精品| 一个人免费在线观看的高清视频| 午夜免费观看网址| 国产精品一及| 国产aⅴ精品一区二区三区波| 亚洲美女黄片视频| 精品国产超薄肉色丝袜足j| 亚洲中文日韩欧美视频| 精品无人区乱码1区二区| 香蕉丝袜av| 天堂动漫精品| 午夜福利高清视频| 久久国产精品影院| 欧美激情久久久久久爽电影| 一级毛片高清免费大全| 中文字幕最新亚洲高清| 最近在线观看免费完整版| 国产精品日韩av在线免费观看| 亚洲欧美精品综合一区二区三区| 一个人免费在线观看的高清视频| 亚洲人成网站高清观看| 18禁裸乳无遮挡免费网站照片| 一进一出抽搐gif免费好疼| 狂野欧美激情性xxxx| 又大又爽又粗| 动漫黄色视频在线观看| 亚洲午夜理论影院| 观看免费一级毛片| 免费在线观看日本一区| 成人18禁在线播放| 久久午夜综合久久蜜桃| 日韩av在线大香蕉| 亚洲熟妇中文字幕五十中出| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧洲综合997久久,| 两个人的视频大全免费| 欧美乱色亚洲激情| 男人和女人高潮做爰伦理| 一个人免费在线观看电影 | 超碰成人久久| 免费观看精品视频网站| 欧美一级毛片孕妇| 可以在线观看的亚洲视频| 性色avwww在线观看| 欧美成人性av电影在线观看| 制服丝袜大香蕉在线| 国产成人精品久久二区二区免费| 色综合欧美亚洲国产小说| 久久精品91无色码中文字幕| 亚洲五月婷婷丁香| 国产激情偷乱视频一区二区| 91av网站免费观看| 亚洲精品美女久久久久99蜜臀| 丰满人妻一区二区三区视频av | 三级男女做爰猛烈吃奶摸视频| 国产精品99久久久久久久久| 成人鲁丝片一二三区免费| 别揉我奶头~嗯~啊~动态视频| 国产真实乱freesex| 亚洲av熟女| 国产极品精品免费视频能看的| 香蕉久久夜色| 国产激情欧美一区二区| 国产精品永久免费网站| 搡老妇女老女人老熟妇| 他把我摸到了高潮在线观看| 亚洲熟妇中文字幕五十中出| 亚洲激情在线av| 成年女人毛片免费观看观看9| 老司机在亚洲福利影院| 国产成人精品久久二区二区免费| 中文字幕久久专区| 一个人看视频在线观看www免费 | 十八禁人妻一区二区| 少妇裸体淫交视频免费看高清| tocl精华| 在线播放国产精品三级| 99热这里只有是精品50| 白带黄色成豆腐渣| 成人三级黄色视频| 90打野战视频偷拍视频| 国产欧美日韩一区二区精品| 日韩欧美在线二视频| 国内久久婷婷六月综合欲色啪| 亚洲国产中文字幕在线视频| 老司机午夜福利在线观看视频| 观看免费一级毛片| av福利片在线观看| 国产三级在线视频| 亚洲精品国产精品久久久不卡| 男女视频在线观看网站免费| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区三区| 日本一本二区三区精品| 在线免费观看的www视频| 人人妻,人人澡人人爽秒播| 又黄又粗又硬又大视频| 在线播放国产精品三级| 欧美黄色淫秽网站| 亚洲中文av在线| 国产欧美日韩精品亚洲av| 91av网一区二区| 国产精品一区二区精品视频观看| 亚洲av五月六月丁香网| 欧美三级亚洲精品| 午夜视频精品福利| 国产精品久久久av美女十八| 亚洲国产高清在线一区二区三| 精品无人区乱码1区二区| 啪啪无遮挡十八禁网站| 国产精品久久久久久久电影 | 国内揄拍国产精品人妻在线| 99在线人妻在线中文字幕| 欧美日韩一级在线毛片| 一进一出抽搐动态| 一区二区三区国产精品乱码| 成人高潮视频无遮挡免费网站| 悠悠久久av| 九九久久精品国产亚洲av麻豆 | 亚洲一区二区三区不卡视频| 熟女电影av网| av福利片在线观看| 亚洲 国产 在线| 日韩欧美一区二区三区在线观看| 