• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Succinic anhydride-grafted nanocrystalline cellulose for the binding of luteolin and luteoloside

    2017-09-12 10:22:05LIHuanCHENKuiWANGYuanWANGYong
    化學(xué)研究 2017年4期
    關(guān)鍵詞:草素木犀作用力

    LI Huan, CHEN Kui, WANG Yuan, WANG Yong

    (College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China)

    Succinic anhydride-grafted nanocrystalline cellulose for the binding of luteolin and luteoloside

    LI Huan, CHEN Kui, WANG Yuan, WANG Yong*

    (CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China)

    Succinic anhydride-grafted nanocrystalline cellulose labeled NCSA was developed and further modified with cetyltrimethylammonium bromide (CTAB) labeled CTAB@NCSA as a novel drug delivery excipient which was used to modulate the loading of hydrophobic drugs. The morphology and structure of the NCSA before and after modification were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and zeta potential. Furthermore, the adsorption kinetics and isotherm analysis of NCSA for CTAB were employed to explain in-depth information associated with the adsorption process. The adsorption kinetics fitted well to the pseudo-second-order model and isothermal study demonstrated a multilayered adsorption following Temkin model. Hydrophobic luteolin (LUT) and luteoloside (LUS) were used as model drugs for the investigation of drug loading and release performance. The CTAB@NCSA exhibited high drug loading capability and long sustained release time. These findings prefigure the promising potentials of CTAB@NCSA as a carrier for hydrophobic LUT and LUS.

    luteolin and luteoloside; succinic anhydride; nanocrystalline cellulose; surfactant; in vitro release

    Luteolin (LUT) and luteoloside (LUS, Fig.1) belong to flavonoid compound, which mostly exist in various vegetables and medical plants[1]. They possess pharmacological properties, including anticancer[2-4], anti-inflammatory[5-6], anti-HBV[7-8]and antioxidant[9-10]etc. Nevertheless, potential properties of LUT and LUS are hampered due to their poor solubility and oral absorption that results fast metabolism from blood[11]. To overcome the problems, there are significant research efforts focusing on the drug delivery using various nano-carriers such as polymeric micelles[12-14], lipid carriers and microemulsions[15-17]. It is regrettable that most of reported the nano-carriers show poor stability and low drug loadings.

    Fig.1 Chemical structural formula of LUT (a) and LUS (b)

    Recently, cellulose especially nanocrystalline cellulose (NCC) has been actively investigated as drug delivery excipients due to its abundant renewable, biocompatible, biodegradable, safe and easily modified properties[18-19]. In our previous work, we established a novel drug delivery system based on cetyl trimethylammonium bromide (CTAB) modified NCC to control the release of LUT and LUS[20]. However, the drug loading capability is low, the chemical modification of the cellulose is important to improve its practical use for drug carrier. It is worth noting that grafted functional groups onto cellulose can afford more efficient sites to load small molecules for drug delivery[21-22]. In this work, we have developed functionalized NCC with succinic anhydride labeled NCSA. Here succinic anhydride is utilized for introducing carboxylic groups which can provide more negatively charged onto NCC via ring-opening esterification reaction. Beyond that, NCC is generally prepared by the sulfuric acid hydrolysis of native cellulose, resulting in the formation of negatively charged surface which mainly refers to the negative sulfate esters. On the basis of large negative charges, CTAB is used to modify NCSA labeled CTAB@NCSA. Here CTAB is a quaternary ammonium and hydrophobic cationic type surfactant which can increase the hydrophobicity of NCC[23]. The aim of our investigation is to study the potential of CTAB@NCSA as a nano-carrier of hydrophobic LUT and LUS. The CTAB@NCSA exhibited higher drug loading capability and longer sustained release time.

    1 Experimental

    1.1 Materials

    Microcrystalline cellulose, succinic anhydride, CTAB and LUT were purchased from Sigma-Aldrich. LUS was isolated and prepared from crude extract ofLonicerajaponicaleaves by high-speed counter current chromatography (HSCCC). The purity was 98.0% determined by HPLC and calculated with peak area normalization method. Other chemicals were of analytical grade, and water is double distilled.

    1.2 Preparation of NCSA

    Suspension of NCC was prepared by acid hydrolysis and ultrasonic technology of microcrystalline cellulose[20], as described below. First, MCC (5 g) was treated with sulfuric acid solution (64%) at 45 ℃ for 30 min and then continued to hydrolyze under ultrasonic treatment at 50 Hz for 10 min. Second, reaction was terminated by adding much water and the suspension was centrifuged and washed. Finally, the suspension was dialyzed and dried by freezing, reserved.

    NCSA was synthesized by grafting succinic anhydride on the hydroxyl groups of NCC, as described below. Dried powder of NCC (1.0 g) was dispersed in 50 mL of dimethylacetamide (DMAC) and 1 mL of pyridine with constant magnetic stirring. Then excess succinic anhydride (6.2 g) was added to the mixtures at 100 ℃ in an oil bath for 10 h. The result mixtures were filtered and washed with chloroform repeatedly. Finally, the power of NCSA was obtained by vacuum drying.

    1.3 Preparation of CTAB@NCSA

    The adsorption experiments of CTAB including effect of pH, temperature and adsorption time were studied, and the optimized condition was determined. NCSA (0.05 g) was fully reacted with fixed concentration of CTAB at room temperature for 70 min. The unbound CTAB was removed by centrifugation at 10 000 rpm. After the suspension was repeatedly washed and centrifuged, a novel drug carrier labeled CTAB@NCSA was collected by freeze drying.

