• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Al addition on the formation of Ni germanosilicide layers under different temperature annealing?

    2017-08-30 08:26:46XiaoRanMeng孟驍然YunXiaPing平云霞WenJieYu俞文杰ZhongYingXue薛忠營XingWei魏星MiaoZhang張苗ZengFengDi狄增峰BoZhang張波andQingTaiZhao趙清太
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張波云霞

    Xiao-Ran Meng(孟驍然),Yun-Xia Ping(平云霞),Wen-Jie Yu(俞文杰), Zhong-Ying Xue(薛忠營),Xing Wei(魏星),Miao Zhang(張苗), Zeng-Feng Di(狄增峰),Bo Zhang(張波),?,and Qing-Tai Zhao(趙清太)

    1 Shanghai University of Engineering Science,Shanghai 201600,China

    2 State Key Laboratory of Functional Material for Informatics,Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai 200050,China

    3 Peter Grünberg Institute 9(PGI 9-IT),and JARA-Fundamentals of Future Information Technology, Forschungszentrum Juelich,Juelich 52425,Germany

    Impact of Al addition on the formation of Ni germanosilicide layers under different temperature annealing?

    Xiao-Ran Meng(孟驍然)1,2,Yun-Xia Ping(平云霞)1,?,Wen-Jie Yu(俞文杰)2, Zhong-Ying Xue(薛忠營)2,Xing Wei(魏星)2,Miao Zhang(張苗)2, Zeng-Feng Di(狄增峰)2,Bo Zhang(張波)2,?,and Qing-Tai Zhao(趙清太)3

    1 Shanghai University of Engineering Science,Shanghai 201600,China

    2 State Key Laboratory of Functional Material for Informatics,Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai 200050,China

    3 Peter Grünberg Institute 9(PGI 9-IT),and JARA-Fundamentals of Future Information Technology, Forschungszentrum Juelich,Juelich 52425,Germany

    Solid reactions between Ni and relaxed Si0.7Ge0.3substrate were systematically investigated with different Al interlayer thicknesses.The morphology,composition,and micro-structure of the Ni germanosilicide layers were analyzed with different annealing temperatures in the appearance of Al.The germanosilicide layers were characterized by Rutherford backscattering spectrometry,cross-section transmission electron microscopy,scan transmission electron microscopy,and secondary ion mass spectroscopy.It was shown that the incorporation of Al improved the surface and interface morphology of the germanosilicide layers,enhanced the thermal stabilities,and retarded the Ni-rich germanosilicide phase to mono germanosilicide phase.With increasing annealing temperature,Al atoms distributed from the Ni/Si0.7Ge0.3interface to the total layer of Ni2Si0.7Ge0.3,and finally accumulated at the surface of NiSi0.7Ge0.3.We found that under the assistance of Al atoms,the best quality Ni germanosilicide layer was achieved by annealing at 700°C in the case of 3 nm Al.

    germanosilicide,Al,Ni

    1.Introduction

    The nickel mono-silicide(NiSi)has been widely used in metal–oxide–semiconductor field effect transistor(MOSFET) due to its low resistivity,low Si consumption,and low formation temperature.[1–4]However,when Ni reacts with silicon–germanium alloy(Si1?xGex),it is difficult to form a uniform Ni–germanosilicide(NSG)layer due to the different heat formation between Ni–Si and Ni–Ge.[5,6]Furthermore,the poor thermal stability of the NSG layer and Ge-out diffusion from the NSG layer will induce the agglomeration of NSG grains, which brings large contact variations and leakage to the related Si1?xGexdevices.[7]Si1?xGexis already employed in source/drain(S/D)[8]or channel areas of pMOSFETs,[9]so smooth and uniform NSG/Si1?xGexinterfaces are needed for device applications.In recent years,the solid-phase reactions of Ni with Si1?xGexhave been studied in detail.[10–12]The NSG/Si1?xGexcontact properties could be improved by several methods,such as ions pre-implanted into Si1?xGex,[13]introducing some other metal elements,[14–16]and different annealing processes.[17,18]Especially,Al incorporation is considered as a promising way to mediate the complex reactions between Ni and Si1?xGex.[19–22]Our previous results showed that an Al interlayer or Ni1?xAlxalloy could greatly reduce the NSG/Si1?xGexinterface roughnesses.[19,21]Moreover,it has been reported that Al atoms could tune the hole Schottky barrier height at the NSG/Si1?xGexjunction to sub-0.1 eV.[23]Thus,the Al impact on germanosilicidation is interesting and needs further study.Liu et al.investigated the formation of Ni germanosilicide layers on strained Si1?xGexwith different Al contents in Ni1?xAlxalloy.[24]However,in the case of Al interlayer,the effects of the Al thickness and annealing temperature on the formation of NSG are not fully understood. In this paper,we systematically investigate the solid reactions between Ni and relaxed Si0.7Ge0.3substrate with different Al interlayer thicknesses under various annealing temperatures.

