• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stochastic responses of tumor immune system with periodic treatment?

    2017-08-30 08:25:00DongXiLi李東喜andYingLi李穎
    Chinese Physics B 2017年9期
    關(guān)鍵詞:李穎

    Dong-Xi Li(李東喜)and Ying Li(李穎)

    1 College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2 College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    Stochastic responses of tumor immune system with periodic treatment?

    Dong-Xi Li(李東喜)1,?and Ying Li(李穎)2

    1 College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2 College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment.Firstly,a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation.Then,sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula.Finally,numerical simulations are introduced to illustrate and verify the results.The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells,especially for combining the immunotherapy and the traditional tools.

    stochastic responses,environmental noise,tumor–immune system,extinction

    1.Introduction

    Cancer is becoming the leading cause of death around the world.Traditional cancer treatments include surgery,radiation therapy,and chemotherapy.Cancer immunotherapy has recently gained exciting progress.Studies of tumor and immune system have largely been inspired by the works in Refs.[1] and[2],the authors showed that the immune system can recognize and eliminate malignant tumors.So immunotherapy, such as the cellular immunotherapy,[3]has been studied by researchers.And a number of tumor–immune system competition models have been proposed,such as Kuznetsov–Taylor model[4]and Kirschner–Panetta model.[5]In fact,tumor mi-croenvironment is inevitably affected by environmental noise in realism.Nowadays,noise dynamics have been widely studied in different fields such as metapopulation system[6]and Van der Pol oscillator.[7]In the last years,researchers have studied stochastic growth models of cancer cells,[8–11]using the Lyapunov exponent method and the Fokker–Planck equation method to investigate the stability of the stochastic model. Moreover,from a biological or a clinical point of view,investigations including treatments such as periodic ones are important for a successful treatment,e.g.,Thibodeaux and Schlittenhard[12]investigated the effect of a periodic treatment in the within-hostdynamics of malaria infection and suggested that synchronization with the intrinsic oscillation of infected erythrocytes takes place,leading to an optimal treatment.Sotolongo et al.[13]investigated the effect of immunotherapy under periodic treatment on a deterministic model of tumor– immune system and considered the possibility of suppression of tumor growth.Ideta et al.[14]considered the intermittent hormonal therapy in a model of prostate cancer and they suggested the existence of an optimal protocol to the intermittent therapy.Up to now,the effect of noise and cyclic treatment in the tumor dynamics has been widely studied.And fluctuations induced extinction and stochastic resonance in a model of tumor growth with periodic treatment have been studied.[15]Aisu and Horita[16]numerically investigated the stochastic extinction of tumor cells due to the synchronization effect through a time periodic treatment in a tumor–immune interaction model.

    The aim of this paper is to explore the dynamics of a simplified Kuznetsov–Taylor model[17]with both environmental noise and periodic treatment,especially the extinction and persistence.One of the advantages of our study is that we make use of the methods of It?o’s stochastic integral and Lyapunov function to derive and analyze the properties of the stochastic tumor–immune system competition model,which is different from the approaches of Fokker–Planck equation and effective potential function used in the existing literature.The other advantage is that the conditions for extinction and strong persistence in the mean of tumor cells are obtained by the strict mathematical proofs.The sufficient conditions for extinction and persistence could provide us a more effective and precise therapeutic schedule to eliminate tumor cells and improve the treatment of cancer.

    This paper is organized as follows.In Section 2,thestochastic tumor–immune model with periodic treatment is derived.In Section 3,we establish the sufficient conditions for extinction and strong persistence in the mean of tumor cells. Numerical simulations are presented in Section 4,which are used to verify and illustrate the theorems of Section 3.In Section 5,we present the conclusion and discuss future directions of this research.

    2.Stochastic tumor–immune system with periodic treatment

    In this section,the Kuznetsov–Taylor model[4]and its modified version by Galach[17]are introduced.The Kuznetsov–Taylor model describes the response of effector cells to the growth of tumor cells and takes into account the penetration of tumor cells by effector cells,which simultaneously causes the inactivation of effector cells.The Kuznetsov–Taylor model reads

    where s is the normal(i.e.,not increased by the presence of the tumor)rate of the flow of adult effector cells into the tumor site in units of cells per day,p and g are positive constants in the function F(E,T)=pE T/(g+T)that describes the accumulation of effector cells in the tumor site,p is in units of day?1and g is in units of cells.m denotes the coefficient of inactivation of effector cells during the formation and decomposition of EC-TC compounds and is in units of day?1·cells?1. d is the coefficient of the destruction and migration of effector cells and is in units of day?1.a is the coefficient of the maximal growth of tumor and is in units of day?1.b?1is the environment capacity,and b is in units of cells?1.n represents the inactivation rate of tumor cells due to the immune system response and is in units of day?1·cells?1.The dimensionless form of the model is

    where x=E/E0,y=T/T0,ε=s/(nE0T0),ρ=p/(nT0), η=g/T0,μ=m/n,δ=d/(nT0),α=a/(nT0),β=bT0,and E0=T0=106cells.