    1.4 Characterization

    The morphologies of samples were studied on JSM-7001F and JEM-2100 (JEOL Co., Japan), respectively. X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance diffractometer with Cu Kαradiation and 2θrange was 10°-60°. The zeta potential of samples was recorded on a Nano ZS 90 at 25 ℃. The FT-IR spectra of samples were recorded on a Thermo Nicolet Avatar 360 spectrometer in transmittance mode by use of KBr pellets. Measurements were taken in the wavelength ranging from 500 cm-1to 4 000 cm-1.

    1.5 Adsorption experiments of CTAB

    The adsorption behaviors of NCSA for CTAB were systematically investigated by changing the factors of solution pH, temperature and adsorption time. The solution pH value was changed from 3.0 to 9.0, and 0.10 mol·L-1NaOH or HCl solution was used to adjust the pH value. The solution temperature and adsorption time were all changed from 16 to 70 ℃ and 10 to 240 min, respectively. Adsorption kinetic studies were conducted with CTAB concentration of 1.0 g·L-1at room temperature, and the adsorption isotherms experiments were performed with various CTAB concentrations (c0= 0.073-2.47 mmol·L-1) for 70 min. Mixtures were separated and the residual concentration of CTAB was determined by the color-reaction of CTAB with methyl orange in phosphate buffer, and the absorbance was recorded on UV-Vis spectrophotometer at 470 nm. All experiments were repeated three times and the average values are reported. The adsorption efficiency (E, %) and capacity (q) of CTAB were calculated according to the equation evaluated of Eqs. (1) and (2).

    (1)

    (2)

    Wherec0is initial concentration andceis equilibrium of CTAB,mis the weight of NCSA, andVis the volume of solution.

    1.6 Loading of LUT and LUS

    CTAB@NCSA (5.0 mg) was fully dispersed in double distilled water, and LUT (or LUS) solution was added under constant magnetic stirring. Then suspension was incubated at room temperature under stirring for 60 min, and high-speed centrifuged for 10 min. The amount of unbound drug in the supernatant was determined by UV-vis spectrophotometer. Flocculent precipitates were dried by freeze drying, which were labeled with LUT@CTAB@NCSA (or LUS@CTAB@NCSA), and reserved. The drug loading capacity was expressed using Eqs.(2), and the corresponding parameters are altered, wherec0is initial concentration andceis equilibrium of LUT (or LUS),mis the weight of CTAB@NCSA, andVis still the volume of solution.

    1.7 In vitro drug release

    The in vitro release profile of LUT and LUS loaded CTAB@NCSA was studied in phosphate buffer (pH 6.4 and 7.4) at 37 ℃. Suspensions were prepared in buffer solution and maintained in a shaker water bath at the constant temperature of 37 ℃. At predetermined time, the suspension was high-speed centrifuged for less than 1 min, meanwhile, the supernatant was removed for drug quantification by UV-Vis for LUT (or LUS), as previously described. At each sampling time point, fresh phosphate buffer of equivalent volume was added to the test tube, and the drug delivery system was re-suspended. The accumulative percentage release (Q/%) was calculated from the Eqs.(3).

    (3)

    Wherecn(g·L-1) is the concentration of drug in the sample,V0(mL) is the volume of the release medium,Vi(mL) is the volume of the replaced medium,m(mg) is the amount of drug in the sample. This study was repeated three times, and the results were expressed as mean values ± standard deviation.

    2 Results and discussion

    2.1 Carboxyl content

    Carboxyl content of NCSA was measured with the inverse titration method, and the value was calculated to be 3.67 mmol·g-1. When the raw cellulose was transformed into nanometer size, large amount of released hydroxyl groups on the surface of NCC react with succinic anhydride more easily[24].

    2.2 Characterization of NCSA and CTAB@NCSA

    Fig.2 SEM of MCC(A), NCC(B), NCSA(C) and TEM of NCC(D), NCSA(E), CTAB@NCSA(F)

    The SEM images (Fig.2A, B and C) show that great changes have taken place in appearance of NCSA, which was obvious different from MCC and NCC. The TEM images (Fig.2D, E and F) show that NCC and NCSA particles are between 20 to 60 nm in diame ter with spherical morphology, while CTAB@NCSA particle exhibits obviously thicker diameters of nearby 130 nm with relatively good dispersions compared with precursor NCSA.

    As shown in Fig.3A, the X-ray powder diffraction peaks of NCC, NCSA and CTAB@NCSA correspond to the (ITO), (110), (200) and (004) crystallographic planes of cellulose I[25],respectively. The relative degree of crystallinity of samples is determined according to the method of peak intensity[26], and the crystallinity value is calculated to be 72.4%, 68.1% and 60.0%, respectively. In contrast to NCC, the crystalline regions of NCSA and CTAB@NCSA are breaking down when subjected to the proper combination of chemical treatments.

    The FT-IR spectra of samples are presented in Fig.3B. The difference observed between NCC and NCSA is the appearance of band at 1 730 cm-1which is assigned to the C=O stretching vibration of carbonyl group suggesting that succinic anhydride was grafted on NCC successfully. A broad peak between 3 340 and 3 430 cm-1is related to -O-H stretching, and the band between 2 850 and 2 920 cm-1corresponds to asymmetric and symmetric C-H stretching vibration. The band at 1 636 cm-1corresponds to deformation vibration of C=C and the C-O asymmetric bridge stretching appears at 1 165 cm-1.