91av网站免费观看| 亚洲欧美激情综合另类| 真人做人爱边吃奶动态| 国产精品亚洲一级av第二区| 国产一级毛片七仙女欲春2| 亚洲激情在线av| 久久亚洲真实| 国产69精品久久久久777片 | 日本五十路高清| 人人妻,人人澡人人爽秒播| 久久人人精品亚洲av| 亚洲欧美日韩东京热| 国产精品亚洲美女久久久| 搡老熟女国产l中国老女人| 亚洲一区二区三区不卡视频| 欧美激情久久久久久爽电影| 国产亚洲精品一区二区www| 久久久久免费精品人妻一区二区| 欧美绝顶高潮抽搐喷水| 日韩精品中文字幕看吧| 欧美三级亚洲精品| 午夜福利在线观看免费完整高清在 | 日韩欧美三级三区| 久久久久九九精品影院| svipshipincom国产片| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 美女黄网站色视频| 最近最新免费中文字幕在线| 18禁黄网站禁片午夜丰满| 午夜精品一区二区三区免费看| 亚洲中文字幕日韩| 人妻夜夜爽99麻豆av| 久久精品夜夜夜夜夜久久蜜豆| 伊人久久大香线蕉亚洲五| 国产一区在线观看成人免费| 亚洲精品粉嫩美女一区| 成在线人永久免费视频| 三级毛片av免费| 青草久久国产| 色av中文字幕| 日韩欧美国产在线观看| 久久午夜综合久久蜜桃| 欧美大码av| 成人精品一区二区免费| 色综合婷婷激情| 一级毛片高清免费大全| 国内精品久久久久精免费| 精品国产乱子伦一区二区三区| 成人精品一区二区免费| 欧美中文日本在线观看视频| 午夜免费激情av| 国产三级中文精品| 99久久久亚洲精品蜜臀av| 精品福利观看| 特级一级黄色大片| 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 亚洲片人在线观看| 男女下面进入的视频免费午夜| 国产亚洲av嫩草精品影院| 超碰成人久久| 国产亚洲av高清不卡| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩卡通动漫| 久久这里只有精品19| 亚洲国产欧美网| 网址你懂的国产日韩在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久亚洲av鲁大| 国产精品精品国产色婷婷| 久99久视频精品免费| 一本精品99久久精品77| 脱女人内裤的视频| 天天一区二区日本电影三级| 热99在线观看视频| 亚洲精品色激情综合| 十八禁人妻一区二区| 日韩欧美国产在线观看| 精品一区二区三区视频在线观看免费| 久久久成人免费电影| 免费看十八禁软件| 又爽又黄无遮挡网站| 日韩欧美国产在线观看| 精品无人区乱码1区二区| 国内久久婷婷六月综合欲色啪| 精品久久久久久久毛片微露脸| 久久这里只有精品19| 国产黄片美女视频| 露出奶头的视频| 日本在线视频免费播放| 亚洲专区中文字幕在线| 国产一区二区激情短视频| 好男人在线观看高清免费视频| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 久久久久久国产a免费观看| 麻豆国产av国片精品| 窝窝影院91人妻| 久久久久久九九精品二区国产| 日本与韩国留学比较| 99国产综合亚洲精品| 99久久无色码亚洲精品果冻| 国产精品一区二区免费欧美| 日韩人妻高清精品专区| 久久久成人免费电影| 精品一区二区三区视频在线 | 国产又黄又爽又无遮挡在线| 欧美乱码精品一区二区三区| 国产av在哪里看| 国产成年人精品一区二区| 桃红色精品国产亚洲av| 欧美最黄视频在线播放免费| 人人妻人人澡欧美一区二区| 悠悠久久av| 免费高清视频大片| 啪啪无遮挡十八禁网站| 