• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elastic strain response in the modified phase-field-crystal model?

    2017-08-30 08:25:18WenquanZhou周文權(quán)JinchengWang王錦程ZhijunWang王志軍YunhaoHuang黃赟浩CanGuo郭燦JunjieLi李俊杰andYaolinGuo郭耀麟
    Chinese Physics B 2017年9期
    關(guān)鍵詞:王志軍李俊

    Wenquan Zhou(周文權(quán)),Jincheng Wang(王錦程),?,Zhijun Wang(王志軍),Yunhao Huang(黃赟浩), Can Guo(郭燦),Junjie Li(李俊杰),and Yaolin Guo(郭耀麟)

    1 State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an 710072,China

    2 Ningbo Institute of Industrial Technology,Ningbo 315201,China

    Elastic strain response in the modified phase-field-crystal model?

    Wenquan Zhou(周文權(quán))1,Jincheng Wang(王錦程)1,?,Zhijun Wang(王志軍)1,Yunhao Huang(黃赟浩)1, Can Guo(郭燦)1,Junjie Li(李俊杰)1,and Yaolin Guo(郭耀麟)2

    1 State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an 710072,China

    2 Ningbo Institute of Industrial Technology,Ningbo 315201,China

    To understand and develop new nanostructure materials with specific mechanical properties,a good knowledge of the elastic strain response is mandatory.Here we investigate the linear elasticity response in the modified phase-field-crystal (MPFC)model.The results show that two different propagation modes control the elastic interaction length and time,which determine whether the density waves can propagate or not.By quantitatively calculating the strain field,we find that the strain distribution is indeed extremely uniform in case of elasticity.Further,we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus.The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.

    elastic response,strain distribution,shear modulus,modified phase-field-crystal model

    1.Introduction

    The elasticity of materials is important for understanding processes ranging from the propagation of elastic waves,to flexure,and to brittle failure.[1–4]A complete parameterization of elastic properties in experiments is however challenging,especially for the deformation of a solid which operates across several length and time scales.Usually,the elastic deformation dynamics on atomic length(~10?10m)and time (~10?12s)scales can be captured by molecular dynamics (MD)simulations.[5]However,due to very short time scales, only high stresses(GPa)and strain rates(107s?1)can be probed in the dynamical deformation process.These are to be contrasted with much slower experimental strain rates of 10?5 s?1 to 10?3 s?1.[6]

    Recently,based on the density functional theory,[7]Elder and Grant[8,9]proposed a new methodology,called the phasefield crystal(PFC)model,which provides a natural description of slow,diffusive dynamics in interacting systems while still maintaining the atomic-level resolution,including topological defects,elasticity,and plasticity.This method has powerful capabilities in describing polycrystalline solidification,[10,11]phase transitions,[12]vacancy diffusion dynamics,[13]dislocation(annihilation,glides and climb),[14,15]and fracture.[16,17]As to the elasticity and plasticity behaviors,[18,19]the PFC method can also describe mechanical responses at low stress and low steady-state strain rate.Considering that the original PFC model did not contain a mechanism for describing elastic interactions sufficiently,Stefanovic et al.[18,20,21]proposed a modified phase-field-crystal(MPFC)model in which the corresponding dynamic equation includes the inertia effect or wave-like term?2?/?t2originated from the second order term of time.Thus this MPFC can facilitate rapid elastic relaxations.After comparing results from MPFC to those from PFC,Stefanovic et al.found that the elastic relaxation presented in the MPFC is consistent with the linear elasticity theory.However,the details of a parameter interval for the elasticity behavior are still lacking and how the crystal lattice orientation or system temperature influences the elastic coefficients is also unclear.Therefore,in this work,we first investigate the elastodynamic response of the MPFC model by analyzing the deformation behavior of a strained nano-single crystal specimen,and then we quantitatively characterize the strain distribution of the specimen and analyze the effects of the initial crystal lattice orientation and temperature on the shear modulus.One of the primary goals of this work is to gain new physical insight into these problems,which will prompt the MPFC method as a predictive tool to capture the elastic response of atomic properties for more complicated real materials.

    2.Model description and strain characterization

    2.1.The MPFC model

    The PFC model was introduced to describe periodic systems of a continuum field and can naturally incorporate elastic and plastic behaviors.It relies on a well-known Swift–Hohenberg(SH)form free energy functional and an over damped equation of motion in describing the temporal evolution of the field ? that represents the reduced local particle density.The simplest dimensionless PFC model for pure systems follows as a conserved evolution of the free energy

    where the order parameter ? is the atom number density field measured from a constant reference value,and r is a phenomenological constant related to the temperature.

    The standard dimension less evolution kinetic equation for the order parameter ? is

    The above kinetic equation describes time scales in crystals near and beyond that of the characteristic vacancy diffusion time.It does not,however,allow any collective atomic oscillations,which are on a much faster time scale.This omission of elastic interactions in the model prevents us from studying phenomena involving several time scales of various orders of magnitude(such as the deformation dynamics of nanocrystalline solids).To tackle this problem,the MPFC dynamic equation is introduced by adding a second order time derivative to the equation[18]

    where α and β are phenomenological constants related to the effective sound speed and vacancy diffusion coefficient,respectively.Equation(3)is of the form of a damped wave equation,and it supports two density propagating solutions: one diffusional and the other corresponding to a propagation elastic mode.By choosing effective values of α and β,finite elastic interaction length and time can be set.

    The thermodynamic properties of the PFC model have been discussed previously,[8,9,22]indicating that this model can yield different crystal phases,such as body-centered-crystal lattices,hexagonal lattices,and lamellar phase.The periodic order parameter ? can be written in the general form

    where an,mis the amplitude of the atomic density,r is the space position vector,and ?0is the average atomic density. Gn,m≡n b1+m b2,where b1and b2are the reciprocal lattice vectors.For two-dimensional(2D)hexagonal lattices,these reciprocal lattice vectors can be written as

    where a0is the crystal lattice constant.Here we employ onemode approximation to keep the only critical mode whose amplitude is equal to A/4(A is the amplitude of the density waves).The hexagonal lattice density in two dimensions is acquired as

    where q is the wave number related to a0,satisfying q= 2π/a0.Substituting Eq.(6)into Eq.(1),integrating over a unit cell,and minimizing the free energy with respect to A and q lead to

    The physical details of all parameters and the solving procedure of Eq.(3)spectrally implemented in the Fourier space can be referenced to Ref.[23].Here,unless otherwise specified,all parameters used in the simulation are

    where Δx and Δy are the grid-sizes and Δt is the time-step size.