    2.Experiment

    The fully relaxed Si0.7Ge0.3with a thickness of about 800 nm was deposited by reduced pressure chemical vapor deposition(RPCVD)on a Si(100)substrate with graded Si1?yGey(y<0.3)buffer layers.After standard RCA cleaning,Si0.7Ge0.3samples were dipped in dilute HF solution(1%) to remove the native oxide.1 nm and 3 nm Al interlayers were deposited on the Si0.7Ge0.3substrate followed by subse-quent Ni layer with 10 nm thickness at room temperature,as schematically shown in Figs.1(a)and 1(c).The metal thicknesses were confirmed by Rutherford backscattering spectrometry(RBS)using RUMP simulation[25](see Figs.1(b)and 1(d)).The Si1?xGexfilms were so thick that the individual spectra of Ni,Al,Si,and Ge could not be resolved.Meanwhile,10 nm Ni layer without Al was also deposited directly on the Si0.7Ge0.3substrate for comparison.Ni germanosilicidation was formed by rapid thermal annealing(RTA)in ambient N2for 30 s at various temperatures ranging from 400°C to 700°C.The un-reacted Ni was selectively etched in solution H2SO4:H2O2(1:4).

    Fig.1.(color online)Schematic diagrams of Ni/Al/SiGe systems and the corresponding RBS measurements:(a),(b)1 nm Al;(c),(d)3 nm Al.

    The stoichiometry of the NSG layers was investigated by RBS.The simulations of the RBS spectra were made by means of RUMP.The morphology and microstructure were studied by cross-section transmission electron microscopy(XTEM) and scanning transmission electron microscopy(STEM).The elements redistributions were analyzed by secondary ion mass spectroscopy(SIMS).

    3.Results and discussion

    3.1.The stoichiometry of the NSG layers

    The stoichiometry of the NSG layers was investigated by RBS with 1.4 MeV He+at a scattering angle of 170°C.Figure 2 presents the RBS spectra of the NSG layers with or without(w/o)Al interlayer at different silicidation temperatures. For the samples w/o Al,based on the RUMP program(not shown),it is simulated that the proportion of Ni and Si0.7Ge0.3is approximately 1:1 at 400°C,indicating that the layer is in mono-germanosilicide phase(NiSi0.7Ge0.3).After high temperature annealing(600°C),the composition of the NSG layer shows a great change indicated by the widening of the Ni signal and the raising of the Ge signal in the RBS spectrum, which means a rough NSG/Si0.7Ge0.3interface and an inhomogeneous layer due to agglomeration.For the sample with 1 nm Al,at 400°C,no significant difference to the sample w/o Al is found.At 600°C,we can see some thermal stability improvements of the NSG layer due to the appearance of Al.However,according to the RUMP simulation(not shown), the Ge concentration in the NSG layer is higher than that in the mono NiSi0.7Ge0.3phase,indicating that the Ge atoms are already diffused from NiSi0.7Ge0.3polycrystalline grains.In the case of 3 nm Al,the RBS random spectrum of the sample annealed at 500°C can be simulated by an 18.5 nm thick Ni2Si0.7Ge0.3layer.After annealing at 600°C,a mixture of phases(Ni2Si0.7Ge0.3and NiSi0.7Ge0.3)is found according to the RUMP simulation.These phases can totally transfer to the mono-NiSi0.7Ge0.3phase when the annealing temperature is increased to 700°C.Most of the Al is found in a~4 nm thick oxidized Al top layer(see Fig.2(c)).Based on these results, we conclude that the appearance of Al retards the Ni-rich germanosilicide phase to the mono-germanosilicide phase.

    Fig.2.(color online)RBS spectra of NSG layers formed at different temperatures:(a)w/o Al,(b)1 nm Al,(c)3 nm Al.

    3.2.Morphology dependence on Al thickness

    In order to study the difference in morphology between Ni/Si0.7Ge0.3and Ni/Al/Si0.7Ge0.3systems,XTEM was employed to analyze the samples with and w/o Al(as shown in Fig.3).For the sample w/o Al and after annealing at 400°C,polycrystalline NSG grains are formed,which cause rough surface and interface of the layer(Fig.3(a)).The incorporation of Al can reduce the roughness of both the surface and the interface of the NiSi0.7Ge0.3layer.1 nm Al interlayer is sufficient for the suppression of NSG grains formation at the surface,as revealed by the TEM micrograph in Fig.3(b).The layer uniformity and interface roughness are improved compared to the case of Al absence.3 nm Al interlayer results in the NSG layer with a very sharp interface(Fig.3(c)).Note that there are still a few Ni2Si0.7Ge0.3grains inside the NiSi0.7Ge0.3layer,which means that the Nirich germanosilicide phase is not totally transformed to the mono-germanosilicide phase even under high-temperature annealing.The existence of Ni2Si0.7Ge0.3grains increases the surface roughness of the NiSi0.7Ge0.3layer.These results are consistent with the RBS measurements shown in Fig.2(c), which further proves the appearance of Al can retard the mono-germanosilicide phase formation.

    Fig.3.XTEM images of NSG layers:(a)w/o Al at 400°C,(b)1 nm Al at 400°C,(c)3 nm Al at 600°C.