国产成人av教育| e午夜精品久久久久久久| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| 男人舔奶头视频| or卡值多少钱| 非洲黑人性xxxx精品又粗又长| 亚洲国产中文字幕在线视频| 老司机深夜福利视频在线观看| 亚洲人与动物交配视频| 日本 欧美在线| 日韩有码中文字幕| 免费看日本二区| svipshipincom国产片| 制服人妻中文乱码| 国产久久久一区二区三区| 亚洲欧美日韩高清专用| 日韩有码中文字幕| 最新在线观看一区二区三区| 天堂影院成人在线观看| 免费观看的影片在线观看| 国产欧美日韩精品亚洲av| 免费高清视频大片| 偷拍熟女少妇极品色| 久久九九热精品免费| 欧美3d第一页| 可以在线观看毛片的网站| 又黄又粗又硬又大视频| 丁香欧美五月| 欧美又色又爽又黄视频| 搡老妇女老女人老熟妇| 久久久久久久久免费视频了| 久久香蕉精品热| 免费av毛片视频| 18禁裸乳无遮挡免费网站照片| 成人亚洲精品av一区二区| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 久久久久久久久久黄片| 久久久国产成人免费| 中文字幕最新亚洲高清| 日本黄大片高清| 久久精品影院6| e午夜精品久久久久久久| 成人鲁丝片一二三区免费| 一卡2卡三卡四卡精品乱码亚洲| 法律面前人人平等表现在哪些方面| 曰老女人黄片| 美女大奶头视频| 99riav亚洲国产免费| 亚洲av中文字字幕乱码综合| 久久精品91蜜桃| 欧美一区二区国产精品久久精品| 国产久久久一区二区三区| 国产亚洲精品久久久久久毛片| 十八禁网站免费在线| 19禁男女啪啪无遮挡网站| 久久久久九九精品影院| 综合色av麻豆| 欧美另类亚洲清纯唯美| 日韩欧美国产在线观看| 男人舔奶头视频| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久久久电影| 三级男女做爰猛烈吃奶摸视频| 亚洲精品色激情综合| 搡老妇女老女人老熟妇| 级片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 一级黄色大片毛片| 九色成人免费人妻av| 久99久视频精品免费| 又黄又粗又硬又大视频| 草草在线视频免费看| 男插女下体视频免费在线播放| 中文在线观看免费www的网站| 国产v大片淫在线免费观看| 久久久久久久久中文| 欧美国产日韩亚洲一区| 一级作爱视频免费观看| 国产精华一区二区三区| 一进一出抽搐动态| 人妻丰满熟妇av一区二区三区| 又紧又爽又黄一区二区| 男女午夜视频在线观看| 悠悠久久av| 国产伦一二天堂av在线观看| 又黄又爽又免费观看的视频| 三级国产精品欧美在线观看 | 19禁男女啪啪无遮挡网站| 欧美成人一区二区免费高清观看 | 国产精品98久久久久久宅男小说| a级毛片a级免费在线| 国产久久久一区二区三区| 一级毛片高清免费大全| 久久久久久国产a免费观看| 成人性生交大片免费视频hd| 亚洲国产高清在线一区二区三| 黄色视频,在线免费观看| 中文字幕av在线有码专区| 很黄的视频免费| 国产1区2区3区精品| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 91九色精品人成在线观看| 男女做爰动态图高潮gif福利片| 女警被强在线播放| 亚洲无线观看免费| 九九热线精品视视频播放| 中国美女看黄片| 99热这里只有是精品50| 少妇丰满av| 国产淫片久久久久久久久 | 男人舔女人下体高潮全视频| 少妇的丰满在线观看| 亚洲国产高清在线一区二区三| 精品国产乱码久久久久久男人| 黑人操中国人逼视频| 18禁国产床啪视频网站| 