    2.2.The elastodynamic response in the MPFC model

    If we consider a perfect lattice with one“atom”chopped out,this would correspond to a vacancy in the lattice.Phonon vibrations would occasionally cause neighboring atoms to jump into the vacancy and eventually the vacancy would diffuse through the lattice.In the PFC model,the density at the vacancy slowly fills in and the density at the neighboring sites slowly decreases as the vacancy diffuses throughout the lattice. To determine time scales of vacancy diffusion,it is useful to perform a linear stability analysis,[24]which linearizes Eq.(2) around an equilibrium state density field ?eqaccording to

    where Q is a perturbation wave vector and bn,m(t)is the corresponding amplitude associated with the perturbation of the steady-state mode(n,m).The resulting linearized equation of Eq.(2)is obtained by substituting Eqs.(9)–(11)into Eq.(2) and expanding the latter to linear order.Then the diffusion constant can be obtained as

    This analysis demonstrates that equation(2)admits propagating solutions for density disturbances with an effective diffusion time tD,which can be written as

    Take Cu at 1063°C as an example.With a lattice parameter of a=3.61?A and the self-diffusivity D≈10?13m2·s?1, it will take about tD=1.30μs for an atom to diffuse to its original nearest neighbor position.On the other hand, the bond stretch“vibrational period”[25]is estimated to be tv≈2π(ma2/EB)1/2≈1 ps,where m≈64 u is the atom mass and EB≈1 eV is the binding energy due to the interatomic potential.So tD?tv,note that the diffusive motion of an atom in the crystalline phase is much larger than the elastodynamic response time of the vibrational motion of an atom.This suggests that elastic strains will relax instantly,implying that the system would correspond to an over-damped system,which prevents PFC simulation from direct comparison with faster, real-world mechanical experiments.In order to overcome this deficiency,the MPFC model was introduced to make the PFC model operating on two time scales:one diffusional and the other corresponding to a propagating elastic mode.[18]

    To better understand the diffusive dynamics and elastic interactions governed by the MPFC equation,a linear stability analysis is performed.The linearized equations are the same as Eqs.(9)–(11).It is straightforward to repeat the above calculation in the PFC model.Substitute Eqs.(9)–(11)into Eq.(3)and ignore higher-order nonlocal terms retaining only the contribution b0,0among the nonlinear coupling terms with zero modes.By solving the resulting linearized dynamic equation,the effective elastic interaction length and interaction time can be obtained(see Ref.[18]for details)

    By properly tuning the parameters α and β,finite elastic interaction length and time can be set.Over this elastic interaction time and distance,the density waves will propagate effectively undamped.Beyond this time and distance,however, the density evolution becomes diffusive.As an illustration, considering a system with dimension L,we require the elastic interaction lengthwhich impliesAfter choosing an appropriate value for α,β can be determined from β=α2Δ/DMPFC.Using Cu at 1063°C as an example(D≈10?13m2·s?1)and the computational domain L=1μm,one would choose the effective sound speedα=3.16×10?7m/s and the effective vacancy diffusion coefficient β=0.16 s?1.If we compare this sound speed with that in the classical MD simulations(α~103m/s),we can obtain αMD/αMPFC~1010,implying that MD is 1010times faster.

    In short,the MPFC approach takes advantage of the fact that elastic relaxation does not need to be instantaneous due to a separation of elastic relaxation and diffusion time scales.

    3.Results and discussion

    In this section,several simulation results are shown to demonstrate the abilities of MPFC formulation in describing the elasticity response at atomistic scales.Firstly,we will discuss the shear deformation response of the MPFC model,and then examine the elastic response of a nano-single crystal.Finally,the orientation and temperature dependence of the shear modulus will also be discussed.

    All the simulations performed in this part are conducted in a rectangle domain of size 1024Δx×1024Δy,i.e.,a 1024× 1024 grid.A nano-single crystal sample with hexagonal lattices(two-dimensional)is placed in the domain L×H= 77a0×109a0=[150Δx,874Δx]×[Δy,1024Δy].A small coexisting liquid boundary of width 150Δx is included on both left and right sides of the sample.The reason why we use coexisting liquid at the boundaries is the requirement of solving the dynamics equation in the MPFC model efficiently.Usually,the dynamics equation is spectrally implemented in the Fourier space,thus the boundary conditions should be periodic in all directions.So,to satisfy this requirement,the free surfaces are created by choosing chemical potential to vary spatially over narrow strips near the solid–liquid interfaces of the system.This is accomplished by choosing values of r and ?0from the coexistence region of the hexagonal solid and liquid phase diagram.[8,9]By using a lever rule,the amounts of liquid and solid in the simulated sample are set with no preference toward crystallization or melting,i.e.,a stable interface arises at the boundary.Thus the sample could be considered as having periodic boundary conditions at y=1 and y=1024 and free boundary conditions elsewhere.Several of the following simulations require the incorporation of external loads.After the sample has equilibrated(the relaxed state in Fig.1(a)),the atoms within the narrow strips(white line with an arrow in Fig.1(b))at x1=150 and x1=874 are dragged at a constant velocity v=10?4along the y-axis in opposite directions(the relaxed state in Fig.1(b)).This is accomplished by adding an external function to the original free energy functional[26]

    Fig.1.(color online)(a)Atom density field of a nano-single crystal specimen in a relaxed state and(b)in a strained state during shear deformation.Note that only a portion of the simulation sample is shown here. (c)The white atoms in panel(a)are enlarged,which can schematically illustrate the(111)plane in a hexagonal close-packed crystal lattice in two-dimensions.