    In 2003,Galach proposed the modified version of model (1),which reads

    where x denotes the dimensionless density of effector cells;y stands for the dimensionless density of the population of tumor cells;ε,δ,α,1/β have the same meanings as those in Eq.(1),and ω represents the immune response to the appearance of the tumor cells(i.e.,immune coefficient).In this paper, we consider the case of ω>0,which means that the immune response is positive.

    System(2)always has the equilibrium

    If ω>0 and αδ<ε,then P0is the unique equilibrium of model(2)and it is globally stable.If ω>0 and αδ>ε,then P0is unstable and there is an equilibrium

    which is globally stable.Here Δ=α2(βδ?ω)2+4αβεω.

    In fact,the growth of tumor cells is influenced by many environmental factors,[18]e.g.,the supply of oxygen and nutrients,the degree of vascularization of tissues,the immunological state of the host,chemical agents,temperature,etc.So, it is inevitable to consider the tumor–immune system competition model with environmental noises.In this paper,taking into account the effect of randomly fluctuating environment, we assume that the fluctuations in the environment mainly affect the immune coefficient ω,

    where B(t)is the standard Brownian motion with B(0)=0, and the intensity of white noise σ2>0.We are interested in the stochastic responses of the tumor immune system driven by a controllable therapy.Here,the influence of the therapeutic factors is studied by considering a periodic treatment (chemo-or radiation-therapy).The treatment scheme[19]can be expressed as

    Here Φ stands for the Heaviside function reflecting the on-off switch of the cyclic treatment performed with the intensity A and frequency f.Now the tumor–immune system competition model with environmental noise and periodic treatment can be rewritten as

    where all the parameters are positive and bounded.For convenience,we define the following notions:

    3.Theoretical analysis of extinction and persistence under periodic treatment

    Our primary interests in tumor dynamics are the extinction and survival of tumors.In order to study the extinction and survival,we need some appropriate definitions about extinction and persistence.Here we adopt the concepts of extinction and strong persistence in the mean.[20]In addition,some of our proofs are motivated by the works of Liu,[20]Mao,[21]and Jiang.[22]Some useful definitions are as follows:

    1)The tumor cells y(t)will go to extinction a.s.if limt→+∞y(t)=0.

    2)The tumor cells y(t)will be strongly persistent in the mean a.s.if〈y(t)〉?>0.

    Next we establish the sufficient conditions of extinction and persistence for our model.

    Lemma 1 For any positive initial value(x0,y0),if 0<x0<1/β,the solution of Eq.(4)obeys

    Proof According to the second equation of model(4),we have

    Firstly,we discuss y for x in different value ranges.

    Consequently,we have proved y(t)≤max{y0,1/β}.Then we will show that x(t)is bounded.Applying the Ito’s formula[23]to the first equation of model(4),

    Integrating both sides from 0 to t,we obtain

    where

    Therefore,

    That is to say if x0<1/β,then x(t)<1/β for all t>0.

    Lemma 2 Let f∈C[[0,∞)×?,(0,∞)]and F(t)∈C([0,∞)×?,R).If there exist positive constants λ0,λ,and T such that

    for all t≥T,and limt→∞F(t)/t=0 a.s.,then

    Proof The proof is similar to that of lemma in Ref.[22]. Note that limt→∞F(t)/t=0 a.s.;then for arbitrary k>0,there exists a T0=T0(ω)>0 and a set ?ksuch that P(?k)≥1?k and F(t)/t≤k for all t≥T0,ω∈?k.LetˉT=max{T,T0} and

    Since f∈C[[0,∞)×?,(0,∞)],then ?(t)is differentiable ona.s.,and

    Taking the limit inferior of both sides and applying L’Hospital’s rule on the right-hand side of this inequality,we obtain

    Letting k→0 yields

    Theorem 1 For any positive initial value(x0,y0),particularly,when x0<1/β,equation(4)has a positive unique global solution(x(t),y(t))on t≥0 a.s.

    Proof To obtain a unique global solution for any given initial value,the coefficients of the equation are generally required to satisfy the linear growth condition and local Lipschitz condition.[24]However,the coefficients of model(4)do not satisfy the linear growth condition,so the solution may explode in a finite time.Since the coefficients of Eq.(4)are locally Lipschitz continuous for any given initial value(x0,y0)∈,there is a unique maximal local solution(x(t),y(t))on t∈[0,τe],where τeis the explosion time.[24]To show that this solution is global,we only need to show τe=∞.To this end,let k0>0 be sufficiently large so that x0,y0all lie within the interval[1/k0,k0].For each integer k≥k0,we define the stopping time τk=inf{t∈[0,τe]:min{x(t),y(t)}≤1/k or max{x(t),y(t)}≥k}.Clearly,τkis increasing as k→∞.Set τ∞=limk→+∞τk,thus τ∞≤τea.s.In other words,we only need to prove τ∞=∞.If this statement is false,there exists constants T>0 and ε∈(0,1)such that P{τ∞<∞}>ε. Thus there is an integer k1>k0such that