    3.3.Dependence on annealing temperature

    In this section,we discuss the annealing temperature dependence of the NSG formation with 3 nm Al interlayer.The STEM micrographs in Fig.4 depict the morphology of the NSG layers formed at various annealing temperatures.The NSG layer formed at 500°C has the average thickness of~19 nm with Ni2Si0.7Ge0.3phase corresponding to the RBS simulation(Fig.2(c)).After annealing at 550°C,the number of polycrystalline NSG grains is reduced and the NSG layer uniformity and the interface morphology are improved. With the annealing temperature increasing to 700°C,the NSG layer has totally transferred to the mono NiSi0.7Ge0.3phase with the thickness of~24 nm,as demonstrated by the bright uniform layer in Fig.4(c).Due to the lack of Ni2Si0.7Ge0.3polycrystalline grains,the surface of the NiSi0.7Ge0.3layer becomes very smooth with a sharp NiSi0.7Ge0.3/Si0.7Ge0.3interface.In order to further investigate the temperature dependence,high-resolution XTEM(HRTEM)was performed for samples annealed at 500°C,550°C,600°C,and 700°C respectively.Figure 5(a)displays the sample annealed at 500°C with several different orientation Ni2Si0.7Ge0.3polycrystalline grains,which cause the surface and interface of the Ni2Si0.7Ge0.3layer to be very rough.After 550°C annealing,the Ni2Si0.7Ge0.3layer starts to become uniform with smooth interface,although the atomic steps still exist(see Fig.5(b)).At 600°C,main Ni2Si0.7Ge0.3has transformed to NiSi0.7Ge0.3and only a few Ni2Si0.7Ge0.3grains still exist in the NiSi0.7Ge0.3layer,as shown in Fig.3(c).After 700°C annealing,the NiSi0.7Ge0.3layer has a uniform thickness over the entire viewable area.The interface between NiSi0.7Ge0.3and Si0.7Ge0.3substrate is sharp and flat without evidence of the formation of any second phase.As reported earlier in Ref.[19],this NiSi0.7Ge0.3layer is epitaxial growth on the (001)Si0.7Ge0.3substrate with the(101)orientation.

    Fig.4.STEM images of NSG layers formed with 3 nm Al at different annealing temperatures:(a)500°C,(b)550°C,(c)700°C.

    Fig.5.High resolution XTEM images of NSG layers formed with 3 nm Al at different annealing temperatures:(a)500°C,(b)550°C, (c)600°C,(d)700°C.

    3.4.Al redistribution after germanosilicidation

    To clarify the exact role of Al atoms on the germanosilicidation process,we utilized SIMS to monitor the Al,Ni,Si, Ge depth profiles in the 3 nm Al samples annealed at different temperatures.Note that the results in Fig.6(d)are a reproduction from Ref.[22]in order to facilitate a direct comparison.As shown in Fig.6(a),at the annealing temperature of 500°C,the flat Ni plateaus indicate the formation of single Ni2Si0.7Ge0.3phase.The Al distribution is also very uniform in the NSG layer,indicating that main Al atoms are expelled from the interlayer to the NSG layer during the Ni-Si0.7Ge0.3reaction.After 550°C annealing,some Al atoms start to move to the surface and finally form an obvious pileup of Al on the upper of the NSG layer.Consequently,the NSG layer maybe splits into two sub-layers:one layer located closer to the unreacted Si0.7Ge0.3substrate,and the other layer adjacent to the surface with a much higher Al concentration.Moreover,wefind that there are some Si and Ge atoms accumulations at the interface of NSG/Si0.7Ge0.3in both 500°C and 550°C annealing samples.However,with further increasing annealing temperature to 600–700°C,Si and Ge atoms accumulations disappear and most Al atoms segregate at the surface of the NSG layer.Furthermore,we note that the redistributions of the Ni/Al/Si/Ge signals in the NSG layers do not change after annealing at 600–700°C due to the formation of the most stable mono-gemanosilicide phase.The minor difference of the SIMS depth files at 600°C and 700°C is the remaining Al atoms distributions in the oxide layer on the top of the NSG layers.Although a few Ni-rich germanosilicide grains are formed in the NSG layer at 600°C(as shown in Fig.5(c), it is found that they have marginal impacts on the Ni/Al/Si/Ge contents in the NSG layer.

    Fig.6.(color online)SIMS results of NSG layers formed with 3 nm Al at different annealing temperatures:(a)500°C,(b)550°C, (c)600°C,(d)700°C.

    3.5.Sheet resistance measurements

    The impact of the Al interlayer on the NSG electrical properties was investigated by sheet resistance measurements. The annealing temperature dependence of the sheet resistance for the samples with or w/o Al is shown in Fig.7.Note that the data have been partially shown in Ref.[19]and they are reproduced here only for comparison with the case of 1 nm Al interlayer.For Ni/Si0.7Ge0.3and Ni/Al(1 nm)/Si0.7Ge0.3systems,the Rskeeps at the value of~7 ?/sq from 400°C to 500°C,indicating the formation of mono-germanosilicide phase.The layer suffers pronounced degradation when the temperature increases above 500°C.However,for the Ni/Al(3 nm)/Si0.7Ge0.3system,the sheet resistance remains at a higher value at 400–500°C due to the formation of a Ni-rich germanosilicide phase,as shown in Figs.5 and 6. The sheet resistance then decreases abruptly after annealing at 500°C,which is attributed to the transformation of Ni-rich germanosilicide phase to mono-germanosilicide phase.The thermal stability of the NSG layer increases up to 700°C.It is evident that the incorporation of 3 nm Al retards the phase for-mation and enhances the thermal stability of the germanosilicide layer.

    Fig.7.(color online)Sheet resistance of NSG layers formed with and w/o Al interlayer versus annealing temperature.