    2.3 Adsorption experiments of CTAB

    2.3.1 Effect of pH, temperature and adsorption time

    As shown in Fig.4A, the adsorption efficiency of CTAB by NCSA increase in the pH range of 3.6-8.0 and the maximum adsorption efficiency achieve at pH 6.2 indicating that electrostatic attraction of between positively charged CTAB and negatively charged NCSA is the driving force for adsorption process. As a result, the optimum pH was selected to be 6.2 in the following experiments. The effect of temperature on the sorption of CTAB is shown in Fig.4B, showing the neglected influences within the range of 16-70 ℃ of the adsorption processes. So the room temperature was selected in the following experiments. As shown in Fig.4C, the adsorption efficiency of NCSA increases rapidly within the first 70 min and then is a gradual decline process. Based on the results, 70 min was selected as the shaking time to ensure the maximal adsorption efficiency in the following experiments.

    2.3.2 Adsorption kinetics studies

    The changes of adsorption amount with time were simulated with pseudo-second-order kinetic model which is expressed as Eqs.(4). The plot oft/qtagainsttis shown in Fig.5, which shows a better fit to pseudo-second-order model with high regression coefficients (R2=0.999 1). Moreover, the equilibrium adsorption amounts (qe) calculated is about 787.4 which approach the experimental data, andk2value is 0.018 13.

    Fig.4 Effect of pH (A), temperature (B) and shaking time (C) on adsorption

    (4)

    Whereqe(mg·g-1) is the equilibrium adsorption capacity,qt(mg·g-1) is the adsorption capacity at any timet,k2(dm3·mg-1·min-1) is the rate constant of pseudo-second-order adsorption.

    Fig.5 Linear fitting of pseudo-second-order

    2.3.3 Adsorption isotherms

    The results for the adsorption of CTAB onto NCSA at various initial concentrations are shown in Fig.6. As the initial CTAB concentration increasing from 0.073 to 2.47 mmol·L-1, the adsorption capacity of CTAB increases from 34.58 to 710.5 mg·g-1for NCSA. When the equilibrium concentration of CTAB was about 1.2×10-3mol·L-1adsorption isotherm reached the first platform. With the increase of CTAB concentration, the adsorption capacity continues to increase. Furthermore, the adsorption capacity is no longer increased until the concentration of CTAB reach about 2.0×10-3mol·L-1which appear the second platform.

    Fig.6 Adsorption isotherm of CTAB

    Langmuir, Freundlich and Temkin commonly used isotherm models are employed to fit the CTAB adsorption process by NCSA, which are described as Eqs.(5-7), respectively. According to the correlation coefficient values (Fig.7), Temkin model fits better for the CTAB adsorption isotherm, indicating a multi molecular layer adsorption of CTAB onto NCSA surface, and the parameters calculated from the three models were presented in table 1.

    (5)

    (6)

    (7)

    2.4 Loading of LUT and LUS

    As can be seen from the zeta potential distribution (Fig.8), the electrostatic force between positively charged CTAB and negatively charged NCSA, as well as between positively charged CTAB@NCSA and negatively charged LUT or LUS, all played an important role in the binding reaction. Both LUT@CTAB@NCSA and LUS@CTAB@NCSA have negative charges in water as evidenced by zeta potentials of approximately -28.0 and -20.4 mV, respectively. By calculations, the loading content of LUT and LUS are much higher which are (42.8±4.2) and (129.2±1.2) mg·g-1, respectively, compared to previous report ((12.9±1.5) and (56.9±0.9) mg·g-1)[20]. It is possible more hydrophobic domain of CTAB@NCSA for more hydrophobic LUT and LUS molecules are accessible.

    Fig.7 Linear fitting of Langmuir (A), Freundlich (B) and Temkin (C) model

    Table 1 Isotherm models for adsorption

    Fig.8 Zeta potential of NCSA (A), CTAB@NCSA (B), LUT@CTAB@NCSA (C) and LUS@CTAB@NCSA (D)

    2.5 Release of the drug delivery system

    The content of LUT and LUS was analyzed by UV-vis at 351 nm and the assay method was validated, respectively. The calibration curves of LUT and LUS areA= 0.001 7 + 74.65cLUT(R2= 0.999 8) andA= 0.007 1 + 47.78cLUS(R2= 0.999 3), respectively. As seen in Fig.9, the release profiles of LUT@CTAB@NCSA and LUS@CTAB@NCSA are studied. In general, the amount of LUT and LUS complexes released at pH 7.4 is higher than delivered at pH 6.4. The cumulative release percentage is found sustained over a period of 72 h, showing a considerable increase in controlled release time.

    Fig.9 Release of LUT@CTAB@NCSA and LUS@ CTAB@NCSA at 37 ℃ using PBS solution

    3 Conclusion

    On the basis of precedent researches, this paper aimed to modify NCC with succinic anhydride to develop cellulose composites for control release of drug. A novel cellulose composites CTAB@NCSA was prepared and characterized with SEM, TEM, FT-IR, XRD and zeta potentials. Functionalized CTAB@NCSA particle shows spherical shape with diameters of nearby 130 nm and possess more active sites. The adsorption efficiency for CTAB was encouraging, and adsorption kinetic studies indicated that the adsorption behavior following the pseudo-second-order kinetic model and the equilibrium data was well fitted to the Temkin isotherm model. Furthermore CTAB@NCSA can be efficiently used for binding water-insoluble LUT and LUS, and loading capacity and controlled release time are much better compared with the previous report. These above findings suggest that CTAB@NCSA could be used as an efficient carrier for hydrophobic LUT and LUS delivery.

