• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers?

    2017-08-30 08:25:38KeqiangHuang黃克強(qiáng)QiujiangGuo郭秋江ChaoSong宋超YaruiZheng鄭亞銳HuiDeng鄧輝YulinWu吳玉林YirongJin金貽榮XiaoboZhu朱曉波andDongningZheng鄭東寧
    Chinese Physics B 2017年9期
    關(guān)鍵詞:東寧玉林

    Keqiang Huang(黃克強(qiáng)),Qiujiang Guo(郭秋江),Chao Song(宋超), Yarui Zheng(鄭亞銳),Hui Deng(鄧輝),Yulin Wu(吳玉林),4, Yirong Jin(金貽榮),Xiaobo Zhu(朱曉波),4,?,and Dongning Zheng(鄭東寧),?

    1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,Chinese Academy of Sciences,Beijing 100190,China

    2 Department of Physics,Zhejiang University,Hangzhou 310027,China

    3 School of Physics,University of Chinese Academy of Sciences,Beijing 100190,China

    4 CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China,Hefei 230026,China

    Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers?

    Keqiang Huang(黃克強(qiáng))1,3,Qiujiang Guo(郭秋江)2,Chao Song(宋超)2, Yarui Zheng(鄭亞銳)1,Hui Deng(鄧輝)1,Yulin Wu(吳玉林)1,4, Yirong Jin(金貽榮)1,Xiaobo Zhu(朱曉波)1,4,?,and Dongning Zheng(鄭東寧)1,3,?

    1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,Chinese Academy of Sciences,Beijing 100190,China

    2 Department of Physics,Zhejiang University,Hangzhou 310027,China

    3 School of Physics,University of Chinese Academy of Sciences,Beijing 100190,China

    4 CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China,Hefei 230026,China

    We have fabricated two types of lumped-element Josephson parameter amplifiers(JPAs)by using a multilayer micro fabrication process involving wet etching of Al films.The first type is a narrow band JPA which shows typical gain above 14 dB in a bandwidth around 35 MHz.The second type is a wideband JPA which is coupled to an input 50 ? transmission line via an impedance transformer that changes the impedance from about 15 ? on the non-linear resonator side to 50 ?on the input transmission line side.The wideband JPA could operate in a 200 MHz range with a gain higher than 14 dB. The amplifiers were used for superconducting qubit readout.The results showed that the signal to noise ratio and hence the readout fidelity were improved significantly.

    Josephson parameter amplifier,multilayer micro-fabrication,qubit state readout

    1.Introduction

    Josephson junction based parametric amplifiers have been studied for decades and are used in a variety of different types of applications,including demonstration of vacuum noise squeezing[1,2]and amplification for extremely sensitive magnetometers.[3]In recent years,the rapid progress of superconducting quantum-bit(qubit)based on Josephson junctions[4–10]has generated renewed interests in Josephson parameter amplifiers(JPA),[9–12]which can provide amplification with near quantum limit noise level and is used as preamplifier for the readout of superconducting qubit quantum states.[13–17]

    The most commonly used readout scheme of superconducting qubits at present is the dispersive readout scheme. It relies on detecting microwave photons coming out from a microwave transmission line.In order to distinguish the quantum state of qubits,a good signal to noise ratio is required.In other words,the added noise of preamplifiers should not degrade the signal to noise ratio substantially.However,for the best available commercial high-electron-mobility transistor(HEMT)amplifier operating at low temperatures, the noise temperature is in the range of 2–5 K,that is larger than the photon energy in the dispersive readout transmission line.Taking this into account,it is highly desirable to introduce amplifiers with lower noise temperature.Josephson parametric amplifiers have been regarded as suitable devices for this purpose.So far,a number of different designs have been suggested and demonstrated in experiments.Apart from high gain,JPAs of larger bandwidth are also needed for multiplex readout.

    In this paper,we report the fabrication and characterization of two types of Josephson parametric amplifiers which operate with different bandwidths.The first one is of a narrow band with a bandwidth about 35 MHz,while the second one is of a wide band with a bandwidth as large as 200 MHz.The amplifiers are used in superconducting qubit readout experiments,the readout fidelity is improved significantly.

    The design of the JPAs we fabricated is similar to the ones reported by Mutus et al.[18]As reported in the literature,the amplifiers are mostly fabricated based on a process using reactive ion etching(RIE)Nb films or inductively coupled plasma (ICP)etching Al films.[18–20]In this work,we fabricate our JPAs using a multilayer micro-fabrication process that is based on wet etch of aluminum films.The wet etching process has the advantage of not requiring the usage of toxic chlorine gas and expensive ICP systems,and is therefore more suitable forsmall scale laboratories.