    3.6.Discussion

    Based on the structural and electrical analysis,we now discuss the effects of the Al interlayer on the growth mechanism of NiSi0.7Ge0.3on Si0.7Ge0.3.In the case of Si substrate, the addition of Al decreases the disilicide formation temperature and leads to a uniform orientation of the disilicide layers, which depend on the Alcontentand annealing temperature.[26]However,for the Si0.7Ge0.3substrate,the incorporation of Al increases the mono-germanosilicide formation temperature and finally mediates the NSG layer with smooth interface.The Al interlayer behaves as a diffusion barrier to reduce the diffusion of Ni and induces the formation of a uniform NSG layer. Considering the difference of 1 nm and 3 nm Al on the formation of NiSi0.7Ge0.3,as shown in Figs.3(b)and 3(c),wefind that the appearance of enough Al atoms could reduce and balance the reaction of Ni and Si0.7Ge0.3,inducing a uniform epitaxial growth of NiSi0.7Ge0.3on Si0.7Ge0.3.In addition,Jin et al.found that the surface and interface energies of NiSiGe could be minimized for highly(200)orientation by the addition of 5%Pd in NiPd alloy.[16]We propose that Al atoms have the same effect,i.e.,lowering the dominant interface and surface energies,indicating that NiSi0.7Ge0.3with favorable orientation may grow faster than NiSi0.7Ge0.3with other orientations.

    4.Conclusion

    The formation of NSG layers is systematically investigated with different annealing temperatures in the appearance of Al.It is shown that both the Al interlayer thickness and annealing temperature could greatly affect the Ni-Si0.7Ge0.3reaction.The incorporation of Al improves the surface and interface morphology of the NSG layers,enhances the thermal stabilities,and retards the mono-germanosilicide phase formation.In the case of 3 nm Al,a very uniform and smooth NiSi0.7Ge0.3layer is formed after 700°C annealing.The Al atoms distribute from the Ni/Si0.7Ge0.3interface to the total layer of Ni2Si0.7Ge0.3,and finally accumulate at the surface of the NiSi0.7Ge0.3layer.These results indicate that the combined process of Al interlayer may serve as a potential method for improving the contact properties of NiSi1?xGex/Si1?xGex.

    [1]Zhang S L and ?stling M 2013 Criti.Rev.Solid State 28 1

    [2]Lavoie C,d’Heurle F M,Detavernier C and Cabral J C 2003 Microelectron.Eng.70 144

    [3]Luo J,Qiu Z,Zha C,Zhang Z,Wu D,Lu J,?Akerman J,?stling M, Hultman L and Zhang S L 2010 Appl.Phys.Lett.96 031911

    [4]Luo J,Qiu Z,Zha C,Zhang Z,?stling M and Zhang S L 2010 J.Vac. Sci.Technol.A 28 C1I1

    [5]Zhang S L 2003 Microelectron.Eng.70 174

    [6]Li J,Hong Q Z,Mayer J W and Rathbun L 1990 J.Appl.Phys.67 2506

    [7]Liu J and Ozturk M C 2005 IEEE Trans.Electron Devices 52 1535

    [8]Packan P,Akbar S,Armstrong M,Bergstrom D,Brazier M,Deshpande H,Dev K,Ding G,Ghani T,Golonzka O,Han W,He J,Heussner R, James R,Jopling J,Kenyon C,Lee S H,Liu M,Lodha S,Mattis B, Murthy A,Neiberg L,Neirynck J,Pae S,Parker C,Pipes L,Sebastian J,Seiple J,Sell B,Sharma A,Sivakumar S,Song B,Amour A St,Tone K,Troeger T,Weber C,Zhang K,Luo Y and Natarajan S 2009 IEDM Tech.Dig.659

    [9]Yu W,Zhang B,Zhao Q T,Hartmann J M,Buca D,Nichau A,Lupták R,Lopes J M,Lenk S,Luysberg M,Bourdelle K K,Wang X and Mantl S 2011 Solid State Electron.62 85

    [10]Jin L,Pey K L,Choi W K,Fitzgerald E A,Antoniadis D A,Pitera A J, Lee M L,Chi D Z,Rahman M A,Osipowicz T and Tung C H 2005 J. Appl.Phys.98 033520

    [11]Jarmar T,Seger J,Ericson F,Mangelinck D,Smith U and Zhang S L 2002 J.Appl.Phys.92 7193

    [12]Pey K L,Choi W K,Chattopadhyay S,Zhao H B,Fitzgerald E A,Antoniadis D A and Lee P S 2002 J.Vac.Sci.Technol.A 20 1903

    [13]Zhang B,Yu W,Zhao Q T,Buca D,Holl?nder B,Hartmann J M,Zhang M,Wang X and Mantl S 2011 Electrochem.Solid-State Lett.14 H261

    [14]Xu Y,Ru G,Jiang Y,Qu X and Li B 2009 Appl.Surf.Sci.256 305

    [15]Liu Q,Wang G,Guo Y,Ke X,Liu H,Zhao.C and Luo J 2015 Vacuum 111 114

    [16]Jin L,Pey K L,Choi W K,Fitzgerald E A,Antoniadis D A,Pitera A J, Lee M L and Tung C H 2005 J.Appl.Phys.97 104917

    [17]Setiawan Y,Lee P S,Pey K L,Wang X C,Lim G C and Tan B L 2007 Appl.Phys.Lett.90 073108

    [18]Hu C,Xu P,Fu C,Zhu Z,Gao X,Jamshidi A,Noroozi M,Radamson H,Wu D and Zhang S L 2012 Appl.Phys.Lett.101 092101

    [19]Zhang B,Yu W,Zhao Q T,Mussler G,Jin L,Buca D,Hollaender B, Zhang M,Wang X and Mantl S 2011 Appl.Phys.Lett.98 252101

    [20]Zhao Q T,Knoll L,Zhang B,Buca D,Hartmann J and Mantl S 2013 Microelectron.Engineering.107 190