    [1] LIN Y, SHI R, WANG X, et al. Luteolin, a flavonoid with potentials for cancer prevention and therapy [J]. Current Cancer Drug Targets, 2008, 8(7): 634-646.

    [2] MENG G, CHAI K, LI X, et al. Luteolin exerts proapoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway [J]. Chemico-Biological Interactions, 2016, 257: 26-34.

    [3] CHAKRABARTI M, RAY S. Anti-tumor activities of luteolin and silibinin in glioblastoma cells:overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo [J]. Apoptosis, 2015, 21(3): 312-328.

    [4] BASKAR A, IGNACIMUTHU S, MICHAE G, et al. Can-cer chemo-preventive potential of luteolin-7-O-glucoside isolated from ophiorrhiza mungos linn [J]. Nutrition & Can-cer, 2011, 63(1): 130-138.

    [5] KURE A, NAKAGAWA K, KONDO M, et al. Metabolic fate of luteolin in rats: its relationship to anti-inflammatory effect [J]. Journal of Agricultural and Food Chemistry, 2016, 64(21): 4246-4254.

    [6] ODONTUYA G, HOULT J, HOUGHTON P. Structure-activity relationship for anti-inflammatory effect of luteolin and its derived glycosides [J]. Phytotherapy Research, 2005, 19(9): 782-786.

    [7] TEWTRAKUL S, MIYASHIRO H, NAKAMURA N, et al. HIV-1 integrase inhibitory substances from coleus parvifolius [J]. Hytotherapy Research, 2003, 17(3): 232-239.

    [8] TIAN Y, SUN L, LIU X, et al. Anti-HBV active flavone glucosides from euphorbia humifusa willd [J]. Fitoterapia, 2010, 81(7): 799-802.

    [9] ROOBAN B, SASIKALA V, GAYATHRI DEVI V, et al. Prevention of selenite induced oxidative stress and cataractogenesis by luteolin isolated from vitex negundo [J]. Chemico-Biological Interactions, 2012, 196(1/2): 30-38.

    [10] HU C, KITTS D. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells [J]. Molecular and Cellular Biochemistry, 2004, 265: 107-113.

    [11] CHEN T, LI L, LU X. Absorption and excretion of luteolin and apigenin in rats after oral administration of chrysanthemum morifolium extract [J]. Journal of Agricultural and Food Chemistry, 2007, 55(2): 273-277.

    [12] MAJUMDAR D, JUNG K, ZHANG H, et al. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity [J]. Cancer Prevention Research, 2014, 7(1): 65-73.

    [13] QIU J, GAO X, WANG B, et al. Preparation and characterization of monomethoxy poly (ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin [J]. International Journal of Nanomedicine, 2013, 8: 3061-3069.

    [14] QING W, WANG Y, LI H, et al. Preparation and characterization of copolymer micelles for the solubilization and in vitro release of luteolin and luteoloside [J]. AAPS PharmSciTech, 2017, 18(6): 2095-2101.

    [15] KHAN J, ALEXANDER A, AJAZUDDIN, et al. Luteolin-phospholipid complex: preparation, characterization and biological evaluation [J]. Journal of Pharmacy and Pharmacology, 2014, 66(10): 1451-1462.

    [16] DANG H, MENG M, ZHAO H, et al. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies [J]. Journal of Nanoparticle Research, 2014(4): 16: 2347.

    [17] LIU Y, WANG L, ZHAO Y, et al. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin [J]. International Journal of Pharmaceutics, 2014, 476(1/2): 169-177.

    [18] LIN N, DUFRESNE A. Nanocellulose in biomedicine: Current status and future prospect [J]. European Polymer Journal, 2014, 59: 302-325.

    [19] EDGAR J. Cellulose esters in drug delivery [J]. Cellulose, 2007, 14(1): 49-64.

    [20] QING W, WANG Y, LI H, et al. The modified nanocrystalline cellulose for hydrophobic drug delivery [J]. Applied Surface Science, 2016, 366: 404-409.

    [21] MOGHADDAM N, AVVAL E, FAREGHI R. Modification of cellulose by graft polymerization for use in drug delivery systems [J]. Colloid and Polymer Science, 2014, 292(1): 77-84.

    [22] MOVAGHARNEZHAD N, MOGHADAM N. Folate-decorated carboxymethyl cellulose for controlled doxorubicin delivery [J]. Colloid and Polymer Science, 2016, 294(1): 199-206.

    [23] HU Z, BALLINGER S, PELTON R. Surfactant-enhanced cellulose nanocrystal Pickering emulsions [J]. Journal of Colloid and Interface Science, 2015, 439: 139-148.

    [24] ANG-ATIKARNKUL P, WATTANAPHANIT A, RUJIRAVANIT R. Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties [J]. Composites Science Technology, 2014, 96(1/2): 88-96.

    [25] FRENCH A. Idealized powder diffraction patterns for cellulose polymorphs [J]. Cellulose, 2014, 21(2): 885-896.

    [26] DONG S, CHO H, LEE Y, et al. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting [J]. Biomacromolecules, 2014, 15(5): 1560-1567.