    Define a C2-function V:→R+by V(x,y)=(x?1?ln x)+ (y?1?ln y).The nonnegativity of this function can be seen from u?1?ln u≥0,?u>0.Let k≥k0and T>0 be arbitrary.Applying the It?o’s formula,we have

    Here,L is a positive constant and in the proof of the last inequality,we have used Lemma 3(i.e.,for?t≥0,x(t)and y(t) are bounded).The inequality(9)implies

    Taking expectation on both sides of the above inequality,we can obtain

    Let ?k={τk∧T},then by inequality(8),we have P(?k)≥ε. Note that for any ω∈?k,x(τk,ω),y(τk,ω)equals either k or 1/k,hence V(x(τk,ω),y(τk,ω))is no less than min{2(k?1?ln k),2(1/k?1+ln k),k+1/k?2)}.By formula(10)we have

    where 1?kis the indicator function of ?k.Let k→∞,there exists the contradiction∞>V(x0,y0)+LT=∞,which completes the proof.

    Remark 1 In order to guarantee the existence and uniqueness of the solution of model(4),we discuss the extinction and persistence of y(t)under the condition x0<1/β below.

    Theorem 2 Let(x(t),y(t))be the solution of system(4) with positive initial value(x0,y0),if αδ?ε<A/2,then

    Proof An integration of the first equation of model(4) yields

    We compute

    where

    which is a local continuous martingale and N1(0)=0.Moreover

    By strong law of large numbers for local martingales,[24]we obtain

    Taking the limit inferior of both sides of inequality(12),we have

    Applying the It?o’s formula to the second equation of model(4) yields

    Integrating this from 0 to t and dividing by t on both sides,we have

    Taking the limit superior of both sides of inequality(15)and substituting inequality(14)into inequality(15)yield

    If the condition αδ?ε<A/2 is satisfied,then

    which implies

    Applying the It?o’s formula to the first equation of model(4) leads to

    Integrating this from 0 to t,we have

    By virtue of the exponential martingale inequality,[24]for any positive constants T,a,and b,we have

    Choosing T=n,a=1,and b=2ln n,we obtain

    An application of Borel–Cantelli lemma[22]yields that for almost all ω∈?,there is a random integer n0=n0(ω)such that for n≥n0,

    That is to say,

    for all 0≤t≤n,n≥n0a.s.Substituting the above inequality into inequality(17)leads to

    Theorem 3 If δα?ε>A/2,then the tumor cells y(t) will be almost surely strong persistent in the mean.

    Proof An integration of system(4)is

    Substituting Eq.(20)to Eq.(21)yields

    Consequently,we can derive that if δα?ε>A/2,then〈y(t)〉?>0 a.s.

    4.Simulations and discussion

    In this section,we use the Euler–Maruyama numerical algorithm mentioned by Higham[25]to support our results.The parameters in model(4)are chosen as α=1.636,β=0.002, δ=0.3743,ε=0.5181,and ω=0.0115,which are approximated to the experimental values.[4,17]

    Figure 1 shows the simulation results of Theorem 2. Clearly,the parameters satisfy the condition αδ?ε<A/2.In view of Theorem 2,the tumor cells y(t)will go to extinction, and the effector cells x(t)have the property limt→+∞〈x(t)〉= (ε+A/2)/δ=1.785.Figure 1 confirms the results of Theorem 2.

    Fig.1.(color online)Solutions of model(4)with periodic treatment s(t)=A[1?Φ(cos(2π ft))]for A=0.3,σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(1.5,25).

    Figure 2 shows the simulation results of Theorem 2.In Fig.2,it is clear that the parameters of the example meet the condition δα?ε>A/2.According to Theorem 2,the tumor cells y(t)will be almost surely strongly persistent in the mean. It can be seen from Fig.2 that the tumor cells will decrease firstly and then exhibit a period-like evolution at a relative low concentration under periodic treatment,but do not tend to zero.This phenomenon implies that the tumor cells could be suppressed by the periodic treatment but not be completely eliminated when the intensity of the treatment is not enough to cure the tumor,i.e.,the tumor cells could be controlled and will not deteriorate in this case.Moreover,it can be seen that as long as the conditions of persistence δα?ε>A/2 are satisfied,the tumor cell will be strongly persistent in the mean almost surely when the model is with noise.And,the tumor cells will also be persistent or survival when the model is without noises.The difference is that the persistence of the former is in the sense of the mean,which is random;while the persistence of the latter is expressed as persistence or survival, which is deterministic.

    Fig.2.(color online)Solutions of model(4)with periodic treatment s(t)=A[1?Φ(cos(2π ft))]for A=0.07,σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(1.5,25).

    Figure 3 shows the evolution of tumor cells y(t)as a function of time t for three different values of A=0.07,0.3,3. Clearly,when A is 0.07,it satisfies the condition δα?ε>A/2.According to Theorem 2,the tumor cells y(t)will be strongly persistent in the mean.With increasing strength of the treatment,A is taken as 0.3 or 3,they satisfy the condition αδ?ε<A/2.According to Theorem 2,the tumor cells y(t) will tend to be extinction.Moreover,by comparing curves(ii) and(iii),we find that the tumor cells will be extinct faster with the increase of the treatment intensity A.This behavior indicates that increasing the intensity of the treatment is beneficial to accelerate the extinction of the tumor cells.