    [21]Liu L,Jin L,Knoll L,Wirths S,Nichau A,Buca D,Mussler G, Holl?nder B,Xu D,Di Z,Zhang M,Zhao Q and Mantl S 2013 Appl. Phys.Lett.103 231909

    [22]Ping Y X,Wang M L,Meng X R,Hou C L,Yu W L,Xue Z Y,Wei X,Zhang M,Di Z F and Zhang B 2016 Acta Phys.Sin.65 036801(in Chinese)

    [23]Sinha M,Lee R T P,Lohani A,Mhaisalkar S,Chor E F and Yeo Y C 2009 J.Electrochem.Soc.156 233

    [24]Liu L J,Jin L,Knoll L,Wirths S,Buca D,Mussler G,Hollaender B, Xu D W,Di Z F,Zhang M,Mantl S and Zhao Q T 2015 Microelectron. Eng.137 88

    [25]Doolittle L 1985 Nucl.Inst.Meth.B 9 344

    [26]Mogilatenko A,Beddies G,Falke M,Hausler I and Neumann W 2012 J.Appl.Phys.111 103512

    17 March 2017;revised manuscript

    21 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/098503

    ?Project supported by the Natural Science Foundation of Shanghai,China(Grant No.14ZR1418300)and the National Natural Science Foundation of China (Grant Nos.61604094 and 61306126).