    3.1.Shear deformation response

    To demonstrate the presence of elastic relaxation modes in the MPFC model,we performed simulations of a nanosingle crystal specimen as described above(the initial crystal orientation equals to zero)under shear deformation.In the PFC paradigm,the crystal atoms can be interpreted as the discrete set of maxima of the continuous density field.Figure 2(a) shows the position in the case of the row of atoms in[1ˉ10] direction(depicted by white atoms in Fig.1(a))at four different strain levels.Here,the atom position was extracted by using the atomic position detection(APD)method,[27]where the locations of local maxima in the atom density field were tabulated after each time-step.When the dragged atoms are displaced by an amount D0,which is vertical to the initialdirection,a linear displacement distribution,D(y)= D0(y)/(μL)(μis the shear modulus),will be established.The data(Fig.2(a)with β=0.9)clearly show that the crystal response is consistent with elasticity theories,as shown by the rigid tilting of atoms in thedirection.At the same time, we can conclude that equation(3)can describe the elastic response in strained crystals at finite strain rates.

    On the other side,for β=20,the crystal atoms fail to react fast enough to the shear deformation and the behavior is viscoelastic,as shown in Fig.2(b).What is more,the curve fails to obey a linear displacement distribution.It means that the shear strain wave can only propagate with a limited range. In Fig.2(c),the propagating range W of the strain wave is plotted with respect to the parameter β.When 0<β<1, the propagating range stays constant(shown in the insert of Fig.2(c)),which indicates that in this parameter range,the system reveals an elastic response.When β>1,the curve decreases dramatically.In this case,the system corresponds to very over damped dynamics and could model the viscoelastic behavior.With the above analysis,we know that if we want to simulate the elasticity response of the system,we should choose the parameter β in elasticity regimes(0<β<1).

    Fig.2.(coloronline)Precisely detectatomic position along the row of atoms in[1ˉ10]direction of the nano-single crystal at four strain levels with different effective vacancy diffusion coefficients:(a)β=0.9,(b)β=20.(c)The propagating range W of the strain wave is plotted with respect to the parameter β.The inset shows the enlarged images of the region enclosed in the red shadow box.

    3.2.Strain distribution in shear deformation

    The purpose of this section is to demonstrate that the MPFC approach can be used to investigate the elastic strain response at atomic scales.In continuum models of a 2D lattice,distortions of the lattice can be defined by numerical differentiation[28]

    where εijdescribes the total strain tensor.The strains εxxand εyyrepresent the isotropic dilation(or compression)components,while εxyis the shear component(anti-clockwise positive).In order to obtain these strain components,here we use a numerical image-processing technique named as the peak pairs analysis(PPA)to precisely determine the strain field at atomic length scales.The details of the method can be referenced to Refs.[28]and[29].

    We have characterized the strain distribution forthe specimen(the initial crystal orientation equals to zero)described in Fig.2(a)in Subsection 3.1.Figure 3 shows the shear strain (εxy)distribution contours during shear deformation at four different strain levels.Figures 3(a)–3(c)reveal a gradual increase in the shear strain from the dragged atoms to the core of the specimen during deformation.This is evidenced by the gradual change in color from orange to green and to light blue. Finally,there is an almost homogeneous distribution within the whole specimen(Fig.3(c)),which will be confirmed in the following parts.Figure 3(d)shows the strain response to external applied strains.During the whole deformation process, the values of εxxand εyycan be considered to be almost zero, and εxyis a linear function of the applied strain.According to the linear elastic theory,the theoretical value of the applied shear strain(engineering)is twice of shear strain εxy.The corresponding simulated result is εxy=0.5807εappliedstrain,indicating the quantitative consistency with the elastic theory.

    Fig.3.(color online)Shear strain field maps of εxy calculated over the nanosingle crystal specimen(Fig.1(a))at three different strain levels respectively: (a)εapplied=0,(b)εapplied=0.0347,(c)εapplied=0.0679.The color bar represents the variation of the shear strain,the positive value means counterclockwise rotation of the lattice and the negative value represents the opposite rotation.(d)The curves of shear strain ε(εxx,εyy,εxy)response to the external applied strain(εappliedstrain),ε is obtained by averaging the strains of all the atoms across the sample.The inset shows the enlarged images of the region enclosed in the red shadow box.

    Fig.4.(color online)Shear strain distributions over the nano-single crystal specimen.Strain data in panels(a)and(b)are extracted from the four fixed line regions in Fig.3(c)at different coordinate values(pixels).Strain data in panels(c)–(e)are acquired through counting the strains of all the atoms in Figs.3(a)–3(c),respectively,and the red solid line is the Gaussian profile.

    To illustrate the strain distributions in the local areas, the strain pattern is further examined.Figure 4(a)shows the variation of the strain extracted from the line regions,parallel to the applied shear direction at four fixed x pixels in Fig.3(c).The shear patterns in Fig.4(a)are approximately linear,which means that the strain wave propagates with the same velocity along the x direction.In contrast,figure 4(b) shows the same variation of strain but the line regions vertical to the applied shear direction at four fixed y pixels in Fig.3(c). We can note that all the curves(Fig.4(b))are close to a symmetric distribution with the minimum strain value at the center and with the maximum value near the dragged atoms,with Kt=εxy(max)/εxy(0)=1.795(Ktis defined as the strain concentration),the value is in excellent agreement with the previous analysis results,[30]in which the value is 1.8.To illustrate the strain distributions in the whole area of the specimen,the shear strain evolving distribution histograms are further examined(Figs.4(c)–4(e)).These histograms are gained through counting the strains of all the atoms in the specimen (Fig.3(c)).From Figs.4(c)–4(e),we can see that the Gaussian profile matches the strain distribution extremely well without regard to those atoms with a strain value very near zero.Furthermore,the widths of the strain distributions are almost the same.Thus we can confirm that the strain distribution in the specimen interior is extremely uniform during the whole stage of deformation.