    Fig.3.(color online)Solutions of tumor cells for σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(2.6,25).

    5.Conclusion

    We study stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment.Firstly,the environmental noise(Gaussian white noise)is taken into account and the periodic treatment is regarded as a Heaviside function.Then,sufficient conditions for extinction and strong persistence in the mean of tumor cells are derived by constructing Lyapunov functions.The detail results and biological significance are as follows:

    (A)If αδ?ε<A/2,then the effector cells x(t)have property limt→+∞〈x(t)〉=(ε+A/2)/δ,and the tumor cells y(t)will go to extinction a.s.

    (B)If αδ?ε>A/2,then the tumor cells y(t)will be strongly persistent in the mean a.s.

    According to the theorems and figures,the extinction and survival of the tumor cells rely on the strength of the periodic treatment.With the increasing intensity of the periodic treatment,the tumor cells will experience the process from strongly persistence in the mean to extinction.In addition,the synchronization effect between the environmental noises and the periodic treatment on the tumor–immune system competition model is obtained by strict proof and simulation.Our theoretical results will be beneficial to design more effective and feasible treatment therapies.

    Some interesting questions deserve further investigations. For example,in our model,we assume that fluctuations in the environment mainly affect the immune coefficient ω.It is interesting to study what happens if it affects other parameters of the tumor–immune system.Another question of interest is to consider the stability in distribution(e.g.,Refs.[26]and[27]) and time delay(e.g.Ref.[28])of the tumor–immune system.

    [1]Parish C R 2003 Immunol.Cell.Biol 81 106

    [2]Smyth M J,Godfrey D I and Trapani J A 2001 Nat.Immunol.2 293

    [3]Rosenberg S A,Spiess P and Lafreniere R 1986 Science 233 1318

    [4]Kuznetsoz V A,Makalkin I A,Taylor M A and Perelson A S 1994 Bull. Math.Biol 56 295

    [5]Kirschner D and Panetta J C 1998 J.Math.Biol 37 235

    [6]Wang K K and Liu X B 2013 Chin.Phys.Lett 30 070504

    [7]Yang Y G,Xu W,Sun Y H and Gu X D 2016 Chin.Phys.B 25 020201

    [8]Zhong W R,Shao Y Z and He Z H 2006 Phys.Rev.E 73 060902

    [9]Albano G and Giorno V 2006 J.Theor Biol 242 329

    [10]Lenbury Y,Triampo Wannapong,Tang IMand Picha P 2006 J.Korean. Phys.Soc 49 1652

    [11]Ferrante L,Bompadre S,Possati L and Leone L 2000 Biometrics 56 1076

    [12]Thibodeaux J J and Schlittenhardt T P 2011 Bull.Math.Biol.73 2791

    [13]Sotolongo-Costam O,Molina L M,Perez D R,Antranz J C and Reys M C 2003 Physica D 178 242

    [14]Ideta A M,Tanaka G,Takeuchi T and Aihara K 2008 J.Nonlinear Sci. 18 593

    [15]Li D X,Xu W,Guo Y and Xu Y 2011 Phys.Lett.A 375 886

    [16]Aisu R and Horita T 2012 Nonlinear Theory and Its Applications,IEICE 3 191

    [17]Galach M 2003 Int.J.Appl.Math.Comput.Sci.13 395

    [18]Fiasconaro A,Spagnolo B,Ochabmarcinek A and Gudowskanowak E 2006 Phys.Rev.E 74 041904

    [19]Fiasconaro A,Ochab-Marcinek A,Spagnolo B and Gudowska-Nowak E 2008 Eur.Phys.J.B 65 435

    [20]Liu M and Wang K 2011 J.Math.Anal.Appl.375 443

    [21]Mao X,Marion G and Renshaw E 2002 Stoch.Proc.Appl.97 95

    [22]Zhao Y,Jiang D and O’Regan D 2013 Physica A 392 4916

    [23]Evans L C 2013 An Introduction to Stochastic Differential Equations (New York:Amer Mathematical Society)pp.77–79

    [24]Mao X 1997 Stochastic Differential Equations and Applications (Chichester:Horwood)pp.31–84

    [25]Higham D J 2001 SIAM Rev.43 525

    [26]Liu M and Bai C 2016 Appl.Math.Comput.284 308

    [27]Liu M and Bai C 2016 Appl.Math.Comput.276 301

    [28]Jin Y F and Xie W X 2015 Chin.Phys.B 24 110501

    26 February 2017;revised manuscript

    9 May 2017;published online 24 July 2017)

    10.1088/1674-1056/26/9/090203

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11402157 and 11571009),Shanxi Scholarship Council of China(Grant No.2015-032),Technological Innovation Programs of Higher Education Institutions in Shanxi,China(Grant No.2015121),and Applied Basic Research Programs of Shanxi Province,China(Grant No.2016021013).