    ?Corresponding author.E-mail:xyping@sues.edu.cn

    ?Corresponding author.E-mail:bozhang@mail.sim.ac.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張波云霞
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    入木三分
    望洋興嘆
    揠苗助長
    買櫝還珠
    玩具
    Best fight
    南城秋意
    赤水源(2018年6期)2018-12-06 08:38:10
    《瑞雪豐年》
    當代礦工(2017年9期)2017-09-23 02:50:43
    Event Safety -A Culture of Responsibility
    演藝科技(2015年9期)2015-12-22 05:23:13
    欧美 日韩 精品 国产| 色网站视频免费| 久久久久久人妻| 男人添女人高潮全过程视频| 午夜福利在线观看免费完整高清在| 免费高清在线观看视频在线观看| 最近中文字幕2019免费版| 一本久久精品| 精品少妇久久久久久888优播| 亚洲av电影在线观看一区二区三区| 黄色毛片三级朝国网站 | 老司机亚洲免费影院| 日日爽夜夜爽网站| 中国三级夫妇交换| 国产伦精品一区二区三区视频9| 五月伊人婷婷丁香| 三级国产精品欧美在线观看| 国产免费一级a男人的天堂| 亚洲av日韩在线播放| 欧美三级亚洲精品| 亚洲久久久国产精品| 男人添女人高潮全过程视频| av在线老鸭窝| 亚洲人成网站在线播| 国产精品99久久99久久久不卡 | 欧美三级亚洲精品| 久久国产精品大桥未久av | 成人影院久久| 少妇人妻 视频| 日韩av在线免费看完整版不卡| 成人亚洲精品一区在线观看| 国产欧美日韩精品一区二区| 亚洲精品一区蜜桃| 又爽又黄a免费视频| 乱码一卡2卡4卡精品| av黄色大香蕉| 国产精品99久久99久久久不卡 | 欧美激情国产日韩精品一区| 欧美人与善性xxx| 在线精品无人区一区二区三| 午夜视频国产福利| 精品亚洲乱码少妇综合久久| 乱人伦中国视频| 精品一区二区三卡| 精品亚洲乱码少妇综合久久| 曰老女人黄片| 下体分泌物呈黄色| 曰老女人黄片| 九九爱精品视频在线观看| 国产精品国产三级国产专区5o| 国产精品久久久久成人av| 久久午夜福利片| 搡老乐熟女国产| av免费在线看不卡| 亚洲精品色激情综合| 伦理电影免费视频| 啦啦啦在线观看免费高清www| 男的添女的下面高潮视频| av专区在线播放| 欧美日韩亚洲高清精品| 亚洲高清免费不卡视频| 久久久国产一区二区| 街头女战士在线观看网站| 欧美激情极品国产一区二区三区 | 国产毛片在线视频| 中文字幕制服av| 婷婷色综合www| 一级a做视频免费观看| 亚洲真实伦在线观看| 黄色日韩在线| 中文字幕人妻熟人妻熟丝袜美| 美女cb高潮喷水在线观看| 国产成人精品婷婷| 日韩不卡一区二区三区视频在线| 中文欧美无线码| 日本黄大片高清| 熟女电影av网| 日日摸夜夜添夜夜添av毛片| 少妇精品久久久久久久| 下体分泌物呈黄色| 中文字幕精品免费在线观看视频 | 蜜桃在线观看..| 日韩欧美一区视频在线观看 | 国产精品三级大全| 一边亲一边摸免费视频| 日韩av免费高清视频| 亚洲精品国产色婷婷电影| 一个人免费看片子| 午夜视频国产福利| 午夜免费观看性视频| 免费人成在线观看视频色| 国产欧美亚洲国产| 久久免费观看电影| 大片电影免费在线观看免费| 久久久久人妻精品一区果冻| 亚洲高清免费不卡视频| 精品国产国语对白av| 久久韩国三级中文字幕| 免费av中文字幕在线| 黑人猛操日本美女一级片| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美另类一区| 最近最新中文字幕免费大全7| 国产精品人妻久久久影院| 国产精品国产三级国产av玫瑰| 亚州av有码| 亚洲精品国产成人久久av| 91久久精品国产一区二区三区| 午夜激情久久久久久久| 欧美亚洲 丝袜 人妻 在线| 亚洲精品aⅴ在线观看| 在线观看av片永久免费下载| 极品人妻少妇av视频| 青青草视频在线视频观看| 成人无遮挡网站| 春色校园在线视频观看| 丰满少妇做爰视频| 亚洲婷婷狠狠爱综合网| 午夜老司机福利剧场| 亚洲av免费高清在线观看| 2021少妇久久久久久久久久久| 国产在视频线精品| 国语对白做爰xxxⅹ性视频网站| 十分钟在线观看高清视频www | 欧美三级亚洲精品| 永久网站在线| 国产成人精品无人区| 这个男人来自地球电影免费观看 | 9色porny在线观看| 观看av在线不卡| 蜜臀久久99精品久久宅男| 国产成人精品无人区| 一个人看视频在线观看www免费| 国产午夜精品一二区理论片| 免费人成在线观看视频色| 中文字幕亚洲精品专区| 免费黄色在线免费观看| 国产在视频线精品| 偷拍熟女少妇极品色| 久久久久久伊人网av| 亚洲天堂av无毛| 91久久精品电影网| 成人亚洲精品一区在线观看| 亚洲,欧美,日韩| 日本91视频免费播放| 午夜精品国产一区二区电影| 国产成人aa在线观看| 黄色视频在线播放观看不卡| 一本久久精品| 亚洲成人手机| 国产精品久久久久久av不卡| 色婷婷久久久亚洲欧美| av卡一久久| 国产视频首页在线观看| 色哟哟·www| 久久久精品94久久精品| 亚洲自偷自拍三级| 99热网站在线观看| 国产成人精品婷婷| 少妇丰满av| 最黄视频免费看| 日韩一本色道免费dvd| 黄色一级大片看看| 亚洲国产精品999| 国产探花极品一区二区| 久久久久久久久久久免费av| 亚洲av日韩在线播放| 亚洲精品亚洲一区二区| 欧美日韩精品成人综合77777| 久久久久久久久久人人人人人人| 亚洲性久久影院| 国产色婷婷99| 中文字幕亚洲精品专区| 水蜜桃什么品种好| 一区二区三区乱码不卡18| 毛片一级片免费看久久久久| 精品少妇久久久久久888优播| 日韩强制内射视频| 有码 亚洲区| 久久人人爽人人爽人人片va| 亚洲一级一片aⅴ在线观看| 99热国产这里只有精品6| 交换朋友夫妻互换小说| 久久99一区二区三区| 亚洲经典国产精华液单| 伊人久久精品亚洲午夜| 国产精品99久久久久久久久| 