    3.3.Orientation dependence of the shear modulus

    The magnitude of the material’s elastic anisotropy plays an important role in elastic interactions.Here we show how anisotropy enters into the model.The shear modulus of the hexagonal crystal can be obtained by calculating the energy costs for deforming the equilibrium state.First,we can consider perturbations of the density field in an equilibrium state (Eq.(6)),i.e.,

    In such calculation,ξ represents the dimensionless strain.According to Wu’s work,[31]for small strains,we can set the q value equal to the wave number of the unstrained state,and assume the amplitude A is the same for simplicity.To determine the elastic energy,we substitute Eq.(19)into the free energy functional of Eq.(1),which can be explicitly evaluated in terms of A,q,and ξ.Then minimizing the resulting free energy with respect to ξ yields

    where α=(qA)2.To the lowest order in ξ,the elastic energy density can be expressed as

    The elastic constants are then C44=α/4 and the shear modulusμ=C44.But the above analytical calculation has not considered the orientation dependence of the shear modulus.Characterizing the modulus of the hexagonal crystal needs two variants,the shear constant C44and an orientation factor,as a function of θ,where the angle is defined between thecrystal direction and the directions of x-axis(perpendicular to the loading direction).For the purpose of coupling the density field and the crystal orientation,we need to start the calculation from the model.First choose two basic reciprocal lattice vectors(b1and b2)with the magnitude described in Eq.(5),and a coordinate rotation maps the two variables into new variablesso as to determine the directions.The coordinate rotation can be described as(j= 1,2).Then the density field containing crystal orientation can be obtained asTo obtain the elastic energy density,we substitute ?′(r)into the free energy functional(Eq.(1))and again use the same procedure described in Eqs.(1),(9),and(11).

    Fig.5.(color online)(a)Elastic strain energy density calculated from the MPFC simulations with different initial orientations of hexagonal lattice.(b)Orientation dependence of shear modulus μθ.The inset shows the polar plot ofμθ.

    We have given a general analysis procedure for calculating the orientation dependence of the shear modulus.Since the analytical calculation is too cumbersome when adding the crystal direction angle θ to the free energy functional,here we focus only on the numerical approach to investigate how the angle θ influences the shear modulus.To accomplish this,we repeat the similar simulation in Subsection 3.2 with the same domain size and the same related parameters.The only difference is that the nano-single crystal specimens are sheared with different initial crystal orientations.Figure 5(a)shows the calculated elastic energy with different orientation angles. The energy change trends are consistent in all situations and strictly fitted to the quadratic form of Eq.(21),where the shear constant C44is easily extracted.Figure 5(b)shows the orientation dependence of shear modulus(μθ).Due to the symmetry of the hexagonal structure,when the angle θ equals to zero or 60°,μθreaches the maximum at the same time shown as points A and C in Fig.5(b),which correspond to the[1ˉ10]and [ˉ101]directions,respectively(shown in the inset).However, when the shear direction in not parallel to the main crystal direction,at the angle θ of about 15°,μθreaches the minimum (point B in Fig.5(b)).Traversing from the whole curve,we can find that the shear modulus reflects the high anisotropy.

    3.4.Temperature dependence of the shear modulus

    In this part,we show the dependencies between the temperature r and the shear modulus μr.The effective temperature r modulates the magnitude of the amplitude of the hexagonal crystal,which changes the shear modulus.In Subsection 3.3, we have obtained the relationship μr=α/4=(qA)2/4,where

    Thus the analytic solutions can be easily obtained.What is more,for the numerical solutions,we also repeat the similar simulation in Subsection 3.2 with the same domain size and the related parameters.The only difference is that the specimens are sheared with different initial temperatures.Figure 6 shows the calculated elastic energy with different temperatures.The energy change is also fitted to the quadratic form of Eq.(21).The upper left inset of Fig.6(a)shows the enlarged images of the region enclosed in the red shadow box,which shows that although the differences between these curves are very close to each other,it can make a big difference in the magnitude of the shear modulus.Figure 6(b)compares the analytic and numerical solutions of shear modulusμrfor a variety of values of r.The results show that the numerical solutions ofμrdecrease linearly with increasing temperature (red solid line).For the analytic solutions,it is quite close to the numerical solutions and becomes exact when the absolute value of r is small enough,but a deviation from the numerical solutions occurs when the system temperature falls below a certain value at r=?0.665.This deviation can be attributed to the hexagonal lattice contraction due to the nonlinear coupling of the principle reciprocal lattice vectors to higher order reciprocal lattice vectors.[31]Thus the analytic results can in principle be systematically improved by including higher orders in the expansion of the density field.

    Fig.6.(color online)(a)Elastic strain energy density calculated from the MPFC simulations as a function of temperature r.The inset shows the enlarged images of the region enclosed in the red shadow box.(b) Temperature dependence of shear modulusμr.The red solid line is an analytic calculation and the black points are from numerical simulations.

    4.Conclusion

    We have presented the elastic properties of hexagonal crystal in the context of the MPFC model.This methodology allows propagating sound modes as long as 0<β<1.Values of 1<β would correspond to over damped dynamics and reveal viscoelastic behavior.We have also quantitatively characterized the strain distribution of the specimen.The results show that when statisticed along the shear direction the strain pattern reveals approximately linear,when statisticed vertical to the shear direction,it is close to a symmetric distribution.

    We have also presented a detailed theory analysis for determining elastic shear constants when they depend on the various parameters in the free energy functional of hexagonal crystal.The one-mode analysis provides a good guideline for determining coefficients of nonlinearities of elastic energy to obtain the shear constants.The shear constantμθreveals strong anisotropy;this phenomenon is intrinsically related to the nonlinear coupling of the principle reciprocal lattice vectors to the crystal orientation.In the case of temperature dependence of the shear modulus,our analytical results obtained in the one-mode approximation are borne out qualitatively by numerical simulations until the system temperature falls below a certain value.

    A highly interesting perspective is the extension of this work to use multi-mode calculations for a more accurate evaluation of the shear constants.The calculation of the constants performed here remains valid when considering the amplitude and lattice constant changed with temperature due to the higher-order reciprocal lattice vectors.What is more,a huge volume fraction of defects,such as surfaces and grain boundaries,exist in the nanostructured crystals.Linea and nonlinear elasticity constitute important contributions to the latter plastic deformation of the nanostructures.Further study of this phenomenon by using the MPFC model would be of great interest.

    Acknowledgment

    We thank the Center for High Performance Computing of Northwestern Polytechnical University,China for computer time and facilities.