    ?Corresponding author.E-mail:dxli0426@126.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    李穎
    An overview of quantum error mitigation formulas
    Effect of astrocyte on synchronization of thermosensitive neuron–astrocyte minimum system
    《二次根式》拓展精練
    Assessment of cortical bone fatigue using coded nonlinear ultrasound?
    完形填空專練(三)
    Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model?
    李穎、李鳳華作品
    Human body
    一雉雞翎的傷痛
    小說月刊(2017年8期)2017-08-16 22:34:39
    李穎、李鳳華作品
    五月玫瑰六月丁香| 波多野结衣高清作品| 国产精品免费一区二区三区在线| 热99在线观看视频| 一进一出好大好爽视频| 国产高清激情床上av| 国产精品一及| 丰满人妻一区二区三区视频av| 国产高清视频在线观看网站| 成人特级av手机在线观看| 99在线人妻在线中文字幕| 日韩三级伦理在线观看| 亚洲av.av天堂| 日韩三级伦理在线观看| or卡值多少钱| 国产成人a∨麻豆精品| 日本欧美国产在线视频| 日本三级黄在线观看| 成人精品一区二区免费| 国产免费一级a男人的天堂| 免费电影在线观看免费观看| 午夜福利在线观看吧| 欧美极品一区二区三区四区| 亚洲色图av天堂| 亚洲成人中文字幕在线播放| av卡一久久| 亚洲欧美精品综合久久99| 国产午夜精品论理片| 久久久午夜欧美精品| 久久久久久国产a免费观看| 最近在线观看免费完整版| 国产精品一区二区免费欧美| 三级国产精品欧美在线观看| 国产av不卡久久| 久久午夜亚洲精品久久| 欧美一级a爱片免费观看看| 国产亚洲精品久久久久久毛片| 午夜a级毛片| 岛国在线免费视频观看| 成人亚洲精品av一区二区| 18+在线观看网站| 国产乱人视频| av在线天堂中文字幕| 免费在线观看成人毛片| 欧美激情国产日韩精品一区| 最新中文字幕久久久久| 性色avwww在线观看| 精品久久久久久成人av| 99视频精品全部免费 在线| avwww免费| 最近中文字幕高清免费大全6| 免费看av在线观看网站| 国产免费男女视频| 色噜噜av男人的天堂激情| 最近中文字幕高清免费大全6| 欧美3d第一页| 看十八女毛片水多多多| 亚州av有码| 国产精华一区二区三区| 中文字幕久久专区| 成人毛片a级毛片在线播放| 亚洲一级一片aⅴ在线观看| 国产成人影院久久av| 午夜福利视频1000在线观看| 久久人妻av系列| 在线天堂最新版资源| 我的女老师完整版在线观看| 成人性生交大片免费视频hd| 真人做人爱边吃奶动态| 亚洲一区二区三区色噜噜| 国产精品一区二区三区四区久久| 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 成人毛片a级毛片在线播放| 国产一区二区在线av高清观看| 人妻少妇偷人精品九色| 国产伦在线观看视频一区| 波多野结衣高清无吗| 淫秽高清视频在线观看| 晚上一个人看的免费电影| 白带黄色成豆腐渣| 亚洲精品色激情综合| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添av毛片| 国产午夜精品久久久久久一区二区三区 | 亚洲一区二区三区色噜噜| 免费高清视频大片| 久久久久性生活片| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 久久精品夜色国产| 久久久久免费精品人妻一区二区| 日本 av在线| 欧美成人一区二区免费高清观看| 99精品在免费线老司机午夜| 波多野结衣高清无吗| 18禁在线播放成人免费| 成熟少妇高潮喷水视频| 日本-黄色视频高清免费观看| 欧美精品国产亚洲| a级毛色黄片| 亚洲欧美日韩东京热| 一a级毛片在线观看| 六月丁香七月| 国产欧美日韩精品一区二区| 美女大奶头视频| 欧美zozozo另类| 亚洲第一电影网av| 亚洲激情五月婷婷啪啪| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产精品久久男人天堂| 欧美日韩一区二区视频在线观看视频在线 | 日本五十路高清| 日韩成人av中文字幕在线观看 | 日韩三级伦理在线观看| 国产精品一二三区在线看| 久久久久免费精品人妻一区二区| 久久99热这里只有精品18| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| av在线观看视频网站免费| 一区二区三区四区激情视频 | 