• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of helium clustering at initial stage in ThO2?

    2017-08-30 08:26:20KuanShao邵寬HanHan韓晗WeiZhang張偉ChangYingWang王昌英YongLiangGuo郭永亮CuiLanRen任翠蘭andPingHuai懷平
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張偉

    Kuan Shao(邵寬),Han Han(韓晗),Wei Zhang(張偉),Chang-Ying Wang(王昌英), Yong-Liang Guo(郭永亮),Cui-Lan Ren(任翠蘭),and Ping Huai(懷平),?

    1 Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2 Key Laboratory of Interfacial Physics and Technology,Chinese Academy of Sciences,Shanghai 201800,China

    3 University of Chinese Academy of Sciences,Beijing 100049,China

    First-principles study of helium clustering at initial stage in ThO2?

    Kuan Shao(邵寬)1,3,Han Han(韓晗)1,?,Wei Zhang(張偉)1,2,Chang-Ying Wang(王昌英)1, Yong-Liang Guo(郭永亮)1,Cui-Lan Ren(任翠蘭)1,2,and Ping Huai(懷平)1,2,?

    1 Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2 Key Laboratory of Interfacial Physics and Technology,Chinese Academy of Sciences,Shanghai 201800,China

    3 University of Chinese Academy of Sciences,Beijing 100049,China

    The clustering behavior of helium atoms in thorium dioxide has been investigated by first-principles calculations.The results show that He atoms tend to form a cluster around an octahedral interstitial site(OIS).As the concentration of He atoms in ThO2increases,the strain induced by the He atoms increases and the octahedral interstitial site is not large enough to accommodate a large cluster,such as a He hexamer.We considered three different Schottky defect(SD)configurations (SD1,SD2,and SD3).When He atoms are located in the SD sites,the strain induced by the He atoms is released and the incorporation and binding energies decrease.The He trimer is the most stable cluster in SD1.Large He clusters,such as a He hexamer,are also stable in the SDs.

    first-principles study,thorium dioxide,helium cluster,defective properties

    1.Introduction

    Thorium dioxide is a robust nuclear fuel candidate for generation IV reactors because of its low generation of minor actinides,excellent radiation resistance and chemical stability.[1–4]During the reactoroperation,production of noble gases may affect the mechanical and thermal properties of nuclear fuels.[5,6]One of these noble gases is helium,and most of the helium is generated by alpha decay during fuel burnup.Because of its high diffusivity,helium tends to cluster and form bubbles,resulting in swelling of nuclear fuels.[7–9]Therefore,it is necessary to investigate the clustering behavior of helium in nuclear fuels.

    Considering the difficulties in nuclear fuel experiments, effective theoretical calculations should be performed.Density functional theory(DFT)is a reliable method to evaluate the point defect energies by atomic-scale calculation.[10–13]In recent years,a number of computational works concerned with the bulk and defect properties of nuclear fuels have been performed.[14–21]Zhang et al.[14,15]investigated the mechanical and thermal properties of ThO2by first-principles calculations.Thompson et al.[16]reported that the stability of noble gas atoms is related to the strain they caused in trap sites.Ma et al.[17]studied the swelling of UO2induced by noble gases based on hybrid DFT.Brillant et al.[18]studied the stability and solubility of fission products,including helium,using spin-polarized generalized gradient approximation with on-site Coulomb correction techniques.Yun et al.[19]investigated the clustering behavior of He in UO2,and found that He clusters affect the local mechanical properties of UO2. Dabrowski et al.[20]reported that diffusion of helium between two octahedral sites in UO2is along a polyline rather than a straight line.

    In the present work,we investigate the clustering behavior of helium by choosing an octahedral interstitial site(OIS)and the Schottky defect(SD)as the trap sites.The volume change of ThO2and incorporation and solution energies are then calculated with increasing concentration of He atoms.Finally, the stability of He clusters is discussed from the perspective of their calculated binding energies.

    2.Methodology

    Our calculations were performed using the density functional theory as implemented in the Vienna ab initio simu-lation package(VASP).[22,23]The projected augmented wave method(PAW)[24]and the generalized gradient approximation(GGA)[25]were used.The exchange and correlation energies were calculated using the Perdew–Burke–Ernzerh of (PBE)functional.[26]The wave functions were expanded in a plane-wave basis set with an energy cutoff of 500 eV. Since ThO2is a diamagnetic material,[14]the spin polarization was not considered in the calculation.The results were also checked with spin polarized calculations,which showed no obvious differences.Due to no inclusion of occupied 5f states,the strong correlation effect of ThO2was negligible.Ithas been reported[15,27]that the GGA approximation can give nearly correct energy information for ThO2,and therefore the GGA+U method[28,29]was not adopted in this work.The lattice constants and internal freedom of the unit cell were fully optimized until the Hellman–Feynman forces on the atoms were less than 0.01 eV/?A.The effective charge for each atom was calculated using Bader charge analysis.[30]

    In order to simulate the helium clusters incorporated in ThO2,a 2×2×2 supercell containing 96 atoms was used in the calculation.The previous results[27,28]have proven that a supercell of this size can make the energies sufficiently converged.Depending on the unit cell size and shape,a 2×2×2 Monkhorst–Pack sampling mesh[31]of k-points was used.We implemented a k-mesh test for the He–ThO2system.The incorporation energy of He(discussed in the next section)calculated by 2×2×2 and 3×3×3 k-meshes has a little difference within the range of meV.This indicated that a 2×2×2 k-mesh is sufficient to avoid significant numerical errors in our calculations.All these calculations were checked using larger energy cutoffs and k-meshes;the results of total energy and Hellmann–Feynman forces were converged within 0.01 eV and 0.01 eV/?A,respectively.According to the previous work,[32–34]the zero point energy(ZPE)of helium in oxides is small,which does not affect the numerical results. This can be seen in some previous studies of similar material systems.For instance,when helium interacts with O atoms in Al2O3,ZPE corrections are in a range of 10?2–10?3eV.[32]Therefore,calculations without ZPE correction were employed in this work.