    [責(zé)任編輯:吳文鵬]

    丁二酸酐接枝納米纖維素負(fù)載木犀草素及其苷

    李 緩,陳 奎,王 園,王 勇*

    (河南大學(xué) 化學(xué)化工學(xué)院,河南 開封 475004)

    將納米纖維素(NCC)表面接枝丁二酸酐得到丁二酸酐化納米纖維素(NCSA),再將陽離子表面活性劑十六烷基三甲基溴化銨(CTAB)負(fù)載到NCSA,得到一種新的納米藥物載體(CTAB@NCSA). 考察了NCSA的物理化學(xué)性能,包括掃描、透射電鏡,紅外光譜,X射線粉末衍射及電位測(cè)定;同時(shí)研究了NCSA對(duì)CTAB的吸附行為. 最后以CTAB@NCSA為藥物載體,以LUT和LUS為模型藥物,通過分子間作用力及疏水作用力得到負(fù)載LUT和LUS的納米復(fù)合物微球CTAB@NCSA@LUT和CTAB@NCSA@LUS,并對(duì)其體外釋藥進(jìn)行了研究.

    木犀草素及其苷;丁二酸酐;納米纖維素;表面活性劑;體外釋放

    date: 2017-04-22.

    The Foundation of Education Department of Henan Province (14A150011).

    , E-mail:wangyong@henu.edu.cn.

    O629 Document code: A

    1008-1011(2017)04-0493-08

    Biography: LI Huan(1992-), female, postgraduate, majoring in chemistry of natural product.*