插逼视频在线观看| 精品午夜福利在线看| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| 在线a可以看的网站| 欧美日韩综合久久久久久| 热99在线观看视频| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 国产激情偷乱视频一区二区| 欧美三级亚洲精品| 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本视频| 亚洲电影在线观看av| 亚洲成人中文字幕在线播放| 综合色丁香网| 夜夜夜夜夜久久久久| 日韩大尺度精品在线看网址| 成年版毛片免费区| 免费观看在线日韩| 欧美三级亚洲精品| 日韩精品青青久久久久久| avwww免费| 床上黄色一级片| 一区二区三区免费毛片| 别揉我奶头 嗯啊视频| av在线亚洲专区| 欧美日本视频| 欧美激情国产日韩精品一区| 日韩国内少妇激情av| 亚洲国产精品合色在线| 黄色配什么色好看| 日本-黄色视频高清免费观看| 国产私拍福利视频在线观看| 国产一区亚洲一区在线观看| 国产成年人精品一区二区| 天堂动漫精品| 99在线人妻在线中文字幕| 欧美一区二区国产精品久久精品| 欧美性猛交╳xxx乱大交人| 欧美成人一区二区免费高清观看| 免费看av在线观看网站| 人妻丰满熟妇av一区二区三区| 日本-黄色视频高清免费观看| 在线免费观看的www视频| 亚洲自偷自拍三级| 国产黄a三级三级三级人| 久久久久久国产a免费观看| 美女xxoo啪啪120秒动态图| 高清毛片免费观看视频网站| 真实男女啪啪啪动态图| 久久精品91蜜桃| 长腿黑丝高跟| 国产淫片久久久久久久久| 午夜精品一区二区三区免费看| 一个人看的www免费观看视频| 成人av一区二区三区在线看| 国产不卡一卡二| 国产高清有码在线观看视频| 国产美女午夜福利| 99久国产av精品国产电影| 亚洲成人精品中文字幕电影| 国产成人精品久久久久久| 国产精品福利在线免费观看| 五月玫瑰六月丁香| 18禁在线播放成人免费| 久久久久久大精品| 深爱激情五月婷婷| 免费人成视频x8x8入口观看| 午夜老司机福利剧场| 国产人妻一区二区三区在| 免费看av在线观看网站| 精品人妻一区二区三区麻豆 | 人人妻人人澡人人爽人人夜夜 | 天堂av国产一区二区熟女人妻| 日韩欧美在线乱码| 国产成人freesex在线 | 国产欧美日韩一区二区精品| 51国产日韩欧美| 麻豆精品久久久久久蜜桃| 亚洲国产精品久久男人天堂| 亚洲丝袜综合中文字幕| 亚洲中文字幕日韩| 日本五十路高清| 国产一区二区在线观看日韩| 亚洲美女视频黄频| 久久久久久久久久黄片| 亚洲七黄色美女视频| 麻豆成人午夜福利视频| 成人二区视频| 99精品在免费线老司机午夜| 亚洲国产高清在线一区二区三| 在线观看一区二区三区| av在线天堂中文字幕| 久久午夜福利片| 久久草成人影院| 亚洲不卡免费看| 精品久久久久久久久久免费视频| 日日摸夜夜添夜夜添小说| 国产伦一二天堂av在线观看| 欧美不卡视频在线免费观看| 成人特级黄色片久久久久久久| 国产高潮美女av| 蜜臀久久99精品久久宅男| 国产不卡一卡二| 亚洲av美国av| 中文字幕熟女人妻在线| 两个人视频免费观看高清| 18禁裸乳无遮挡免费网站照片| 国产人妻一区二区三区在| 免费看av在线观看网站| 亚洲国产精品国产精品| 99精品在免费线老司机午夜| 国产伦一二天堂av在线观看| 国语自产精品视频在线第100页| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜精品论理片| h日本视频在线播放| 身体一侧抽搐| 国产精品无大码| 亚洲综合色惰| 一级毛片电影观看 | 亚洲一区高清亚洲精品| 国产久久久一区二区三区| 联通29元200g的流量卡| 特级一级黄色大片| 久久亚洲精品不卡| 成人国产麻豆网| АⅤ资源中文在线天堂| 深爱激情五月婷婷| 97热精品久久久久久| 国产真实乱freesex| 色视频www国产| 波多野结衣巨乳人妻| 黄片wwwwww| 免费搜索国产男女视频| 亚洲人与动物交配视频| 色av中文字幕| 啦啦啦观看免费观看视频高清| 搞女人的毛片| 国产极品精品免费视频能看的| 日本与韩国留学比较| 国产精品久久久久久精品电影| 久久久久久久午夜电影| 少妇猛男粗大的猛烈进出视频 | 免费观看精品视频网站| a级一级毛片免费在线观看| 亚洲天堂国产精品一区在线| 亚洲人成网站在线观看播放| 精品福利观看| 在线观看av片永久免费下载| 国产一区二区在线观看日韩| АⅤ资源中文在线天堂| 我要搜黄色片| 一级毛片我不卡| 美女高潮的动态| 成人美女网站在线观看视频| 久久精品国产亚洲av涩爱 | 亚洲色图av天堂| 国产欧美日韩一区二区精品| 免费看日本二区| 精品国内亚洲2022精品成人| 白带黄色成豆腐渣| 91午夜精品亚洲一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲熟妇熟女久久| 