    [1]Zhu T and Li J 2010 Prog.Mater.Sci.55 710

    [2]Du J P,Wang Y J,Lo Y C,Wan L and Ogata S 2016 Phys.Rev.B 94 104110

    [3]Chen L Y,Richter G,Sullivan J P and Gianola D S 2012 Phys.Rev. Lett.109 125503

    [4]Wang Y J,Gao G J and Ogata S 2013 Appl.Phys.Lett.102 041902

    [5]Dao M,Lu L,Asaro R J,Hosson D J and Ma E 2007 Acta.Mater.55 4041

    [6]Hessam Y and Kianoosh H 2015 Model.Simul.Mater.Sci.23 065004

    [7]Oxtoby D W 2002 Ann.Rev.Mater.Res.32 39

    [8]Elder K R and Grant M 2004 Phys.Rew.E 70 051605

    [9]Elder K R,Katakowski M,Haataja M and Grant M 2002 Phys.Rew. Lett.88 245701

    [10]Wu K A and Karma A 2007 Phys.Rev.B 76 184107

    [11]Yang T,Chen Z,Zhang J,Wang Y X and Lu Y L 2016 Chin.Phys.B 26 057802

    [12]Guo C,Wang J C,Wang Z J,Guo Y L and Tang S 2015 Phys.Rev.E 92 013309

    [13]Chan P Y,Goldenfeld N and Dantzig J 2009 Phys.Rev.E 79 035701

    [14]Ren X,Wang J C,Yang Y J and Yang G C 2010 Acta Phys.Sin 59 3595 (in Chinese)

    [15]Gao Y J,Huang L L,Deng Q Q,Zhou W Q,Luo Z R and L K 2016 Acta.Mater 117 238

    [16]Gao Y J,Luo Z R,Huang L L,Mao H,Huang C G and Lin K 2016 Model.Simul.Mater.Sci.24 055010

    [17]Hu S,Chen Z,Peng Y Y,Liu Y J and Guo L Y 2016 Comp.Mater.Sci. 121 143

    [18]Stefanovic P,Haataja M and Provatas N 2006 Phys.Rev.Lett.96 225504

    [19]Zhou W Q,Wang J C,Wang Z J,Zhang Q,Guo C,Li J J and G Y L 2017 Comp.Mater.Sci.127 121

    [20]Stefanovic P,Haataja M and Provatas 2009 Phys.Rev.E 80 046107

    [21]Chan P Y,Tsekenis G,Dantzig J,Dahmen K A and Goldenfeld N 2010 Phys.Rev.Lett.105 015502

    [22]Wu K A and Voorhees 2012 Acta.Mater 60 407

    [23]Adland A,Karma A,Spatschek R,Buta D and Asta M 2013 Phys.Rev. B 87 024110

    [24]Provatas N and Elder K R 2011 Phase-field Methods in Materials Science and Engineering(Urbana:Wiley)p.158

    [25]Wang Y Z and Li J 2010 Acta Mater.58 1212

    [26]Trautt Z T,Adland A,Karma A and Mishin Y 2012 Acta Mater 6528

    [27]Wang Z J,Guo Y L,Tang S,Li J J,Wang J C and Zhou Y H 2015 Ultramicroscopy 150 74

    [28]Calindo P L,Kret S,Sanchez A M,Laval J Y,Yanez A,Pizarro J, Guerrero E,Ben T and Molina S I 2007 Ultramicroscopy 107 1186

    [29]Hytch M J,Snoeck E and kiaas R 1998 Ultramicroscopy 74 131

    [30]Pilkey W D and Pilkey D F 2008 Peterson’s Stress Concentration Factors(New York:Wiley)p.105

    [31]Wu K A and Voorhees 2009 Phys.Rev.B 80 125408

    21 February 2017;revised manuscript

    6 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/090702

    ?Project supported by the National Natural Science foundation of China(Grant Nos.51571165 and 51371151),Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase),China,and the Fundamental Research Funds for the Central Universities,China(Grant No.3102015BJ(II)ZS001).