    猜你喜歡
    草素木犀作用力
    木犀草素通過上調(diào)microRNA-34a-5p誘導(dǎo)肺癌細(xì)胞株H460凋亡的研究
    響應(yīng)面法優(yōu)化鳳尾草中木犀草素的酶法提取工藝
    中成藥(2017年12期)2018-01-19 02:06:56
    英雄降獸木犀舞
    西江月(2017年4期)2017-11-22 07:24:09
    YT星球的少年
    高考中微粒間作用力大小與物質(zhì)性質(zhì)的考查
    木犀草素抑制酪氨酸酶活性的分子機(jī)制
    院感防控有兩種作用力
    非穩(wěn)定流固耦合作用力下風(fēng)力機(jī)收縮盤接觸分析
    芻議教育在勞動(dòng)力流動(dòng)中的作用力
    木犀草素-Al3+配合物的光譜分析
    高清不卡的av网站| 国产成人精品一,二区| 亚洲国产精品999| 我的老师免费观看完整版| 日本wwww免费看| 亚洲av电影在线观看一区二区三区| 一本一本综合久久| av黄色大香蕉| 亚洲国产高清在线一区二区三| 久久精品久久久久久噜噜老黄| 亚洲欧洲日产国产| 国产黄色视频一区二区在线观看| 另类亚洲欧美激情| 日日啪夜夜撸| 亚洲av国产av综合av卡| 亚洲自偷自拍三级| 成年人午夜在线观看视频| 观看免费一级毛片| 国产成人精品久久久久久| 国产成人91sexporn| 国产综合精华液| 亚洲欧美日韩另类电影网站 | 亚洲色图av天堂| 日韩人妻高清精品专区| 国产极品天堂在线| av网站免费在线观看视频| 中文天堂在线官网| 日本av免费视频播放| 色婷婷av一区二区三区视频| 七月丁香在线播放| 视频区图区小说| 中国三级夫妇交换| 搡老乐熟女国产| av在线播放精品| av不卡在线播放| 免费在线观看成人毛片| 欧美高清性xxxxhd video| 国产免费又黄又爽又色| 亚洲人成网站在线观看播放| 黄色配什么色好看| 亚洲欧美一区二区三区黑人 | 日韩,欧美,国产一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩无卡精品| 激情五月婷婷亚洲| 三级国产精品片| 久久久欧美国产精品| 亚洲激情五月婷婷啪啪| 偷拍熟女少妇极品色| 午夜激情福利司机影院| 麻豆成人av视频| 免费人妻精品一区二区三区视频| 嫩草影院新地址| 婷婷色av中文字幕| 久久鲁丝午夜福利片| 亚洲熟女精品中文字幕| 天天躁日日操中文字幕| 亚洲精品一区蜜桃| 国产成人精品久久久久久| 在线观看三级黄色| 久久久久精品性色| 色5月婷婷丁香| 2022亚洲国产成人精品| 狂野欧美激情性xxxx在线观看| 久久人人爽人人片av| 国产精品不卡视频一区二区| 国产女主播在线喷水免费视频网站| 国产真实伦视频高清在线观看| 亚洲精品视频女| 亚洲精品自拍成人| 日韩精品有码人妻一区| 中文精品一卡2卡3卡4更新| 一级毛片久久久久久久久女| 日本一二三区视频观看| 建设人人有责人人尽责人人享有的 | 欧美zozozo另类| 亚洲欧美中文字幕日韩二区| 成年av动漫网址| 久久久欧美国产精品| 九九在线视频观看精品| 亚洲精品久久久久久婷婷小说| 少妇人妻久久综合中文| 舔av片在线| 毛片女人毛片| 高清在线视频一区二区三区| 亚洲久久久国产精品| 欧美三级亚洲精品| 精品一区在线观看国产| 18禁动态无遮挡网站| www.av在线官网国产| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 又黄又爽又刺激的免费视频.| 波野结衣二区三区在线| 高清av免费在线| 下体分泌物呈黄色| 蜜桃在线观看..| 精品人妻视频免费看| 嫩草影院新地址| 熟妇人妻不卡中文字幕| 在线看a的网站| 亚洲内射少妇av| 51国产日韩欧美| 亚洲精华国产精华液的使用体验| 亚洲av成人精品一二三区| 王馨瑶露胸无遮挡在线观看| 国产色婷婷99| 在线观看av片永久免费下载| 嫩草影院新地址| 欧美成人午夜免费资源| 国产永久视频网站| 久久97久久精品| 亚洲不卡免费看| 熟女电影av网| 夫妻午夜视频| 99热这里只有精品一区| 亚洲精品aⅴ在线观看| 亚洲国产欧美人成| 如何舔出高潮| 国产女主播在线喷水免费视频网站| 伦理电影免费视频| 亚洲美女搞黄在线观看| 亚洲av欧美aⅴ国产| 国产亚洲最大av| 啦啦啦啦在线视频资源| 九九在线视频观看精品| 99九九线精品视频在线观看视频| 国产v大片淫在线免费观看| 亚洲中文av在线| av免费在线看不卡| 日本黄色片子视频| 三级经典国产精品| 久久久国产一区二区| 秋霞在线观看毛片| 三级经典国产精品| 91久久精品国产一区二区三区| 欧美丝袜亚洲另类| 一个人看的www免费观看视频| 亚洲精品乱久久久久久| 亚洲av综合色区一区| 亚洲精品国产色婷婷电影| 国产视频内射| 女人久久www免费人成看片| 日韩大片免费观看网站| 性色av一级| 国产白丝娇喘喷水9色精品| 我的女老师完整版在线观看| 性色av一级| 亚洲成色77777| 又粗又硬又长又爽又黄的视频| 一级黄片播放器| 亚洲最大成人中文| 99久久中文字幕三级久久日本| 亚洲欧美中文字幕日韩二区| 网址你懂的国产日韩在线| 97超视频在线观看视频| 下体分泌物呈黄色| 免费av不卡在线播放| 国产精品一及| 美女高潮的动态| 一个人看的www免费观看视频| 啦啦啦在线观看免费高清www| 午夜激情福利司机影院| 插逼视频在线观看| 亚洲国产精品一区三区| 一个人免费看片子| 久久国产乱子免费精品| 久久久久网色| 国产在线免费精品| 日本猛色少妇xxxxx猛交久久| 欧美3d第一页| 1000部很黄的大片| 日日摸夜夜添夜夜爱| 久久久a久久爽久久v久久| 国产黄色免费在线视频| 18禁裸乳无遮挡免费网站照片| 秋霞伦理黄片| 亚洲精品日韩av片在线观看| 国产精品嫩草影院av在线观看| 日韩在线高清观看一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产v大片淫在线免费观看| 日本免费在线观看一区| 色视频在线一区二区三区| 涩涩av久久男人的天堂| 国产精品成人在线| 大香蕉97超碰在线| 日本黄色日本黄色录像| 欧美少妇被猛烈插入视频| 欧美日韩亚洲高清精品| 精品人妻偷拍中文字幕| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 