国产午夜精品一二区理论片| 国产色爽女视频免费观看| 丝瓜视频免费看黄片| 亚洲人成网站在线播| 国产爽快片一区二区三区| 99热6这里只有精品| 国产成人aa在线观看| 亚洲欧美日韩另类电影网站| 水蜜桃什么品种好| 亚洲欧美一区二区三区国产| 亚洲人与动物交配视频| 下体分泌物呈黄色| av不卡在线播放| 美女cb高潮喷水在线观看| av不卡在线播放| 最近的中文字幕免费完整| 丝袜在线中文字幕| 免费看不卡的av| 国产黄片美女视频| 日韩熟女老妇一区二区性免费视频| 一个人看视频在线观看www免费| 熟女电影av网| 天天操日日干夜夜撸| 久久久午夜欧美精品| 亚洲av成人精品一二三区| 国产欧美另类精品又又久久亚洲欧美| 国产精品国产三级国产av玫瑰| 亚洲av.av天堂| 国产精品秋霞免费鲁丝片| 一本色道久久久久久精品综合| 国产精品国产三级国产av玫瑰| 少妇人妻久久综合中文| 日本色播在线视频| av播播在线观看一区| 少妇人妻 视频| 亚洲自偷自拍三级| 一级毛片久久久久久久久女| 一区二区三区四区激情视频| 中文字幕av电影在线播放| 久久午夜福利片| 亚洲精品456在线播放app| 国产伦精品一区二区三区四那| 欧美激情国产日韩精品一区| 在线天堂最新版资源| 日本av免费视频播放| 少妇人妻 视频| 亚洲国产欧美在线一区| 午夜久久久在线观看| 在线观看国产h片| 男男h啪啪无遮挡| 国产亚洲精品久久久com| 亚洲精品日本国产第一区| 少妇人妻精品综合一区二区| 亚洲欧美一区二区三区国产| 久久99热6这里只有精品| 另类精品久久| 99热这里只有精品一区| 国产深夜福利视频在线观看| 成人二区视频| 纯流量卡能插随身wifi吗| 纯流量卡能插随身wifi吗| 日本91视频免费播放| 久久亚洲国产成人精品v| 欧美精品一区二区大全| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产色片| 久久精品久久久久久久性| 99热这里只有精品一区| 欧美精品高潮呻吟av久久| 国产精品国产av在线观看| 黄色日韩在线| 日日啪夜夜撸| √禁漫天堂资源中文www| 99久国产av精品国产电影| 99久久人妻综合| 亚洲欧美日韩东京热| 亚洲精品乱码久久久久久按摩| 黑人高潮一二区| 国产免费一区二区三区四区乱码| 下体分泌物呈黄色| 亚洲精品456在线播放app| 如何舔出高潮| 黑人巨大精品欧美一区二区蜜桃 | 久久99一区二区三区| 国产真实伦视频高清在线观看| 亚洲怡红院男人天堂| 嫩草影院新地址| 国产乱来视频区| 中文字幕人妻熟人妻熟丝袜美| 亚洲丝袜综合中文字幕| 日韩欧美一区视频在线观看 | 日韩伦理黄色片| 99久久中文字幕三级久久日本| 啦啦啦在线观看免费高清www| 久久久久人妻精品一区果冻| 亚洲高清免费不卡视频| 久久国产亚洲av麻豆专区| 曰老女人黄片| 国产日韩欧美亚洲二区| 国产高清有码在线观看视频| 乱系列少妇在线播放| 精品亚洲乱码少妇综合久久| 国产精品一区二区在线观看99| 婷婷色麻豆天堂久久| 亚洲伊人久久精品综合| 久久精品久久精品一区二区三区| 精品久久久精品久久久| 最后的刺客免费高清国语| 性色av一级| 中文在线观看免费www的网站| 国产精品人妻久久久久久| 日本免费在线观看一区| 日韩精品有码人妻一区| 久久ye,这里只有精品| 亚洲av免费高清在线观看| 晚上一个人看的免费电影| 国产伦精品一区二区三区四那| 永久网站在线| 一本—道久久a久久精品蜜桃钙片| 99九九在线精品视频 | 美女脱内裤让男人舔精品视频| 亚洲av男天堂| 日韩亚洲欧美综合| 久久婷婷青草| 久久久久久久久久久久大奶| 美女国产视频在线观看| 欧美日韩视频高清一区二区三区二| 女性被躁到高潮视频| 热re99久久精品国产66热6| 国产色婷婷99| 免费av不卡在线播放| 精品久久久久久久久亚洲| 天堂8中文在线网| 人妻系列 视频| 日韩熟女老妇一区二区性免费视频| 久久人人爽人人爽人人片va| 一级av片app| 欧美日韩综合久久久久久| 精品久久国产蜜桃| 国产黄色视频一区二区在线观看| 久久精品国产亚洲av天美| 97超碰精品成人国产| 成人毛片a级毛片在线播放| 日韩大片免费观看网站| 国产免费一区二区三区四区乱码| 亚洲成人一二三区av| 伦精品一区二区三区| 中文欧美无线码| 精品久久国产蜜桃| 国产精品久久久久久精品古装| 久久av网站| 亚洲精品乱码久久久久久按摩| 99九九线精品视频在线观看视频| 国产一级毛片在线| 内射极品少妇av片p| 看非洲黑人一级黄片| 日韩欧美精品免费久久| tube8黄色片| 2022亚洲国产成人精品| 男男h啪啪无遮挡| 秋霞伦理黄片| 久久精品国产自在天天线| 大香蕉97超碰在线| 99re6热这里在线精品视频| 十分钟在线观看高清视频www | 免费av不卡在线播放| 免费观看无遮挡的男女| 伦理电影大哥的女人| 亚洲,一卡二卡三卡| 不卡视频在线观看欧美| av在线播放精品| 精品人妻熟女毛片av久久网站| 免费大片18禁| 欧美激情国产日韩精品一区| 久久青草综合色| 亚洲在久久综合| 亚洲av电影在线观看一区二区三区| 午夜免费男女啪啪视频观看| 99九九线精品视频在线观看视频| 在线播放无遮挡| 成人影院久久| 欧美人与善性xxx| 免费大片18禁| 免费大片黄手机在线观看| 日本爱情动作片www.在线观看| 欧美激情国产日韩精品一区| 亚洲,一卡二卡三卡| 欧美激情极品国产一区二区三区 | 亚洲内射少妇av| 精品视频人人做人人爽| 男女国产视频网站| 国产精品国产av在线观看| 高清av免费在线| 老熟女久久久| 男女啪啪激烈高潮av片| 久久影院123| 久久久久久久大尺度免费视频| 欧美最新免费一区二区三区| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| av视频免费观看在线观看| 日本av免费视频播放| 18禁在线播放成人免费| 亚洲av不卡在线观看| 人人妻人人看人人澡| 国产女主播在线喷水免费视频网站| 久久精品久久久久久噜噜老黄| 丰满乱子伦码专区| 亚洲四区av| 亚洲av不卡在线观看| 99国产精品免费福利视频| 亚洲av男天堂| 少妇人妻精品综合一区二区| 国产精品一区二区三区四区免费观看| 亚州av有码| 少妇熟女欧美另类| 伊人久久精品亚洲午夜| 