    ?Corresponding author.E-mail:jchwang@nwpu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    王志軍李俊
    國(guó)畫:慕思春雨
    TSCL-SQL:Two-Stage Curriculum Learning Framework for Text-to-SQL
    Effect of interface anisotropy on tilted growth of eutectics:A phase field study
    Design method of reusable reciprocal invisibility and phantom device
    王志軍 油畫作品
    李俊杰作品
    大眾文藝(2021年5期)2021-04-12 09:31:08
    李俊儒論
    李俊彥
    A Brief Analysis On How To Improve Students’ Participation Enthusiasm In Classroom
    李俊邑
    他把我摸到了高潮在线观看| 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 亚洲精品一区av在线观看| 亚洲精品av麻豆狂野| 99久久国产精品久久久| 精品久久久久久久毛片微露脸| 日韩成人在线观看一区二区三区| 欧美日韩瑟瑟在线播放| 午夜久久久久精精品| 一本一本综合久久| 国产高清有码在线观看视频 | 精品久久久久久成人av| 中亚洲国语对白在线视频| 欧美激情 高清一区二区三区| 一本综合久久免费| 亚洲国产精品久久男人天堂| 国产成人av教育| 欧美黑人巨大hd| 日韩欧美三级三区| 88av欧美| 2021天堂中文幕一二区在线观 | 国产av一区二区精品久久| 精品国产超薄肉色丝袜足j| 亚洲国产欧美网| 亚洲一区高清亚洲精品| 搡老妇女老女人老熟妇| 国产亚洲精品久久久久5区| 国产欧美日韩一区二区三| 99国产极品粉嫩在线观看| 一级黄色大片毛片| 精品一区二区三区av网在线观看| 美女 人体艺术 gogo| 久久久久久久精品吃奶| 国产一卡二卡三卡精品| 亚洲成人久久性| 女人爽到高潮嗷嗷叫在线视频| 欧美国产日韩亚洲一区| 久久精品国产99精品国产亚洲性色| 麻豆国产av国片精品| 亚洲熟妇熟女久久| 少妇被粗大的猛进出69影院| 99国产极品粉嫩在线观看| 又黄又粗又硬又大视频| 亚洲人成网站高清观看| 久久精品91无色码中文字幕| 伊人久久大香线蕉亚洲五| 国产亚洲精品一区二区www| 亚洲男人的天堂狠狠| 精品免费久久久久久久清纯| 黄色女人牲交| 精品人妻1区二区| 亚洲成人久久性| 欧美精品亚洲一区二区| 人人妻人人看人人澡| 日韩欧美国产在线观看| 国产单亲对白刺激| 国产成人av教育| 十八禁人妻一区二区| 亚洲欧美一区二区三区黑人| АⅤ资源中文在线天堂| 久久亚洲精品不卡| 午夜福利18| 99久久久亚洲精品蜜臀av| 国产成+人综合+亚洲专区| 精品第一国产精品| 性欧美人与动物交配| 后天国语完整版免费观看| 免费看十八禁软件| 免费看美女性在线毛片视频| 亚洲精品国产精品久久久不卡| 国产真人三级小视频在线观看| 国产一区二区三区视频了| www日本在线高清视频| 窝窝影院91人妻| 国内少妇人妻偷人精品xxx网站 | 丝袜在线中文字幕| 黄色成人免费大全| 亚洲自偷自拍图片 自拍| 在线观看舔阴道视频| 级片在线观看| 特大巨黑吊av在线直播 | 97碰自拍视频| 日韩中文字幕欧美一区二区| 手机成人av网站| 成人国产综合亚洲| 好看av亚洲va欧美ⅴa在| 看免费av毛片| 精品国内亚洲2022精品成人| 18禁黄网站禁片免费观看直播| 久久久久精品国产欧美久久久| 日本三级黄在线观看| 可以免费在线观看a视频的电影网站| 久久九九热精品免费| 日本免费a在线| 亚洲av熟女| 高清毛片免费观看视频网站| 在线观看午夜福利视频| АⅤ资源中文在线天堂| 午夜福利免费观看在线| 国产黄a三级三级三级人| av中文乱码字幕在线| 91字幕亚洲| 久久欧美精品欧美久久欧美| 精品国产亚洲在线| 亚洲电影在线观看av| 女同久久另类99精品国产91| 亚洲最大成人中文| 老司机深夜福利视频在线观看| 久久 成人 亚洲| www.熟女人妻精品国产| 日本一本二区三区精品| 国产极品粉嫩免费观看在线| 中文字幕精品亚洲无线码一区 | 精品久久久久久久人妻蜜臀av| 757午夜福利合集在线观看| 久久香蕉精品热| 少妇 在线观看| 精品电影一区二区在线| 国产亚洲精品第一综合不卡| 一区二区日韩欧美中文字幕| 淫秽高清视频在线观看| 国产精品 国内视频| 成人午夜高清在线视频 | 99精品在免费线老司机午夜| 可以在线观看毛片的网站| 国产精品野战在线观看| 亚洲国产日韩欧美精品在线观看 | 成人精品一区二区免费| 两性夫妻黄色片| 亚洲精品久久国产高清桃花| 欧美日韩中文字幕国产精品一区二区三区| 亚洲美女黄片视频| 亚洲中文字幕日韩| 国产精品免费视频内射| 国产乱人伦免费视频| 黑人操中国人逼视频| 正在播放国产对白刺激| 中文字幕最新亚洲高清| 亚洲第一电影网av| 久久精品国产99精品国产亚洲性色| 嫁个100分男人电影在线观看| 大型av网站在线播放| 久久久久久大精品| 日本精品一区二区三区蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产高清在线一区二区三 | 久久香蕉精品热| 一本大道久久a久久精品| 日日爽夜夜爽网站| 欧美激情久久久久久爽电影| 一本综合久久免费| 国产精品野战在线观看| 精品不卡国产一区二区三区| 精华霜和精华液先用哪个| 免费av毛片视频| 在线免费观看的www视频| 欧美日本亚洲视频在线播放| 日韩精品青青久久久久久| 大型黄色视频在线免费观看| 黄网站色视频无遮挡免费观看| 色老头精品视频在线观看| 国产亚洲精品久久久久久毛片| 一二三四在线观看免费中文在| 在线国产一区二区在线| 久久精品国产综合久久久| 窝窝影院91人妻| 天堂影院成人在线观看| 中文在线观看免费www的网站 | 嫁个100分男人电影在线观看| 一级片免费观看大全| 国产av又大| 可以在线观看的亚洲视频| 亚洲欧美激情综合另类| 狂野欧美激情性xxxx| 成熟少妇高潮喷水视频| 亚洲国产中文字幕在线视频| 精品一区二区三区av网在线观看| 脱女人内裤的视频| 国产伦在线观看视频一区| 老司机在亚洲福利影院| 自线自在国产av| 嫩草影视91久久| 91麻豆精品激情在线观看国产| 