    2.JPA structure and parameters

    The schematic circuit diagram of our narrow band parameter amplifier is shown in Fig.1(a).The design of the amplifier is based on the approach reported in Ref.[18].The structure of the amplifier is a 50 ? transmission line directly coupled to a non-linear LC resonator that is formed by a lumped capacitance shunted with a SQUID that functions as a current dependent non-linear inductor.An on chip bias line,inductively coupled to the SQUID,provides the microwave pump signal and dc bias field.[3]The inductance of the SQUID is inversely proportional to the SQUID critical current IC.Therefore,we may adjust the resonating frequency by varying the critical current via the dc bias field.The resonating frequency is expressed as f=1/2π((LJ+Ls)C)1/2,[21]where C is the capacitance,Lsis the stray inductance in the circuit,and LJis the Josephson inductance that is related to

    The amplification of Josephson junction based parametric amplifiers is based on the frequency mixing resulted from the nonlinear Josephson inductance.As the energy source,a sufficiently large pump mode is used to modulate the Josephson inductance of the system,in which the nonlinear Josephson junction plays a key role.During this process,the energy of the pump mode is transferred to the small incident signal mode,which results in the parametric amplification of the incident signal.

    The bandwidth of the amplifier is limited by the resonator bandwidth that is inversely proportional to the coupled Q of the resonator to the environment.For a fixed environment impedance Z0(which is typically 50 ? for the transmission line)and resonant frequency ω0,the coupled Q~Z0ω0L.In order to reduce Q,one may either increase L or decrease Z0. In this work,we followed the approach in Ref.[18]and fabricated a wide-band JPA by transforming the environmental impedance Z0with a tapered impedance transformer.This approach leads to increased coupling,lowered Q,and simultaneously increased bandwidth and saturation power.The tapered impedance transformer is realized by shunting a CPW of fixed geometry with a series of parallel plate capacitor cross-overs. As pointed out in Ref.[18],the sections with a cross-over approximate a microstrip transmission line,with much lower local characteristic impedance.By varying the density of the cross-overs,the impedance can be varied smoothly.

    The Josephson parametric amplifiers discussed here can be operated either in a three-wave mixing mode or a four-wave mixing mode.[18]In this work,we chose the three-wave mixing operation mode.In this mode,the signal is fed into the amplifier through the signal-in port while the pump is applied via the bias line along with the dc bias.The amplified output signal is reflected off the amplifier and sent to the next stage amplifier through the signal-out port.In order to separate the signal-in and signal-out ports,a circulator is used.When the frequency and the amplitude of the pump signal are in appropriate ranges,the nonlinear resonator runs in a parametric amplifier regime.[3,11]

    Fig.1.(color online)(a)A schematic diagram of our parameter amplifier.The circle represents the circulator in the measuring circuit.The circulator is used to separate the input signal and output signal.The cylinder represents 50 ? signal input transmission line and on chip flux bias line.The square represents bias T to combine the RF pump and DC bias.(b)The optical micrograph of our Josephson parameter amplifier.The up triangle pad is the signal input pad,the center square is the parallel plate capacitor,and the down turning line is the on chip bias line.

    Fig.2.(color online)(a)An optical micrograph of our wide band Josephson parameter amplifier.The up pad is the signal input pad, and the middle line is the signal transition line.With different density crossovers on the transmission line,the transmission line shows different colors from up to down,the crossover changes the impedance of the transmission line.(b)The Josephson parameter amplifier sampler mounted in a sample box.

    The optical micrograph in Fig.1(b)shows the amplifier made by a multilayer micro-fabrication process.The parallel plate capacitor has an Al/amorphous Si/Al structure,the capacitance C~4 pF.The stray inductance of the SQUID loop is around 20 pH and the unbiased Josephson junction nonlinear inductance is around 70 pH.The resonance frequency is around 8 GHz.

    In Fig.2,we show a photograph of a wide-band JPA device mounted in a sample box.

    3.Sample fabrication process

    We adopted a multilayer micro-fabrication process based on wet etching of Al for amplifier fabrication.In Fig.3,the fabrication process is schematically shown.

    Fig.3.(color online)The schematic diagram of multilayer micro-fabrication process.

    The detailed steps are as follows.In the first step,we clean the high resistance silicon substrates(3000 ?)sequentially in an ultrasonic bath using acetone,alcohol,and deionized water.In each clean,the clean time is about 10 min.In the second step,we deposit 100 nm thick aluminum using an ultra-high vacuum e-beam evaporation system(plasyss 520). In the third step,we use photo lithography(on a Kalsuss MA6 UV aligner)and wet etching to define the capacitor ground electrode,the signal in put and output transmission line,the onchip bias line,the meshed ground plane and position marks. The photo resist used in this step is S1813.For the wet etching process,we use type A solution(http://www.Cemtranse.com). In the fourth step,we grow amorphous silicon as the dielectric layer of the capacitor.The area of the capacitor is again defined by photo lithography and ICP with HBr gas.In the fifth step,we make the top electrode of the capacitor using a lift-off process with LOR5A and S1813 double layer resist mask.

    Finally,we made the SQUID using a double-angle evaporation process.[22]The under-cut mask was made using two layers of resist(zip 520 and PMGI).A test SQUID was also made on the chip to check the junction room temperature resistance to see if the SQUID critical current is appropriated.The junction resistance is linked to the junction critical current by the Ambegaokar–Baratoff relation IC=πΔ/2eRn,where Δ is the superconducting energy gap of the electrode and Rnis the junction normal state resistance.