性欧美人与动物交配| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀| 美女扒开内裤让男人捅视频| 此物有八面人人有两片| 在线观看日韩欧美| 夜夜看夜夜爽夜夜摸| 在线观看美女被高潮喷水网站 | 又黄又粗又硬又大视频| 18禁美女被吸乳视频| 美女被艹到高潮喷水动态| 热99在线观看视频| 国产黄色小视频在线观看| 啦啦啦观看免费观看视频高清| 午夜福利在线在线| 亚洲欧美激情综合另类| 免费在线观看影片大全网站| 听说在线观看完整版免费高清| 成人精品一区二区免费| 亚洲精品美女久久久久99蜜臀| 亚洲av电影不卡..在线观看| 草草在线视频免费看| 欧美丝袜亚洲另类 | 亚洲自偷自拍图片 自拍| av中文乱码字幕在线| 青草久久国产| 黄色成人免费大全| 美女黄网站色视频| 免费在线观看日本一区| 91麻豆精品激情在线观看国产| 操出白浆在线播放| 97碰自拍视频| 欧美色视频一区免费| 成年版毛片免费区| 男插女下体视频免费在线播放| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 国产乱人视频| 夜夜夜夜夜久久久久| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 美女黄网站色视频| 看片在线看免费视频| 久久久精品欧美日韩精品| 久久精品亚洲精品国产色婷小说| av视频在线观看入口| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 国产极品精品免费视频能看的| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站 | 伊人久久大香线蕉亚洲五| 免费在线观看亚洲国产| 美女大奶头视频| 国产激情久久老熟女| 午夜免费观看网址| 成人欧美大片| 此物有八面人人有两片| 给我免费播放毛片高清在线观看| 变态另类成人亚洲欧美熟女| 亚洲狠狠婷婷综合久久图片| 亚洲片人在线观看| 日本一本二区三区精品| 国产精品久久久人人做人人爽| 日韩欧美国产在线观看| 欧美日本亚洲视频在线播放| 成人性生交大片免费视频hd| 亚洲成人久久性| 国产成人影院久久av| 国产极品精品免费视频能看的| 国产精品久久视频播放| 少妇熟女aⅴ在线视频| 99久久无色码亚洲精品果冻| 99国产精品一区二区三区| 淫秽高清视频在线观看| 免费观看精品视频网站| 亚洲,欧美精品.| 日本a在线网址| 真实男女啪啪啪动态图| 国产一区在线观看成人免费| 18禁美女被吸乳视频| 在线国产一区二区在线| 无遮挡黄片免费观看| 悠悠久久av| 啦啦啦韩国在线观看视频| 欧美日韩综合久久久久久 | 成人高潮视频无遮挡免费网站| 91av网一区二区| 亚洲av免费在线观看| 在线观看日韩欧美| 成人三级做爰电影| 欧美绝顶高潮抽搐喷水| 亚洲国产看品久久| 中文字幕熟女人妻在线| 欧美成人免费av一区二区三区| 美女被艹到高潮喷水动态| 一区二区三区激情视频| 成人特级av手机在线观看| 久久久久国产一级毛片高清牌| 国产成人精品久久二区二区免费| 人人妻,人人澡人人爽秒播| 久久99热这里只有精品18| 男人和女人高潮做爰伦理| 精品不卡国产一区二区三区| 国产高清视频在线观看网站| av片东京热男人的天堂| 欧美精品啪啪一区二区三区| 亚洲18禁久久av| 美女cb高潮喷水在线观看 | 亚洲欧美日韩高清在线视频| 神马国产精品三级电影在线观看| 日本 欧美在线| 少妇的逼水好多| 久久亚洲精品不卡| 中文字幕熟女人妻在线| 欧美极品一区二区三区四区| 特级一级黄色大片| av欧美777| www.