国产黄a三级三级三级人| 成人午夜高清在线视频 | 美女免费视频网站| 18禁黄网站禁片免费观看直播| 欧美黑人欧美精品刺激| 俄罗斯特黄特色一大片| 亚洲人成77777在线视频| 啪啪无遮挡十八禁网站| 久久香蕉激情| 国产成人av教育| 日韩欧美在线二视频| 成人亚洲精品av一区二区| 黄色a级毛片大全视频| 久久热在线av| 两个人看的免费小视频| 看免费av毛片| 久久久久久久久中文| 色老头精品视频在线观看| 大型黄色视频在线免费观看| 国产成年人精品一区二区| 久久香蕉国产精品| 大型av网站在线播放| 黄片大片在线免费观看| 真人一进一出gif抽搐免费| av福利片在线| 午夜激情福利司机影院| 久久久久久亚洲精品国产蜜桃av| 人妻久久中文字幕网| xxx96com| 日日摸夜夜添夜夜添小说| 日日夜夜操网爽| 搡老熟女国产l中国老女人| 欧美国产精品va在线观看不卡| 侵犯人妻中文字幕一二三四区| 老汉色∧v一级毛片| 欧美日本亚洲视频在线播放| 久久精品aⅴ一区二区三区四区| 十八禁网站免费在线| 免费电影在线观看免费观看| 美女高潮到喷水免费观看| 久久久久久久精品吃奶| 99久久国产精品久久久| 亚洲人成网站高清观看| 一区二区三区国产精品乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 村上凉子中文字幕在线| 国产欧美日韩一区二区三| 亚洲av电影在线进入| 母亲3免费完整高清在线观看| 中文字幕精品亚洲无线码一区 | 一级毛片高清免费大全| 久热爱精品视频在线9| 日韩欧美国产一区二区入口| 18禁国产床啪视频网站| 狠狠狠狠99中文字幕| 18美女黄网站色大片免费观看| 女警被强在线播放| 国产片内射在线| 亚洲欧美日韩高清在线视频| 久久 成人 亚洲| 99久久99久久久精品蜜桃| 成人特级黄色片久久久久久久| 一进一出抽搐gif免费好疼| 少妇粗大呻吟视频| 日韩欧美国产一区二区入口| 亚洲精品色激情综合| 国产一区二区三区在线臀色熟女| 两个人视频免费观看高清| 久99久视频精品免费| 国产激情久久老熟女| 日日爽夜夜爽网站| 成年版毛片免费区| 男人舔奶头视频| 国产主播在线观看一区二区| 一二三四社区在线视频社区8| 免费搜索国产男女视频| 成年免费大片在线观看| 精品第一国产精品| 一级毛片精品| 午夜两性在线视频| АⅤ资源中文在线天堂| 精品国产乱码久久久久久男人| 亚洲人成电影免费在线| 级片在线观看| 麻豆一二三区av精品| 亚洲电影在线观看av| av欧美777| 成人午夜高清在线视频 | 欧美久久黑人一区二区| 国产精品亚洲美女久久久| 一级黄色大片毛片| 亚洲精品一区av在线观看| 99在线人妻在线中文字幕| 久久精品91无色码中文字幕| 日韩有码中文字幕| 欧美另类亚洲清纯唯美| 亚洲国产欧美网| 亚洲中文字幕日韩| 国产精品二区激情视频| 一个人观看的视频www高清免费观看 | 亚洲中文字幕一区二区三区有码在线看 | 亚洲 国产 在线| 在线观看一区二区三区| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| 在线观看免费午夜福利视频| 亚洲国产中文字幕在线视频| 看黄色毛片网站| 女同久久另类99精品国产91| 精华霜和精华液先用哪个| 国产精品av久久久久免费| 欧美成人一区二区免费高清观看 | 国语自产精品视频在线第100页| ponron亚洲| 婷婷亚洲欧美| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 国语自产精品视频在线第100页| 琪琪午夜伦伦电影理论片6080| 久久久久久亚洲精品国产蜜桃av| 中文亚洲av片在线观看爽| 久久久水蜜桃国产精品网| aaaaa片日本免费| 麻豆成人av在线观看| 国产精品一区二区三区四区久久 | 免费高清视频大片| 最近最新免费中文字幕在线| 久久久久精品国产欧美久久久| 在线观看免费视频日本深夜| 欧美激情 高清一区二区三区| 欧美日韩精品网址| 此物有八面人人有两片| 变态另类丝袜制服| 91国产中文字幕| 精品久久久久久久久久免费视频| 久久精品91蜜桃| 亚洲第一青青草原| 亚洲一卡2卡3卡4卡5卡精品中文| 人人澡人人妻人| 精品国产亚洲在线| 国产黄a三级三级三级人| 成年人黄色毛片网站| 午夜久久久久精精品| 精品一区二区三区视频在线观看免费| 少妇被粗大的猛进出69影院| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 欧美精品亚洲一区二区| 精品国产美女av久久久久小说| 欧美成人一区二区免费高清观看 | 亚洲精品在线美女| 黄色女人牲交| 俺也久久电影网| 精品一区二区三区av网在线观看| 一区二区三区激情视频| 久久精品影院6| 一二三四社区在线视频社区8| 亚洲五月天丁香| 亚洲av电影不卡..在线观看| 国产精品国产高清国产av| 精品福利观看| 亚洲精品一区av在线观看| 国产精品一区二区三区四区久久 | 国产av又大| 国产在线精品亚洲第一网站| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 热99re8久久精品国产| 精品久久久久久久久久免费视频| 熟女电影av网| 久久精品夜夜夜夜夜久久蜜豆 | 身体一侧抽搐| 淫秽高清视频在线观看| 中文在线观看免费www的网站 | 亚洲中文字幕日韩| 国产精品免费一区二区三区在线| 免费人成视频x8x8入口观看| 精品欧美国产一区二区三| 色尼玛亚洲综合影院| 在线十欧美十亚洲十日本专区| 久久人人精品亚洲av| 欧美zozozo另类| 午夜久久久在线观看| 久久久久久人人人人人| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久| 少妇粗大呻吟视频| 琪琪午夜伦伦电影理论片6080| 99久久综合精品五月天人人| 日韩中文字幕欧美一区二区| 一二三四社区在线视频社区8| 国产主播在线观看一区二区| 亚洲精品久久国产高清桃花| 精品高清国产在线一区| 亚洲国产毛片av蜜桃av| www.www免费av| 精品久久久久久久久久久久久 | 最好的美女福利视频网| 国产高清有码在线观看视频 | 国产精品精品国产色婷婷| 热99re8久久精品国产| 色综合婷婷激情| 亚洲精品一区av在线观看| 叶爱在线成人免费视频播放| 久久久久久亚洲精品国产蜜桃av| 欧美乱码精品一区二区三区| 午夜免费成人在线视频| 亚洲人成77777在线视频| 在线看三级毛片| 欧美日本视频| 日韩成人在线观看一区二区三区| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 亚洲人成网站在线播放欧美日韩| www.999成人在线观看| 成年免费大片在线观看| 亚洲av五月六月丁香网| www.999成人在线观看| 国产日本99.