    4.Sample characterization and properties analysis

    For the characterization of JPAs,a fabricated Josephson parametric amplifier sample was mounted in an aluminum sample box and measured in a cryogen-free dilution refrigerator with a base temperature around 20 mK.The amplifier was operated in the phase preserving mode for the dispersive readout of Xmon qubits which were capacitively coupled to a transmission line through λ/4 coplanar waveguide resonators(CPW).The amplifier was connected to the qubit readout transmission line and the output of the amplifier was further amplified by a HEMT cryogenic amplifier operated at around 3 K,followed by a room temperature microwave amplifier.

    Before the measurement,we have measured the phase component of S21versus the dc flux bias and signal frequency, where a periodic structure is observed due to the change of the SQUID critical current with the external magnetic flux.By varying the dc-flux,we can tune the resonant frequency of the nonlinear resonator into the regime for qubit readout.In Fig.4, we show the modulation curve of the phase component for the wide-band JPA sample we made.The solid green line is the guide line to the modulation curve of the SQUID.

    Fig.4.(color online)The phase component of S21 versus dc flux bias and signal frequency of our wide-band JPA sample.

    Firstly,we present the results of a narrow-band JPA device.During the measurements,we recorded the S21signal of the qubit readout transmission line.In Fig.5(a),we show the data with the Josephson parametric amplifier on and off,respectively,obtained for fixed pump frequency and amplitude and fixed dc bias.It is obvious that the signal is amplified.In Fig.5(b),the difference of the two S21curves is shown,representing the dependence of the gain on the frequency.The range with the gain higher than 14 dB is about 35 MHz.

    In order to further demonstrate the effectiveness of the amplifier for qubit readout,we present the data for different qubit states in Fig.6.In the dispersive readout scheme of the qubit,each qubit is coupled to a readout transmission line via a resonator.By varying the coupling resonator characteristic frequency,it is possible to readout multiple qubits by using one transmission line.

    Fig.5.(color online)(a)The response of S21 of the quantum chip with Josephson parameter amplifier pump on and off.(b)Josephson parameter amplifier gain-bandwidth plot,the bandwidth with gain more than 14 dB is about 35 MHz.

    The readout of the qubit state is based on the JC model that describes a system containing a two-level atom(qubit) coupled to a resonator.At the large detuning where the qubit and cavity frequency detuning Δ=ωq?ωris much larger than the coupling rate g,the system Hamiltonian is Hdisp=The second part of the Hamiltonian shows that the resonator frequency is shifted by±χ depending on the qubit state operator σz.[7]It is therefore clear that the change of the qubit from the|0〉state to the|1〉state would lead to the change of the resonant frequency.In other words,the resonant peak appeared in the S21curve would shift accordingly.In a practical measurement system,the signal is usually demodulated into in-phase(I)and quadrature(Q)components.In Fig.6,we show the data in the I–Q plane.The red and blue dots represent data points taken for qubits prepared at|0〉and|1〉states,respectively.In this case,we repeated the measurement for 3000 times.In Figs.6(a)and 6(b),we show the data taken with the JPA on and off,respectively.Clearly, when the JPA is on,the separation of the two data point clouds representing the quantum states|0〉and|1〉is larger.The large separation allows faster readout and improved measurement fidelity.[17,23]

    Fig.6.(color online)(a),(b)I–Q clouds for the qubit states measured with the JPA pump off and on.The color point represents the single short read out state|0〉(blue)or|1〉(red).The clouds represent the signal scatter by the noise.The bigger black points represent the average centers of the cloud points.The position of the bigger black point represents the position of the state without noise.The dash line connected the center represents the projection axes.The distance of the center represents the relative separation of readout states|0〉and|1〉.(c),(d)The histograms of the readout points with JPA pump off and on,the outlines are Gaussian fits to the histograms and used to estimate the separation fidelity and measurement fidelity.We also estimate the JPA noise temperature by comparing the readout results with JPA off and on.

    Fig.7.(color online)(a),(c)The frequency dependence of gain and noise;(b),(d)the signal power dependence of gain and noise.

    For the wide-band device,we performed similar measurements.In Figs.7(a)and 7(c),we show the frequency dependence of gain and noise.The results show that the frequency range with amplification above 14 dB is obviously increased as compared to the data shown in Fig.5(a).The estimated JPA noise temperature is around the quantum limit level,[18,24,25]as indicated by the solid red line in Fig.7(c).By monitoring the gain as a function of the input signal power,we found that the saturation power of the JPA is around?115 dB. The wide-band JPA has been used in a number of quantum measurements.[26,27]

    5.Conclusion

    We have fabricated and characterized a narrow band and a wide band Josephson parametric amplifier.The devices consist of lumped elements and were made using a multilayer micro-fabrication process that is based on wet etch of aluminum films.The wet etching process has the advantage of not requiring the usage of toxic chlorine gas and expensive ICP systems.We believe that the process is therefore more suitable for small scale laboratories.For the narrow band JPA,the frequency band with gain larger than 14 dB is 35 MHz,while the wide band JPA shows over a 200 MHz range.The noise temperature of the JPAs is near the quantum limit.We used the JPA as pre-amplifier to readout superconducting qubit.The results show that the signal to noise ratio is improved significantly,and hence the measurement fidelity is improved.