日韩制服骚丝袜av| 丰满少妇做爰视频| 人人妻人人爽人人添夜夜欢视频 | 一本色道久久久久久精品综合| 亚洲国产精品成人久久小说| 人人妻人人看人人澡| 欧美日韩视频精品一区| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久v下载方式| 日本免费在线观看一区| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| 我的女老师完整版在线观看| a 毛片基地| 免费人成在线观看视频色| 久久99精品国语久久久| 亚洲,一卡二卡三卡| 新久久久久国产一级毛片| 制服丝袜香蕉在线| 亚洲欧洲日产国产| 色视频www国产| 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 国产一级毛片在线| 免费av不卡在线播放| 国产男人的电影天堂91| 免费在线观看成人毛片| 成年人免费黄色播放视频 | 日本av手机在线免费观看| 亚洲不卡免费看| 日本-黄色视频高清免费观看| av一本久久久久| 亚洲不卡免费看| 天天躁夜夜躁狠狠久久av| 18禁在线播放成人免费| 新久久久久国产一级毛片| 日韩av不卡免费在线播放| 热re99久久国产66热| 精品一区二区三卡| 欧美精品一区二区免费开放| 能在线免费看毛片的网站| 两个人免费观看高清视频 | 色视频www国产| av福利片在线观看| √禁漫天堂资源中文www| 香蕉精品网在线| 男女免费视频国产| 久久久久久久精品精品| 97在线人人人人妻| 日本av免费视频播放| 亚洲综合精品二区| 蜜桃在线观看..| 草草在线视频免费看| 女性被躁到高潮视频| 成年人免费黄色播放视频 | 男人爽女人下面视频在线观看| 亚洲久久久国产精品| 亚洲综合色惰| 久久99热6这里只有精品| 日本-黄色视频高清免费观看| 91在线精品国自产拍蜜月| 欧美精品亚洲一区二区| 国产乱人偷精品视频| 久久99一区二区三区| 在线观看国产h片| 在线观看一区二区三区激情| 国产伦精品一区二区三区视频9| 热re99久久精品国产66热6| 在线天堂最新版资源| 夫妻午夜视频| 欧美日韩亚洲高清精品| 欧美三级亚洲精品| 久久影院123| 伊人久久国产一区二区| 两个人的视频大全免费| 欧美日韩视频高清一区二区三区二| 久久精品国产a三级三级三级| 久久久久久久久久久久大奶| 天美传媒精品一区二区| 日韩视频在线欧美| 免费播放大片免费观看视频在线观看| 婷婷色综合www| 97超碰精品成人国产| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说| 伊人久久精品亚洲午夜| 爱豆传媒免费全集在线观看| 热re99久久精品国产66热6| 国产熟女欧美一区二区| 欧美另类一区| 亚洲精品一区蜜桃| 日韩一本色道免费dvd| 啦啦啦中文免费视频观看日本| 久久久久久久亚洲中文字幕| 国产亚洲5aaaaa淫片| 最后的刺客免费高清国语| 97超碰精品成人国产| 99久久中文字幕三级久久日本| 色视频www国产| 男女边摸边吃奶| 日本欧美国产在线视频| 成人免费观看视频高清| 国产高清国产精品国产三级| 午夜影院在线不卡| 亚洲国产av新网站| 最近2019中文字幕mv第一页| 全区人妻精品视频| 国产av国产精品国产| 久久久欧美国产精品| 亚洲av.av天堂| 免费黄色在线免费观看| av福利片在线观看| 人人妻人人添人人爽欧美一区卜| 欧美一级a爱片免费观看看| 少妇丰满av| 99热6这里只有精品| 国产成人精品无人区| 国产免费一区二区三区四区乱码| 久久久久国产网址| 男女边吃奶边做爰视频| 又爽又黄a免费视频| 成人国产麻豆网| 青春草国产在线视频| 天天操日日干夜夜撸| 六月丁香七月| 亚洲欧美日韩东京热| 精品一区在线观看国产| 中文字幕久久专区| 午夜激情久久久久久久| 新久久久久国产一级毛片| 婷婷色综合大香蕉| 少妇 在线观看| 欧美精品一区二区大全| 亚洲四区av| .国产精品久久| 搡老乐熟女国产| 在线观看一区二区三区激情| www.色视频.com| 自线自在国产av| 美女主播在线视频| 在线免费观看不下载黄p国产| 岛国毛片在线播放| 99九九线精品视频在线观看视频| 国产免费又黄又爽又色| 日本wwww免费看| 国产精品伦人一区二区| 午夜福利网站1000一区二区三区| 成人无遮挡网站| 欧美日本中文国产一区发布| 日韩强制内射视频| 秋霞伦理黄片| 国产欧美另类精品又又久久亚洲欧美| 午夜精品国产一区二区电影| 免费高清在线观看视频在线观看| 男人爽女人下面视频在线观看| 99视频精品全部免费 在线| 一区二区三区四区激情视频| 熟女av电影| 一边亲一边摸免费视频| 老熟女久久久| 日本av免费视频播放| 最近的中文字幕免费完整| 日韩人妻高清精品专区| 黄色视频在线播放观看不卡| 纵有疾风起免费观看全集完整版| 99久久精品国产国产毛片| 日韩欧美 国产精品| 人妻少妇偷人精品九色| 水蜜桃什么品种好| 精品国产一区二区三区久久久樱花| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久人人人人人人| 久久午夜福利片| 插逼视频在线观看| 热re99久久国产66热| 亚洲成色77777| 一区二区三区免费毛片| 夜夜看夜夜爽夜夜摸| 男人爽女人下面视频在线观看| 欧美精品一区二区大全| 国产精品熟女久久久久浪| 夜夜看夜夜爽夜夜摸| 夜夜骑夜夜射夜夜干| 国产高清不卡午夜福利| 王馨瑶露胸无遮挡在线观看| 波野结衣二区三区在线| 久久午夜福利片| 熟女电影av网| 午夜老司机福利剧场| 日本黄大片高清| 久久久久国产精品人妻一区二区| 91午夜精品亚洲一区二区三区| 国产乱来视频区| 免费人妻精品一区二区三区视频| a 毛片基地| 久久热精品热| 国产精品99久久99久久久不卡 | 一级二级三级毛片免费看| 少妇的逼水好多| 2018国产大陆天天弄谢| 国产高清三级在线| 99久久中文字幕三级久久日本| 九九爱精品视频在线观看| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 成人亚洲精品一区在线观看| 丰满少妇做爰视频| 三级国产精品欧美在线观看| 黄色视频在线播放观看不卡| 日韩av在线免费看完整版不卡| 国产一级毛片在线|