免费观看| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产日本99.免费观看| 亚洲专区字幕在线| 国产主播在线观看一区二区| 国产成人影院久久av| 国产精品一区二区免费欧美| 999久久久国产精品视频| or卡值多少钱| 色综合欧美亚洲国产小说| 日韩中文字幕欧美一区二区| 日韩视频一区二区在线观看| 久久久久国产一级毛片高清牌| 亚洲五月色婷婷综合| 波多野结衣高清作品| bbb黄色大片| 不卡av一区二区三区| 1024香蕉在线观看| 青草久久国产| 亚洲va日本ⅴa欧美va伊人久久| 1024香蕉在线观看| 久久九九热精品免费| 欧美日韩瑟瑟在线播放| 欧美黑人精品巨大| 男人的好看免费观看在线视频 | 成人午夜高清在线视频 | 婷婷精品国产亚洲av在线| 成人午夜高清在线视频 | 久久中文看片网| 青草久久国产| 熟妇人妻久久中文字幕3abv| 啦啦啦 在线观看视频| 狂野欧美激情性xxxx| 精品一区二区三区视频在线观看免费| 国产一区二区三区在线臀色熟女| √禁漫天堂资源中文www| 悠悠久久av| 国产成人精品久久二区二区91| 窝窝影院91人妻| 精品国产一区二区三区四区第35| 禁无遮挡网站| 香蕉久久夜色| 午夜免费观看网址| 免费在线观看黄色视频的| 在线观看舔阴道视频| 国产精品香港三级国产av潘金莲| 禁无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 亚洲天堂国产精品一区在线| 久久久久亚洲av毛片大全| 91国产中文字幕| 日本熟妇午夜| 国产黄a三级三级三级人| 国产久久久一区二区三区| 亚洲精品在线观看二区| 精品久久久久久久末码| 久久久久久久久中文| 在线永久观看黄色视频| 国产成人av教育| 国产精品98久久久久久宅男小说| 亚洲中文av在线| 亚洲精品在线观看二区| 可以在线观看毛片的网站| 免费看a级黄色片| 一本一本综合久久| 精品福利观看| 久久久精品欧美日韩精品| 久久人妻av系列| 99re在线观看精品视频| 人人妻人人澡人人看| 国产视频一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 久久青草综合色| avwww免费| 欧美黄色淫秽网站| 亚洲全国av大片| 桃红色精品国产亚洲av| 激情在线观看视频在线高清| 欧美日韩中文字幕国产精品一区二区三区| 午夜久久久久精精品| 搡老岳熟女国产| 午夜老司机福利片| 麻豆久久精品国产亚洲av| 精品久久久久久久末码| 欧美国产精品va在线观看不卡| 国产黄a三级三级三级人| 黄色a级毛片大全视频| 男女床上黄色一级片免费看| 国产人伦9x9x在线观看| 国产精品香港三级国产av潘金莲| 精品日产1卡2卡| 18禁黄网站禁片免费观看直播| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| 可以在线观看的亚洲视频| 熟女电影av网| 精品久久久久久久末码| 欧美 亚洲 国产 日韩一| 视频区欧美日本亚洲| 人人澡人人妻人| 国产欧美日韩一区二区三| 国产单亲对白刺激| 男人舔女人的私密视频| 给我免费播放毛片高清在线观看| 午夜激情av网站| 亚洲九九香蕉| 色综合婷婷激情| 久久香蕉国产精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 国产成人一区二区三区免费视频网站| 亚洲 欧美 日韩 在线 免费| 一个人观看的视频www高清免费观看 | 久久久国产成人精品二区| 亚洲成人久久性| 91国产中文字幕| 超碰成人久久| 亚洲av第一区精品v没综合| 国产伦一二天堂av在线观看| 19禁男女啪啪无遮挡网站| 欧美另类亚洲清纯唯美| 欧美一区二区精品小视频在线| 亚洲一码二码三码区别大吗| 黄色毛片三级朝国网站| 美女高潮喷水抽搐中文字幕| 午夜久久久久精精品| 国产私拍福利视频在线观看| 国内精品久久久久久久电影| 一进一出抽搐gif免费好疼| 国产精品久久视频播放| 99国产精品一区二区三区| 露出奶头的视频| 啦啦啦韩国在线观看视频| av有码第一页| 亚洲av中文字字幕乱码综合 | 免费看日本二区| 亚洲自拍偷在线| 精品无人区乱码1区二区| 成人av一区二区三区在线看| 日韩高清综合在线| 亚洲午夜精品一区,二区,三区| 少妇裸体淫交视频免费看高清 | 久久精品91无色码中文字幕| 欧美国产精品va在线观看不卡| 日韩欧美免费精品| 精品卡一卡二卡四卡免费| 淫秽高清视频在线观看| 欧美最黄视频在线播放免费| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频| 在线免费观看的www视频| 国产久久久一区二区三区| 一区福利在线观看| 两人在一起打扑克的视频| 国产黄片美女视频| 一夜夜www| 欧美精品啪啪一区二区三区| АⅤ资源中文在线天堂| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 制服人妻中文乱码| 久久中文看片网| 欧美久久黑人一区二区| 丰满的人妻完整版| 国产av一区在线观看免费| 久久狼人影院| 精品日产1卡2卡| 成人三级黄色视频| 日本三级黄在线观看| 亚洲av美国av| 丁香六月欧美| 亚洲性夜色夜夜综合| 国产免费男女视频| 两个人视频免费观看高清| 曰老女人黄片| 一本久久中文字幕| 久久久久久人人人人人| 国产麻豆成人av免费视频| 午夜福利在线在线| 在线看三级毛片| 婷婷精品国产亚洲av在线| 午夜激情福利司机影院| 好男人电影高清在线观看| 国产熟女午夜一区二区三区| 嫩草影视91久久| 免费在线观看黄色视频的| 国产精品综合久久久久久久免费| 欧美日韩一级在线毛片| 国产精品综合久久久久久久免费| 在线观看免费午夜福利视频| 午夜福利在线在线| 欧美一级毛片孕妇| 国产精品久久久人人做人人爽| 久久久久久久久免费视频了| 亚洲熟妇熟女久久| 女人爽到高潮嗷嗷叫在线视频| 免费女性裸体啪啪无遮挡网站| 老司机在亚洲福利影院| 成人手机av| 久久精品人妻少妇| 国产精品亚洲av一区麻豆| 国产真人三级小视频在线观看| 国产精品久久电影中文字幕| 国产欧美日韩一区二区三| 中文字幕最新亚洲高清| 88av欧美| 亚洲中文日韩欧美视频| 精品免费久久久久久久清纯| 国语自产精品视频在线第100页| a在线观看视频网站|