    Acknowledgments

    We thank Prof.Haohua Wang for providing the initial designs and for the guidance in measurements.The data were taken at Haohua Wang’s Lab in Zhejiang University.

    [1]Yurke B 1987 J.Opt.Soc.Am.B-Opt.Phys.4 1551

    [2]Yurke B,Corruccini L R,Kaminsky P G,Rupp L W,Smith A D,Silver A H,Simon R W and Whittaker E A 1989 Phys.Rev.A 39 2519

    [3]Hatridge M,Vijay R,Slichter D H,Clarke J and Siddiqi I 2011 Phys. Rev.B 83 134501

    [4]Mooij J E,Orlando T P,Levitov L,Tian L,van der Wal C H and Lloyd S 1999 Science 285 1036

    [5]Lucero E,Barends R,Chen Y,Kelly J,Mariantoni M,Megrant A, O’Malley P,Sank D,Vainsencher A,Wenner J,White T,Yin Y,Cleland A N and Martinis J M 2012 Nat.Phys.8 719

    [6]You J Q,Tsai J S and Nori F 2003 Phys.Rev.B 68 024510

    [7]Koch J,Yu T M,Gambetta J,Houck A A,Schuster D I,Majer J,Blais A,Devoret M H,Girvin S M and Schoelkopf R J 2007 Phys.Rev.A 76 19

    [8]Reed M D,DiCarlo L,Johnson B R,Sun L,Schuster D I,Frunzio L and Schoelkopf R J 2010 Phys.Rev.A 105 173601

    [9]Barends R,Kelly J,Megrant A,Sank D,Jeffrey E,Chen Y,Yin Y, Chiaro B,Mutus J,Neill C,O’Malley P,Roushan P,Wenner J,White T C,Cleland A N and Martinis J M 2013 Phys.Rev.Lett.111 5

    [10]Zhong Y P,Li C Y,Wang H H and Chen Y 2013 Chin.Phys.B 22 110313

    [11]Levenson-Falk E M,Vijay R and Siddiqi I 2011 Appl.Phys.Lett.98 3

    [12]Castellanos-Beltran M A,Irwin K D,Hilton G C,Vale L R and Lehnert K W 2008 Nat.Phys.4 929

    [13]Siddiqi I,Vijay R,Pierre F,Wilson C M,Metcalfe M,Rigetti C,Frunzio L and Devoret M H 2004 Phys.Rev.Lett.93 4

    [14]Reed M D,DiCarlo L,Johnson B R,Sun L,Schuster D I,Frunzio L and Schoelkopf R J 2010 Phys.Rev.Lett.105 4

    [15]Mallet F,Ong F R,Palacios-Laloy A,Nguyen F,Bertet P,Vion D and Esteve D 2009 Nat.Phys.5 791

    [16]Lin Z R,Inomata K,Oliver W D,Koshino K,Nakamura Y,Tsai J S and Yamamoto T 2013 Appl.Phys.Lett.103 4

    [17]Jeffrey E,Sank D,Mutus J Y,White T C,Kelly J,Barends R,Chen Y, Chen Z,Chiaro B,Dunsworth A,Megrant A,O’Malley P J J,Neill C, Roushan P,Vainsencher A,Wenner J,Cleland A N and Martinis J M 2014 Phys.Rev.Lett.112 5

    [18]Mutus J Y,White T C,Jeffrey E,Sank D and Martinis J M 2013 Appl. Phys.Lett.103 122602

    [19]Yamamoto T,Inomata K,Watanabe M,Matsuba K,Miyazaki T,Oliver W D,Nakamura Y and Tsai J S 2008 Appl.Phys.Lett.93 3

    [20]Bergeal N,Schackert F,Metcalfe M,Vijay R,Manucharyan V E,Frunzio L,Prober D E,Schoelkopf R J,Girvin S M and Devoret M H 2010 Nature 465 64

    [21]Barone A and Paterno G 1982 Phaysics and Applications of the Josephson Effect(New York:Wiley)

    [22]Wu Y L,Deng H,Yu H F,Xue G M,Tian Y,Li J,Chen Y F,Zhao Shi P and Zheng D N 2013 Chin.Phys.B 22 060309

    [23]Sank D T 2014 Fast,Accurate State Measurement in Superconducting Qubits(Ph.D.Dissertation)(Santa Barbara:University of California)

    [24]Clerk A A,Devoret M H,Girvin S M,Marquardt F and Schoelkopf R J 2010 Rev.Mod.Phys.82 1155

    [25]Caves C M 1982 Phys.Rev.D 26 1817

    [26]Song C,Xu K,Liu W X,Yang C,Zheng S B,Deng H,Xie Q,Huang K Q,Guo Q J,Zhang L B,Zhang P F,Xu D,Zheng D N,Zhu X B,Wang H,Chen Y A,Lu C Y,Han S Y and Pan J W 2017 arXiv:170310302 [quant-ph]

    [27]Zheng Y,Song C,Chen M C,Xia B X,Liu W X,Guo Q J,Zhang L B, Xu D,Deng H,Huang K Q,Wu Y L,Yan Z G,Zheng D N,Lu L,Pan J W,Wang H,Lu C Y and Zhu X B 2017 Phys.Rev.Lett.118 210504

    15 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/094203

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.91321208,11374344,11404386,11574380,and 11674376),the Ministry of Science and Technology of China(Grant Nos.2014CB921401 and 2016YFA0300601),and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300).