亚洲欧洲国产日韩| 国产69精品久久久久777片| 大陆偷拍与自拍| 男女边吃奶边做爰视频| 国产日韩欧美亚洲二区| 日本av免费视频播放| 美女cb高潮喷水在线观看| 国产精品国产av在线观看| 3wmmmm亚洲av在线观看| 99热全是精品| 日本黄大片高清| 日本av手机在线免费观看| 少妇精品久久久久久久| 观看av在线不卡| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放| 国产精品免费大片| 国产 一区 欧美 日韩| 汤姆久久久久久久影院中文字幕| 国产精品精品国产色婷婷| 人妻系列 视频| 亚洲第一av免费看| 日韩成人伦理影院| 亚洲av中文av极速乱| 久久久久视频综合| 免费观看的影片在线观看| videos熟女内射| av福利片在线观看| 亚洲国产av新网站| 国产免费一区二区三区四区乱码| 午夜精品国产一区二区电影| 国产在线免费精品| 少妇人妻 视频| av卡一久久| 国产乱人偷精品视频| 老司机影院毛片| www.色视频.com| 国语对白做爰xxxⅹ性视频网站| av线在线观看网站| av福利片在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久国内精品自在自线图片| 国产免费又黄又爽又色| 22中文网久久字幕| 中国国产av一级| 嘟嘟电影网在线观看| 欧美激情极品国产一区二区三区 | 六月丁香七月| 亚洲,欧美,日韩| 七月丁香在线播放| 九九爱精品视频在线观看| 亚洲精品亚洲一区二区| 日本一二三区视频观看| 免费av不卡在线播放| 成人漫画全彩无遮挡| 一级爰片在线观看| 色婷婷av一区二区三区视频| 亚洲精品456在线播放app| 两个人的视频大全免费| 免费观看的影片在线观看| 久久鲁丝午夜福利片| 97在线视频观看| 国产乱人偷精品视频| 国产午夜精品久久久久久一区二区三区| 毛片女人毛片| 国产av码专区亚洲av| 久久久久人妻精品一区果冻| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| 少妇熟女欧美另类| 国产永久视频网站| 男人爽女人下面视频在线观看| 国产精品一区二区三区四区免费观看| 日韩强制内射视频| 成人午夜精彩视频在线观看| 777米奇影视久久| 欧美成人午夜免费资源| 婷婷色综合大香蕉| 妹子高潮喷水视频| 久久99精品国语久久久| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在| 免费观看性生交大片5| 国产午夜精品一二区理论片| 国产精品三级大全| 妹子高潮喷水视频| 精品少妇黑人巨大在线播放| 涩涩av久久男人的天堂| 亚洲第一区二区三区不卡| 国产真实伦视频高清在线观看| 国产免费一区二区三区四区乱码| 国产亚洲av片在线观看秒播厂| 身体一侧抽搐| 午夜激情久久久久久久| 大片免费播放器 马上看| 丝袜脚勾引网站| 欧美成人一区二区免费高清观看| 少妇精品久久久久久久| 亚洲va在线va天堂va国产| 观看美女的网站| 极品教师在线视频| 99视频精品全部免费 在线| 少妇丰满av| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 寂寞人妻少妇视频99o| 欧美另类一区| 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 一级a做视频免费观看| 久久精品久久久久久久性| 大香蕉久久网| 大码成人一级视频| a级毛色黄片| 黄色配什么色好看| 欧美精品国产亚洲| 青春草国产在线视频| 国产黄片美女视频| 又粗又硬又长又爽又黄的视频| 99热这里只有是精品在线观看| 黄色日韩在线| 啦啦啦在线观看免费高清www| 国产91av在线免费观看| 国内揄拍国产精品人妻在线| 纯流量卡能插随身wifi吗| 在线观看免费日韩欧美大片 | 黄片无遮挡物在线观看| 国产精品一二三区在线看| 国内少妇人妻偷人精品xxx网站| 亚洲四区av| 国产有黄有色有爽视频| 成人无遮挡网站| 国产白丝娇喘喷水9色精品| 综合色丁香网| 伊人久久精品亚洲午夜| 久久精品久久精品一区二区三区| 免费大片黄手机在线观看| 免费大片18禁| 久久久久久久久久成人| 亚洲精品久久午夜乱码| 免费看光身美女| 美女xxoo啪啪120秒动态图| av视频免费观看在线观看| 国产成人精品婷婷| 精品一区二区三卡| 久久久久视频综合| 中文字幕久久专区| 国产精品欧美亚洲77777| 大又大粗又爽又黄少妇毛片口| 99久久中文字幕三级久久日本| 亚洲精品一区蜜桃| 最近最新中文字幕免费大全7| 亚洲图色成人| 美女国产视频在线观看| 免费黄频网站在线观看国产| 精品午夜福利在线看| 免费黄频网站在线观看国产| 国产一区亚洲一区在线观看| 欧美一级a爱片免费观看看| 亚州av有码| 又黄又爽又刺激的免费视频.| 十分钟在线观看高清视频www | 老女人水多毛片| 日本wwww免费看| 午夜精品国产一区二区电影| 国产伦精品一区二区三区视频9| 熟妇人妻不卡中文字幕| 国产成人91sexporn| av线在线观看网站| 色吧在线观看| 男人添女人高潮全过程视频| 高清av免费在线| 一级毛片aaaaaa免费看小| 免费久久久久久久精品成人欧美视频 | 日韩不卡一区二区三区视频在线| 麻豆国产97在线/欧美| 黄色视频在线播放观看不卡| 国产黄片美女视频| www.色视频.com| 啦啦啦啦在线视频资源| 三级国产精品欧美在线观看| 精品国产三级普通话版| 亚洲综合精品二区| 亚洲人成网站在线观看播放| 99热国产这里只有精品6| 亚洲国产色片| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 在线观看人妻少妇| 国产黄频视频在线观看| 亚洲精品日本国产第一区| 欧美激情极品国产一区二区三区 | av国产久精品久网站免费入址| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看| 妹子高潮喷水视频| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| 精品酒店卫生间| 噜噜噜噜噜久久久久久91| 一级爰片在线观看| 一区在线观看完整版| 久久人人爽人人片av| 久久99精品国语久久久| 女的被弄到高潮叫床怎么办| 一区二区av电影网| 精品亚洲成国产av| 国产国拍精品亚洲av在线观看| 99久久精品一区二区三区| 亚洲国产欧美人成| 亚洲精品一二三| 免费大片18禁| 国产精品.