精华液| 哪里可以看免费的av片| 欧美极品一区二区三区四区| 岛国视频午夜一区免费看| 成在线人永久免费视频| 九色国产91popny在线| 久久久成人免费电影| 久久久久国产一级毛片高清牌| 精华霜和精华液先用哪个| 后天国语完整版免费观看| 亚洲中文日韩欧美视频| 听说在线观看完整版免费高清| 亚洲 欧美一区二区三区| 一个人免费在线观看电影 | 成人永久免费在线观看视频| 99国产精品一区二区蜜桃av| 久久久久国产精品人妻aⅴ院| 岛国视频午夜一区免费看| 91在线观看av| 叶爱在线成人免费视频播放| 久久国产精品影院| 午夜福利视频1000在线观看| av福利片在线观看| 黄色片一级片一级黄色片| 国内少妇人妻偷人精品xxx网站 | 国产在线精品亚洲第一网站| av欧美777| 麻豆成人午夜福利视频| 国产高清视频在线播放一区| 国产亚洲精品久久久com| 欧美又色又爽又黄视频| 国产日本99.免费观看| 亚洲乱码一区二区免费版| 久99久视频精品免费| 老熟妇仑乱视频hdxx| 欧美3d第一页| 91av网一区二区| 久久久国产成人免费| 日本黄色视频三级网站网址| 极品教师在线免费播放| 麻豆一二三区av精品| 91麻豆精品激情在线观看国产| 久久国产精品人妻蜜桃| 88av欧美| 国产精品野战在线观看| 男女视频在线观看网站免费| 又粗又爽又猛毛片免费看| 99精品久久久久人妻精品| 美女午夜性视频免费| 亚洲avbb在线观看| av天堂在线播放| 精品久久久久久成人av| 国产高清激情床上av| 国产亚洲欧美98| 欧美黄色片欧美黄色片| 怎么达到女性高潮| 欧美激情在线99| 激情在线观看视频在线高清| 91av网站免费观看| 色哟哟哟哟哟哟| 成人性生交大片免费视频hd| 少妇丰满av| 天堂影院成人在线观看| 88av欧美| 午夜久久久久精精品| 亚洲熟妇中文字幕五十中出| 一级毛片精品| 变态另类丝袜制服| 亚洲av成人不卡在线观看播放网| 国产成人aa在线观看| 国内揄拍国产精品人妻在线| 国产成人啪精品午夜网站| 欧美性猛交黑人性爽| 国产熟女xx| 久久久国产精品麻豆| 麻豆成人av在线观看| 久久性视频一级片| 精华霜和精华液先用哪个| 亚洲国产中文字幕在线视频| 少妇丰满av| 成人精品一区二区免费| 偷拍熟女少妇极品色| 在线观看舔阴道视频| 桃红色精品国产亚洲av| 日韩欧美 国产精品| 最近最新免费中文字幕在线| 日韩中文字幕欧美一区二区| 最近在线观看免费完整版| 亚洲国产高清在线一区二区三| a在线观看视频网站| 国产午夜福利久久久久久| 狂野欧美激情性xxxx| 男女做爰动态图高潮gif福利片| 99热这里只有精品一区 | 中文字幕人妻丝袜一区二区| 亚洲最大成人中文| 又大又爽又粗| 我的老师免费观看完整版| 母亲3免费完整高清在线观看| 人人妻,人人澡人人爽秒播| 少妇的丰满在线观看| 此物有八面人人有两片| 久久人妻av系列| 十八禁网站免费在线| 天堂影院成人在线观看| 亚洲精品粉嫩美女一区| 久久国产精品人妻蜜桃| 男女下面进入的视频免费午夜| 国产成人av教育| 亚洲国产精品合色在线| 最近最新中文字幕大全免费视频| 男女那种视频在线观看| 午夜免费成人在线视频| 一本久久中文字幕| 国产精品一区二区免费欧美| 啦啦啦免费观看视频1| 在线观看日韩欧美| 久久热在线av| 精品不卡国产一区二区三区| 午夜福利免费观看在线| 精品久久久久久久久久免费视频| 久久精品aⅴ一区二区三区四区| 最近在线观看免费完整版| 免费av不卡在线播放| 极品教师在线免费播放| 99热精品在线国产| 久久天堂一区二区三区四区| 成年女人毛片免费观看观看9| 日韩 欧美 亚洲 中文字幕| 国产97色在线日韩免费| 男人舔奶头视频| 亚洲人成电影免费在线| 一区二区三区激情视频| 亚洲精华国产精华精|