    ?Corresponding author.E-mail:xbzhu16@ustc.edu.cn

    ?Corresponding author.E-mail:dzheng@aphy.iphy.ac.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    東寧玉林
    王玉林作品
    Hardware for multi-superconducting qubit control and readout*
    馬玉林書法作品選(2幅)
    寧波市海曙東寧工具有限公司
    An Analysis of the Difficulties and Learning Methods of English Grammar in Senior High Schools
    Tunable coupling between Xmon qubit and coplanar waveguide resonator?
    邱玉林藝術(shù)作品欣賞
    Unit 6 Travelling around Asia Listening and speaking
    趙玉林藏石欣賞
    寶藏(2017年10期)2018-01-03 01:53:27
    我們的作品
    午夜福利影视在线免费观看| 精品乱码久久久久久99久播| 极品教师在线免费播放| 精品国产一区二区久久| 精品国产乱子伦一区二区三区| 老司机亚洲免费影院| 婷婷成人精品国产| 国产欧美亚洲国产| 久久香蕉激情| 真人做人爱边吃奶动态| 超碰97精品在线观看| 另类亚洲欧美激情| 亚洲一区二区三区欧美精品| 制服人妻中文乱码| 欧美日韩av久久| 无遮挡黄片免费观看| 亚洲av日韩精品久久久久久密| 国产av又大| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 亚洲精品一二三| 啪啪无遮挡十八禁网站| 黄色丝袜av网址大全| 激情在线观看视频在线高清 | 国产免费现黄频在线看| 精品熟女少妇八av免费久了| 精品少妇内射三级| 新久久久久国产一级毛片| 久久av网站| 亚洲av国产av综合av卡| 在线播放国产精品三级| 妹子高潮喷水视频| av有码第一页| 久久久久久亚洲精品国产蜜桃av| 精品久久久精品久久久| 国产不卡一卡二| 一夜夜www| 亚洲免费av在线视频| 亚洲午夜理论影院| 精品亚洲乱码少妇综合久久| 国产免费福利视频在线观看| 精品欧美一区二区三区在线| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av香蕉五月 | 成年女人毛片免费观看观看9 | 黑人巨大精品欧美一区二区mp4| 成年动漫av网址| 亚洲一码二码三码区别大吗| 久久久精品94久久精品| 亚洲精品在线美女| 性高湖久久久久久久久免费观看| 日韩大片免费观看网站| 国产成+人综合+亚洲专区| 女人高潮潮喷娇喘18禁视频| 国产精品自产拍在线观看55亚洲 | 亚洲av欧美aⅴ国产| 视频区欧美日本亚洲| 国产在线视频一区二区| 午夜福利在线免费观看网站| 99国产精品一区二区蜜桃av | 最黄视频免费看| 久久久久视频综合| 久久久久久久久免费视频了| 一本大道久久a久久精品| 激情视频va一区二区三区| 国产精品久久久av美女十八| 十八禁网站免费在线| 国产亚洲精品久久久久5区| 制服诱惑二区| 91老司机精品| 高清欧美精品videossex| 国产男靠女视频免费网站| 午夜福利在线免费观看网站| 中文字幕色久视频| 老司机在亚洲福利影院| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡 | 久久99一区二区三区| 亚洲第一欧美日韩一区二区三区 | 亚洲成人国产一区在线观看| 精品熟女少妇八av免费久了| 99国产精品一区二区三区| 精品国产一区二区三区四区第35| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 亚洲精品在线美女| 男女免费视频国产| 大片电影免费在线观看免费| 妹子高潮喷水视频| 叶爱在线成人免费视频播放| 国产亚洲欧美精品永久| 亚洲欧美日韩另类电影网站| 99在线人妻在线中文字幕 | 黄片播放在线免费| 99国产极品粉嫩在线观看| 大陆偷拍与自拍| 亚洲免费av在线视频| 色婷婷久久久亚洲欧美| 一进一出好大好爽视频| 18禁黄网站禁片午夜丰满| 成人精品一区二区免费| 国产不卡一卡二| 亚洲一区二区三区欧美精品| 国产精品电影一区二区三区 | 国产精品自产拍在线观看55亚洲 | 在线 av 中文字幕| 欧美黑人欧美精品刺激| 亚洲色图 男人天堂 中文字幕| 精品国内亚洲2022精品成人 | 久久精品熟女亚洲av麻豆精品| 电影成人av| 国产高清国产精品国产三级| 亚洲伊人色综图| 天堂中文最新版在线下载| 人妻久久中文字幕网| 