久久久| 欧美xxxx黑人xx丫x性爽| 插逼视频在线观看| 人妻少妇偷人精品九色| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| 一区二区av电影网| 99热这里只有是精品50| 欧美另类一区| 不卡视频在线观看欧美| av国产久精品久网站免费入址| 一级毛片黄色毛片免费观看视频| a 毛片基地| 亚洲av中文av极速乱| 欧美3d第一页| 国产精品av视频在线免费观看| 涩涩av久久男人的天堂| 国产精品免费大片| 欧美+日韩+精品| 久久青草综合色| 女性生殖器流出的白浆| 亚洲综合精品二区| 边亲边吃奶的免费视频| 国产精品久久久久成人av| 色网站视频免费| 欧美性感艳星| 另类亚洲欧美激情| 国产精品三级大全| 国产欧美日韩精品一区二区| 我要看日韩黄色一级片| 人妻制服诱惑在线中文字幕| 亚洲国产最新在线播放| 男的添女的下面高潮视频| 国产精品国产三级国产专区5o| 日本色播在线视频| 国产亚洲av片在线观看秒播厂| 久久久国产一区二区| 亚洲精华国产精华液的使用体验| 高清不卡的av网站| 永久网站在线| 久久人人爽人人片av| 日本午夜av视频| 尤物成人国产欧美一区二区三区| 日韩av免费高清视频| 日韩成人伦理影院| 六月丁香七月| 边亲边吃奶的免费视频| 干丝袜人妻中文字幕| 久久久久精品久久久久真实原创| 国产 一区 欧美 日韩| 国产精品三级大全| 国产一区二区三区综合在线观看 | 欧美精品一区二区大全| 国产视频内射| 亚洲伊人久久精品综合| 中文字幕久久专区| 欧美日韩视频高清一区二区三区二| 欧美激情极品国产一区二区三区 | 欧美一区二区亚洲| 伦理电影大哥的女人| 日本一二三区视频观看| 高清黄色对白视频在线免费看 | 国产成人午夜福利电影在线观看| 国产高清三级在线| 蜜臀久久99精品久久宅男| 男人狂女人下面高潮的视频| 国产精品一及| 亚洲av中文字字幕乱码综合| 精品少妇久久久久久888优播| 国产高清不卡午夜福利| 女性被躁到高潮视频| 在线观看免费日韩欧美大片 | 人妻系列 视频| 黄片wwwwww| 少妇精品久久久久久久| 国产精品精品国产色婷婷| 性高湖久久久久久久久免费观看| 成年人午夜在线观看视频| 国产亚洲5aaaaa淫片| 欧美极品一区二区三区四区| 日韩中文字幕视频在线看片 | 嫩草影院入口| 边亲边吃奶的免费视频| 晚上一个人看的免费电影| 最近最新中文字幕免费大全7| 80岁老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 制服丝袜香蕉在线| 国产视频内射| 久久久久久伊人网av| 国产在线男女| 国产免费视频播放在线视频| 国产女主播在线喷水免费视频网站| 妹子高潮喷水视频| 丰满人妻一区二区三区视频av| 人人妻人人看人人澡| 美女福利国产在线 | 一区二区三区乱码不卡18| 边亲边吃奶的免费视频| 中文字幕亚洲精品专区| 国产亚洲欧美精品永久| 亚洲国产日韩一区二区| 毛片女人毛片| 少妇人妻一区二区三区视频| 久久久久久久亚洲中文字幕| 欧美日韩视频高清一区二区三区二| 精品国产露脸久久av麻豆| 亚洲精品成人av观看孕妇| 草草在线视频免费看| 久久精品熟女亚洲av麻豆精品| 国产黄片视频在线免费观看| 寂寞人妻少妇视频99o| 超碰97精品在线观看| 国产精品秋霞免费鲁丝片| 秋霞伦理黄片| 国产成人a∨麻豆精品| 交换朋友夫妻互换小说| 久久久久久久国产电影| 夫妻午夜视频| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品成人久久小说| 99热国产这里只有精品6| 免费人成在线观看视频色| av在线播放精品| 在线看a的网站| 如何舔出高潮| 麻豆国产97在线/欧美| 国产精品一区二区三区四区免费观看| 男人爽女人下面视频在线观看| 婷婷色综合大香蕉| 精品视频人人做人人爽| 欧美一区二区亚洲| 天堂中文最新版在线下载| 婷婷色av中文字幕| 国产亚洲91精品色在线| 九草在线视频观看| 日韩 亚洲 欧美在线| 搡女人真爽免费视频火全软件| 免费人成在线观看视频色| 一二三四中文在线观看免费高清| 亚洲精品aⅴ在线观看| 亚洲精品国产av蜜桃| 男女边吃奶边做爰视频| 国产精品一区二区在线观看99| 国产精品熟女久久久久浪| 久久国产乱子免费精品| 国产淫语在线视频| 久久韩国三级中文字幕| 日韩av在线免费看完整版不卡| 精品亚洲乱码少妇综合久久| 成人影院久久| 99视频精品全部免费 在线| 日本黄色片子视频| 欧美精品国产亚洲| 国产精品.久久久| 少妇人妻精品综合一区二区| 精品人妻视频免费看| 直男gayav资源| 亚洲精品色激情综合| 中文字幕久久专区| 免费久久久久久久精品成人欧美视频 | 91精品伊人久久大香线蕉| 国产高清不卡午夜福利| 国产精品嫩草影院av在线观看| 久久久亚洲精品成人影院| 美女高潮的动态| 日本色播在线视频| 亚洲av在线观看美女高潮| 精品午夜福利在线看| 久久毛片免费看一区二区三区| 少妇裸体淫交视频免费看高清| 国产在线视频一区二区| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版| 久久久久性生活片| 欧美bdsm另类| 精品人妻一区二区三区麻豆| 国产国拍精品亚洲av在线观看| 日韩在线高清观看一区二区三区| 91在线精品国自产拍蜜月| 欧美区成人在线视频| 夜夜骑夜夜射夜夜干| 亚洲av欧美aⅴ国产| 日本黄色片子视频| 亚洲国产av新网站| 一级毛片aaaaaa免费看小| 最近中文字幕高清免费大全6| 国内少妇人妻偷人精品xxx网站| 精品人妻一区二区三区麻豆| 精品少妇久久久久久888优播| 午夜福利高清视频| 精品亚洲乱码少妇综合久久| 超碰av人人做人人爽久久| 国产女主播在线喷水免费视频网站| 国产久久久一区二区三区| 久久人人爽av亚洲精品天堂 | 成人二区视频| 97在线视频观看| 全区人妻精品视频| 亚洲精品国产av蜜桃| 在线观看国产h片| 高清黄色对白视频在线免费看 | 国产av码专区亚洲av| 特大巨黑吊av在线直播| 日韩强制内射视频| 亚洲av日韩在线播放| 久久精品国产a三级三级三级| 欧美日韩视频高清一区二区三区二| 国产爱豆传媒在线观看| 精品亚洲成国产av|