亚洲欧美日韩卡通动漫| 乱系列少妇在线播放| 亚洲久久久久久中文字幕| 亚洲人成网站在线观看播放| 亚洲人成网站在线播放欧美日韩| 日韩欧美精品v在线| 亚洲熟妇中文字幕五十中出| 91在线精品国自产拍蜜月| 亚洲国产精品成人久久小说 | 一级av片app| 亚洲av中文字字幕乱码综合| 夜夜夜夜夜久久久久| 中国国产av一级| 日韩高清综合在线| 99久国产av精品| 日日摸夜夜添夜夜添小说| 在线a可以看的网站| 国产 一区精品| 麻豆国产97在线/欧美| 一区二区三区免费毛片| 又爽又黄无遮挡网站| 99精品在免费线老司机午夜| 亚洲精品一卡2卡三卡4卡5卡| 国产三级中文精品| 国产高清视频在线观看网站| 97超级碰碰碰精品色视频在线观看| 又黄又爽又免费观看的视频| 精品乱码久久久久久99久播| av视频在线观看入口| 午夜激情福利司机影院| 久久久久久久亚洲中文字幕| 色综合色国产| 亚洲自拍偷在线| 国产精品日韩av在线免费观看| 最后的刺客免费高清国语| 看黄色毛片网站| 亚洲中文字幕日韩| 午夜a级毛片| 午夜亚洲福利在线播放| 午夜激情福利司机影院| 午夜精品一区二区三区免费看| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区三区av在线 | 国产伦精品一区二区三区视频9| 我要看日韩黄色一级片| 老司机影院成人| 国产在视频线在精品| 婷婷亚洲欧美| 美女大奶头视频| 国产一区二区三区在线臀色熟女| 精品一区二区三区视频在线| 丝袜喷水一区| 波野结衣二区三区在线| 亚洲精品日韩av片在线观看| or卡值多少钱| 熟女人妻精品中文字幕| 淫妇啪啪啪对白视频| h日本视频在线播放| 五月伊人婷婷丁香| 国产精品女同一区二区软件| 麻豆成人午夜福利视频| av在线老鸭窝| 在线观看66精品国产| 在线观看一区二区三区| 超碰av人人做人人爽久久| aaaaa片日本免费| 99久久精品一区二区三区| av在线蜜桃| 天堂动漫精品| 国产精品嫩草影院av在线观看| 熟妇人妻久久中文字幕3abv| 十八禁网站免费在线| 欧美激情在线99| 国产一区二区在线观看日韩| 午夜激情欧美在线| 亚洲中文字幕一区二区三区有码在线看| 少妇猛男粗大的猛烈进出视频 | 国产精品一区二区三区四区免费观看 | 99国产精品一区二区蜜桃av| 搡老熟女国产l中国老女人| 黑人高潮一二区| 欧美国产日韩亚洲一区| 精品久久久久久久久亚洲| 最近在线观看免费完整版| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av一区综合| 一级毛片aaaaaa免费看小| av免费在线看不卡| 精品99又大又爽又粗少妇毛片| 日产精品乱码卡一卡2卡三| 男人的好看免费观看在线视频| 国产精品亚洲美女久久久| 日产精品乱码卡一卡2卡三| 欧美日韩一区二区视频在线观看视频在线 | 成年女人看的毛片在线观看| 亚洲av免费在线观看| 久久久色成人| 免费人成在线观看视频色| 91久久精品电影网| 国产精品日韩av在线免费观看| 午夜激情欧美在线| 亚洲最大成人中文| 国产成人福利小说| 精品久久久久久久久久久久久| 午夜福利18| 亚洲欧美清纯卡通| 亚洲人成网站高清观看| 国产极品精品免费视频能看的| 久久精品影院6| 久99久视频精品免费| 久久久久久久久中文| 免费看a级黄色片| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| 人人妻人人澡人人爽人人夜夜 | 亚洲av二区三区四区| av免费在线看不卡| 久久久色成人| 麻豆一二三区av精品| 免费看a级黄色片| 日本a在线网址| 国内久久婷婷六月综合欲色啪| 久久精品91蜜桃| 有码 亚洲区| 在线看三级毛片| 熟妇人妻久久中文字幕3abv| 国产精品无大码| 一个人观看的视频www高清免费观看| 国产av一区在线观看免费| 亚洲电影在线观看av| 国产亚洲91精品色在线| 久久久色成人| 久久久欧美国产精品| 亚洲精品日韩av片在线观看| 岛国在线免费视频观看| 尤物成人国产欧美一区二区三区| 久久精品91蜜桃| 色哟哟·www| 亚洲一区高清亚洲精品| 少妇熟女aⅴ在线视频| 99热网站在线观看| 精品一区二区三区视频在线| 在线国产一区二区在线| 一级a爱片免费观看的视频| 男女视频在线观看网站免费| 国产高清三级在线| 男女啪啪激烈高潮av片| 少妇的逼好多水| 欧美色欧美亚洲另类二区| 大香蕉久久网| 亚州av有码| 一级黄片播放器| 国产精品国产高清国产av| 一区福利在线观看| 99久国产av精品国产电影| 97超碰精品成人国产| eeuss影院久久| 国产亚洲av嫩草精品影院| 天堂av国产一区二区熟女人妻| 亚洲国产精品sss在线观看| 午夜福利在线观看吧| 欧美最黄视频在线播放免费| 2021天堂中文幕一二区在线观| 黄色欧美视频在线观看| ponron亚洲| а√天堂www在线а√下载| 观看免费一级毛片| 久久久午夜欧美精品| 久久韩国三级中文字幕| 精品久久久噜噜| 