777久久人妻少妇嫩草av网站| 一进一出好大好爽视频| 日本wwww免费看| 亚洲午夜理论影院| 久久毛片免费看一区二区三区| 免费人妻精品一区二区三区视频| 看免费av毛片| 国产一区有黄有色的免费视频| cao死你这个sao货| 亚洲精品av麻豆狂野| 嫩草影视91久久| 少妇裸体淫交视频免费看高清 | 欧美在线一区亚洲| 50天的宝宝边吃奶边哭怎么回事| 丁香六月天网| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| 99久久人妻综合| 免费观看人在逋| 欧美中文综合在线视频| 91字幕亚洲| 精品免费久久久久久久清纯 | 少妇 在线观看| 天堂动漫精品| 人妻久久中文字幕网| 亚洲欧美激情在线| 免费高清在线观看日韩| 国产片内射在线| 美女视频免费永久观看网站| 亚洲精品美女久久av网站| 视频区图区小说| netflix在线观看网站| 美女午夜性视频免费| 最新的欧美精品一区二区| 一级毛片精品| av在线播放免费不卡| 大香蕉久久成人网| 无限看片的www在线观看| 精品视频人人做人人爽| 青草久久国产| 在线观看舔阴道视频| 国产野战对白在线观看| 免费人妻精品一区二区三区视频| 欧美乱码精品一区二区三区| 日韩欧美一区二区三区在线观看 | 99热网站在线观看| 中文亚洲av片在线观看爽 | 午夜老司机福利片| 在线观看免费视频日本深夜| 五月开心婷婷网| 精品久久蜜臀av无| 国产欧美日韩一区二区三区在线| 黄频高清免费视频| 啦啦啦中文免费视频观看日本| 丁香六月天网| 制服诱惑二区| 国产成+人综合+亚洲专区| 日韩欧美一区二区三区在线观看 | 成人三级做爰电影| 国产高清视频在线播放一区| 高清黄色对白视频在线免费看| 久久人人爽av亚洲精品天堂| 天天影视国产精品| 日本一区二区免费在线视频| 一级黄色大片毛片| 亚洲九九香蕉| 日本vs欧美在线观看视频| 欧美精品av麻豆av| 久久久久精品国产欧美久久久| 香蕉久久夜色| 精品亚洲成国产av| 亚洲av片天天在线观看| 夜夜骑夜夜射夜夜干| 高清在线国产一区| 香蕉久久夜色| 欧美+亚洲+日韩+国产| 国产av一区二区精品久久| 日韩欧美免费精品| av福利片在线| 国产高清国产精品国产三级| 一边摸一边抽搐一进一出视频| 久久人人97超碰香蕉20202| 午夜福利乱码中文字幕| 狠狠狠狠99中文字幕| aaaaa片日本免费| 亚洲精品av麻豆狂野| 精品一区二区三区视频在线观看免费 | 久久精品亚洲熟妇少妇任你| 三上悠亚av全集在线观看| 国产精品免费一区二区三区在线 | 精品人妻熟女毛片av久久网站| cao死你这个sao货| 国产单亲对白刺激| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 国产高清激情床上av| 99精品在免费线老司机午夜| 老司机在亚洲福利影院| videos熟女内射| kizo精华| 久久精品91无色码中文字幕| 老司机福利观看| av不卡在线播放| 日韩视频在线欧美| 欧美日韩亚洲综合一区二区三区_| 久9热在线精品视频| 久久99热这里只频精品6学生| 动漫黄色视频在线观看| 国产伦理片在线播放av一区| 日韩人妻精品一区2区三区| 久久久国产一区二区| 香蕉久久夜色| 新久久久久国产一级毛片| 欧美日韩亚洲综合一区二区三区_| 日韩有码中文字幕| 黄色毛片三级朝国网站| 12—13女人毛片做爰片一| www.999成人在线观看| 欧美精品一区二区免费开放| 国产精品一区二区在线不卡| a级毛片黄视频| 日韩制服丝袜自拍偷拍| 黄色视频,在线免费观看| 在线av久久热| av国产精品久久久久影院| 久久香蕉激情| 操出白浆在线播放| 精品第一国产精品| 午夜两性在线视频| 深夜精品福利| 在线观看免费日韩欧美大片| 91大片在线观看| 美女国产高潮福利片在线看| 波多野结衣av一区二区av| 丝袜美腿诱惑在线| 精品久久蜜臀av无| 在线十欧美十亚洲十日本专区| 国产日韩欧美亚洲二区| 91精品三级在线观看| 亚洲色图 男人天堂 中文字幕| 色视频在线一区二区三区| 亚洲成人免费电影在线观看| av欧美777| 一夜夜www| 精品久久蜜臀av无| 欧美精品啪啪一区二区三区| 97在线人人人人妻| 色94色欧美一区二区| 在线观看免费午夜福利视频| 日日爽夜夜爽网站| 欧美 日韩 精品 国产| 久久久水蜜桃国产精品网| tocl精华| 国产高清videossex| 一本综合久久免费| 免费黄频网站在线观看国产| 免费高清在线观看日韩| 操美女的视频在线观看| 99九九在线精品视频| 91成人精品电影| 久久人妻熟女aⅴ| 亚洲avbb在线观看| 久久久久网色| 精品视频人人做人人爽| 人成视频在线观看免费观看| 中文字幕色久视频| 精品国产一区二区三区四区第35| 国产精品自产拍在线观看55亚洲 | 在线观看免费午夜福利视频| 黄色a级毛片大全视频| 老司机靠b影院| 日本黄色日本黄色录像| 青草久久国产| 啦啦啦中文免费视频观看日本| 老熟妇仑乱视频hdxx| 久久久国产精品麻豆| 亚洲成国产人片在线观看| 怎么达到女性高潮| 水蜜桃什么品种好| 久久毛片免费看一区二区三区| 亚洲一码二码三码区别大吗| 成人影院久久| 亚洲国产成人一精品久久久| 视频区欧美日本亚洲| 性少妇av在线| 老司机深夜福利视频在线观看| 精品国产一区二区三区四区第35| 亚洲av日韩在线播放| 欧美中文综合在线视频| 在线 av 中文字幕| 亚洲国产看品久久| 久久99一区二区三区| 久久人妻av系列| 日本黄色视频三级网站网址 | 高清视频免费观看一区二区| 嫁个100分男人电影在线观看| 国产一区二区 视频在线| 伊人久久大香线蕉亚洲五| videosex国产| 亚洲成国产人片在线观看| 女性被躁到高潮视频| 午夜福利,免费看| 免费观看a级毛片全部| netflix在线观看网站| 国产日韩欧美在线精品| 夜夜爽天天搞| 国产精品一区二区在线不卡| 日本黄色视频三级网站网址 | 啦啦啦 在线观看视频| 国产欧美日韩一区二区精品| 一区二区三区国产精品乱码| 国产在线观看jvid| 电影成人av| 黄色怎么调成土黄色| 好男人电影高清在线观看| 狠狠婷婷综合久久久久久88av| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 天堂动漫精品| 亚洲欧美一区二区三区黑人| 91麻豆av在线| 一区二区三区激情视频| 日韩熟女老妇一区二区性免费视频| 亚洲成a人片在线一区二区| 老司机亚洲免费影院| 黄片小视频在线播放| 男人操女人黄网站| 女人爽到高潮嗷嗷叫在线视频| 国产主播在线观看一区二区| 久久精品亚洲av国产电影网| 欧美日韩国产mv在线观看视频| 久久精品国产亚洲av香蕉五月 | 欧美人与性动交α欧美精品济南到| 午夜日韩欧美国产| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 热re99久久国产66热| 午夜福利乱码中文字幕| 成人手机av| 亚洲av成人一区二区三| 精品一品国产午夜福利视频| 亚洲一卡2卡3卡4卡5卡精品中文| av电影中文网址| 日韩欧美一区二区三区在线观看 | 丝袜美腿诱惑在线| 一级毛片电影观看| 久久久久久久国产电影| 国产福利在线免费观看视频| 亚洲情色 制服丝袜| 国产在线一区二区三区精| 男女之事视频高清在线观看| 国产在线精品亚洲第一网站| av天堂在线播放| 99riav亚洲国产免费| 99九九在线精品视频| 国产精品久久久人人做人人爽| 成人黄色视频免费在线看| 欧美人与性动交α欧美软件| av视频免费观看在线观看| 精品国产一区二区久久| 黄色视频在线播放观看不卡| 国产精品.久久久| 美女扒开内裤让男人捅视频| 老熟妇仑乱视频hdxx| 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 国产在线一区二区三区精| 男女边摸边吃奶| 午夜福利视频精品| 精品视频人人做人人爽| 精品国产乱码久久久久久小说| 五月天丁香电影| 日韩熟女老妇一区二区性免费视频| 午夜成年电影在线免费观看| 狠狠精品人妻久久久久久综合| 老鸭窝网址在线观看| 啦啦啦视频在线资源免费观看| 国产不卡一卡二| 亚洲人成电影免费在线| 老司机亚洲免费影院| 日本精品一区二区三区蜜桃| 性少妇av在线| 亚洲熟女毛片儿| 一夜夜www| 国产精品一区二区免费欧美| 在线观看人妻少妇| 国产成人精品无人区| 国产99久久九九免费精品| 日韩精品免费视频一区二区三区| 最黄视频免费看| www日本在线高清视频| 考比视频在线观看| 亚洲成国产人片在线观看| 久久久精品区二区三区| 亚洲七黄色美女视频| 窝窝影院91人妻| 久久狼人影院| 三级毛片av免费| 久久国产精品影院| 日韩欧美免费精品| 免费在线观看日本一区| 国产成人系列免费观看| 最黄视频免费看| 欧美成人午夜精品| 成在线人永久免费视频| av一本久久久久| 天天影视国产精品| 国产国语露脸激情在线看| 精品福利观看| 90打野战视频偷拍视频| svipshipincom国产片| 欧美+亚洲+日韩+国产| 欧美亚洲 丝袜 人妻 在线| 高清欧美精品videossex| 老汉色av国产亚洲站长工具| 大码成人一级视频| 涩涩av久久男人的天堂| 99精品久久久久人妻精品| 夜夜骑夜夜射夜夜干| 亚洲精品粉嫩美女一区| 久久久久久亚洲精品国产蜜桃av| 悠悠久久av| 视频在线观看一区二区三区| 一本大道久久a久久精品| 国产一区二区激情短视频| av一本久久久久| 免费少妇av软件| 女警被强在线播放| 一边摸一边做爽爽视频免费| 男女之事视频高清在线观看| 热re99久久国产66热| 免费在线观看完整版高清| 午夜激情久久久久久久| 久久久久久久国产电影| 日韩大码丰满熟妇| 超碰成人久久| 女人久久www免费人成看片| 久久热在线av| h视频一区二区三区| 91成年电影在线观看| 精品国产乱码久久久久久小说| 