国产精品久久久久久亚洲av鲁大| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有是精品50| 国产三级在线视频| 97热精品久久久久久| 麻豆一二三区av精品| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人免费| 日韩国内少妇激情av| 在线免费观看的www视频| 久久人人爽人人片av| 三级男女做爰猛烈吃奶摸视频| 国产精品日韩av在线免费观看| 色av中文字幕| 日韩欧美 国产精品| 欧美zozozo另类| 可以在线观看毛片的网站| 黄片wwwwww| 精品人妻熟女av久视频| 大香蕉久久网| 九色成人免费人妻av| 精品日产1卡2卡| 一区二区三区高清视频在线| videossex国产| 一个人看的www免费观看视频| 综合色丁香网| 欧美高清成人免费视频www| 99在线人妻在线中文字幕| 观看免费一级毛片| 久久中文看片网| 久久久久久久久久久丰满| 国产一区二区在线观看日韩| 国产精品一二三区在线看| 国产精品美女特级片免费视频播放器| 在线国产一区二区在线| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 少妇被粗大猛烈的视频| 特大巨黑吊av在线直播| 2021天堂中文幕一二区在线观| 精品欧美国产一区二区三| h日本视频在线播放| 欧美日韩乱码在线| 日日摸夜夜添夜夜添av毛片| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 成人亚洲欧美一区二区av| 我要看日韩黄色一级片| 乱码一卡2卡4卡精品| 亚洲欧美日韩无卡精品| 99久久精品国产国产毛片| av在线亚洲专区| 国产亚洲91精品色在线| 成年av动漫网址| 蜜臀久久99精品久久宅男| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| 一级av片app| 国产不卡一卡二| 夜夜夜夜夜久久久久| 亚洲欧美精品自产自拍| 99国产精品一区二区蜜桃av| 国产在线男女| 亚洲av免费在线观看| 成熟少妇高潮喷水视频| 日韩精品青青久久久久久| 高清毛片免费观看视频网站| 不卡视频在线观看欧美| 成年女人永久免费观看视频| 中文在线观看免费www的网站| 成人三级黄色视频| 亚洲人与动物交配视频| 久久精品91蜜桃| 久久韩国三级中文字幕| 国产伦一二天堂av在线观看| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 国产一区二区在线观看日韩| 国产日本99.免费观看| av在线蜜桃| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品合色在线| 我要看日韩黄色一级片| 亚洲丝袜综合中文字幕| 国产精品国产三级国产av玫瑰| 精品久久久久久成人av| 欧美日韩在线观看h| 午夜激情欧美在线| 麻豆久久精品国产亚洲av| 一区二区三区免费毛片| 成人高潮视频无遮挡免费网站| 中文字幕熟女人妻在线| 美女被艹到高潮喷水动态| 亚洲av美国av| 国产乱人偷精品视频| 最新中文字幕久久久久| 又爽又黄无遮挡网站| 人人妻,人人澡人人爽秒播| 亚洲国产精品成人久久小说 | 久久久久免费精品人妻一区二区| 天堂√8在线中文| 最近最新中文字幕大全电影3| 日本 av在线| 色av中文字幕| 搡老岳熟女国产| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| 日韩 亚洲 欧美在线| 悠悠久久av| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| 97热精品久久久久久| 网址你懂的国产日韩在线| 一区二区三区四区激情视频 | 日韩欧美在线乱码| 男女边吃奶边做爰视频| 啦啦啦观看免费观看视频高清| 亚洲av免费在线观看| 国产又黄又爽又无遮挡在线| 日本 av在线| 欧美高清性xxxxhd video| 国产一区二区在线观看日韩| 国产精品久久久久久久久免| 国产蜜桃级精品一区二区三区| 真实男女啪啪啪动态图| 天堂动漫精品| 美女被艹到高潮喷水动态| 噜噜噜噜噜久久久久久91| 在线国产一区二区在线| a级毛片免费高清观看在线播放| 中国美白少妇内射xxxbb| 亚洲七黄色美女视频| 少妇熟女aⅴ在线视频| 日韩av在线大香蕉| 在线天堂最新版资源| 男插女下体视频免费在线播放| 伦理电影大哥的女人| 欧美在线一区亚洲| 大香蕉久久网| 毛片一级片免费看久久久久| 国产精品一区二区三区四区免费观看 | 久久久久国内视频| av天堂中文字幕网| 午夜老司机福利剧场| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 亚洲四区av| 日韩欧美 国产精品| 亚洲人与动物交配视频| 久久久午夜欧美精品| 国产69精品久久久久777片| 国产精品无大码| 成熟少妇高潮喷水视频| 成人国产麻豆网|