9热在线视频观看99| 精品国产一区二区三区久久久樱花| 精品国产乱子伦一区二区三区| 国产91精品成人一区二区三区 | 精品亚洲乱码少妇综合久久| 波多野结衣一区麻豆| 日韩一区二区三区影片| 国产成人精品无人区| 国产在视频线精品| 色94色欧美一区二区| 亚洲 欧美一区二区三区| 国产精品免费一区二区三区在线 | 在线观看免费日韩欧美大片| 成年版毛片免费区| 亚洲av欧美aⅴ国产| 我要看黄色一级片免费的| 男女床上黄色一级片免费看| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 成人国语在线视频| 成人国产一区最新在线观看| 久久久国产成人免费| 国产亚洲一区二区精品| 大型av网站在线播放| 免费在线观看视频国产中文字幕亚洲| 色94色欧美一区二区| 久久青草综合色| www.999成人在线观看| 亚洲情色 制服丝袜| 国产免费av片在线观看野外av| av网站在线播放免费| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 黄色 视频免费看| 成人手机av| 黑人巨大精品欧美一区二区mp4| 纵有疾风起免费观看全集完整版| 一区二区三区乱码不卡18| 久久精品人人爽人人爽视色| 人人妻人人添人人爽欧美一区卜| 日韩欧美一区视频在线观看| 777米奇影视久久| 色在线成人网| 两人在一起打扑克的视频| 好男人电影高清在线观看| 美女主播在线视频| 国产亚洲一区二区精品| 桃红色精品国产亚洲av| 午夜激情av网站| 国产福利在线免费观看视频| 久久久久网色| 一夜夜www| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频,在线免费观看| 丝袜美足系列| 久久久国产精品麻豆| 丝袜美足系列| 色94色欧美一区二区| 午夜免费鲁丝| 国产精品香港三级国产av潘金莲| 免费观看a级毛片全部| 在线观看舔阴道视频| 国产真人三级小视频在线观看| 满18在线观看网站| 午夜久久久在线观看| 欧美亚洲日本最大视频资源| 天天添夜夜摸| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 久久久精品区二区三区| 日韩大码丰满熟妇| 一级黄色大片毛片| 免费看十八禁软件| 国产精品1区2区在线观看. | 少妇被粗大的猛进出69影院| 亚洲国产欧美在线一区| videos熟女内射| 99热网站在线观看| 涩涩av久久男人的天堂| 在线av久久热| 日韩免费av在线播放| 精品熟女少妇八av免费久了| 三上悠亚av全集在线观看| 别揉我奶头~嗯~啊~动态视频| 妹子高潮喷水视频| 麻豆国产av国片精品| 欧美 日韩 精品 国产| 中文字幕人妻熟女乱码| 18禁观看日本| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 国产成人av教育| 99国产极品粉嫩在线观看| 久久久久久亚洲精品国产蜜桃av| 波多野结衣av一区二区av| 亚洲第一欧美日韩一区二区三区 | 天堂中文最新版在线下载| 色婷婷久久久亚洲欧美| 啪啪无遮挡十八禁网站| 亚洲精品成人av观看孕妇| 高清毛片免费观看视频网站 | 久久人妻熟女aⅴ| 曰老女人黄片| 久久亚洲真实| 中文亚洲av片在线观看爽 | 国产熟女午夜一区二区三区| 老司机靠b影院| 三级毛片av免费| 99久久人妻综合| 国产成人免费观看mmmm| 少妇精品久久久久久久| 午夜激情久久久久久久| 国产精品国产av在线观看| 国产aⅴ精品一区二区三区波| 99re6热这里在线精品视频| 啦啦啦视频在线资源免费观看| 国产成人精品在线电影| 搡老熟女国产l中国老女人| 在线看a的网站| 黄色成人免费大全| 国产成人影院久久av| 每晚都被弄得嗷嗷叫到高潮| 三级毛片av免费| 日韩成人在线观看一区二区三区| 婷婷丁香在线五月| 80岁老熟妇乱子伦牲交| 久久国产精品人妻蜜桃| 亚洲精品国产精品久久久不卡| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜制服| 国产老妇伦熟女老妇高清| 久久精品91无色码中文字幕| 成年版毛片免费区| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 久久九九热精品免费| 大型黄色视频在线免费观看| 久久精品国产99精品国产亚洲性色 | 欧美一级毛片孕妇| 国产成人系列免费观看| 午夜久久久在线观看| 亚洲av美国av| 成人精品一区二区免费| 男女之事视频高清在线观看| 一二三四在线观看免费中文在| 桃红色精品国产亚洲av| 在线亚洲精品国产二区图片欧美| 免费不卡黄色视频| 精品国产一区二区三区四区第35| 久久影院123| 久久久国产精品麻豆| 高清欧美精品videossex| 亚洲国产欧美一区二区综合| 妹子高潮喷水视频| 黄色片一级片一级黄色片| 国产成人系列免费观看| 亚洲精品国产色婷婷电影|