    Table 1.Incorporation energy of He in octahedral interstitial site for different k-meshes.

    3.Results and discussion

    ThO2crystallizes in a cubic fluorite structure(space group:F m3m).Our calculated lattice constant is 5.617?A, which agrees with the theoretical result(5.619?A)reported by Zhang et al.[14]and the experimental value(5.597?A)reported by Olsen et al.[35]To investigate the clustering behavior of helium in ThO2,the following trap sites are considered:the octahedral interstitial site(OIS)and the Schottky defect(SD) as shown in Fig.1.The SD clusters can be made by removing one thorium atom and two neighboring oxygen atoms from the lattice.[36]Thus three configurations of the Schottky defect (SD1,SD2,SD3)can be considered,differing by the distance between the two oxygen vacancies.

    Fig.1.(color online)(a)The cubic fluorite structure of ThO2.The gray and red spheres represent the thorium and oxygen atoms,respectively. The solid spheres represent the OIS.(b)Three configurations of the Schottky defect:(b)SD1,(c)SD2,and(d)SD3.The dashed spheres represent the vacancies.

    It is known that helium atoms prefer to reside in octahedral interstitial sites in the perfect fuel matrix.[37]He atoms spontaneously move to OISs after atomic relaxation from their initial positions in other interstitial sites.The diffusion barrier plays an important role in the clustering process of He.We calculated the migration energy of He by the nudged elastic band(NEB)method.[38]The migration energy of He between two OISs is 3.80 eV,which is in agreement with the results reported by Da?rowski et al.[39]Considering the environment with a high temperature in nuclear fuels,we suggest that He tends to be mobile in ThO2.In this work,we considered the clustering behavior of He atoms around an OIS with increasing concentration of He atoms.Firstly,we positioned two He atoms at the center of the edge between two oxygen atoms (Fig.2),which is the midpoint between two interstitial sites. After relaxation,they both move to the center of an OIS and form a He dimer,as shown in Fig.2(a).

    Fig.2.(color online)The initial configurations of(a)two and(b)four He atoms and their configurations after atomic relaxation.The gray, red,and blue spheres represent the thorium,oxygen,and helium atoms, respectively.

    The clustering behavior was investigated by increasing the concentration of He atoms in ThO2.For four He atoms, a tetra mer forms in an OIS,as shown in Fig.2(b).For six He atoms,the He atoms do not form a hex-amer,which we might except,but they form three dimers trapped in different OISs (see Fig.3).This indicates that the OIS in ThO2does not have sufficient space to accommodate a large cluster,such as a hex-amer.This result is different from the case in UO2,where six He atoms tend to form a hex-amer in the OIS and greatly displace the surrounding atoms.[19]The largest displacement of the surrounding oxygen atoms in our work is 0.23?A(see Table 1),while the displacement of oxygen atoms can be as large as 0.65?A in UO2.We suggest that the oxygen and thorium atoms in ThO2are less mobile than the uranium and oxygen atoms in UO2.

    Fig.3.(color online)The initial configurations of six He atoms and the configuration after atomic relaxation.Three dimers form in different OISs.

    When He atoms are introduced into the supercell structure,the volume of the structure changes according to the doping site and the number of He atoms.This volume change is given by

    Table 2.Volume changes relative to the perfect supercell ΔV/V,displacement of the nearest-neighbouring atoms of He Δd,incorporation energies E Inc,and binding energies E B with the increasing number of He atoms.

    To investigate the stability of the He clusters in ThO2,we calculated the incorporation energies of He interstitials.The incorporation energyis defined as the energy required to incorporate a He atom in a pre-existing defect site,

    where N is the number of He atoms andis the incorporation energy of the He cluster in defect X.As shown in Table 2,all of the binding energies are positive,suggesting that binding of these He clusters in an OIS is an endothermic process.The binding energy increases with the size of the He cluster,and the tetramer has the largest binding energy of 7.64 eV.This indicates that a large energy barrier needs to be overcome when four He atoms migrate from isolated OISs to form a cluster in one OIS of ThO2.The He dimer is the most stable cluster in the OIS with a binding energy of 1.93 eV.

    Fig.4.(color online)The configurations of He trimmers in(a)SD1, (b)SD2,(c)SD3;and(d)a He dimer,(e)a He tetramer,and(f)a He hexamer in SD1.

    The incorporation energy of He atoms is related to the strain.[16]Owing to the large strain induced by large clusters, an OIS does not seem to be the energetically favorable trap site for He atoms.Thus,we also considered the Schottky defect (SD)as the trap site,which can provide more empty space for strain release.As shown in Fig.4,three configurations of the Schottky defect(SD1,SD2,and SD3)were considered,which differ by the distance between the two oxygen vacancies.He atoms tend to aggregate in the SDs after atomic relaxation, and even a He hexamer can exist in ThO2(see Fig.4).The calculated ΔV/V and EIncof He clusters trapped in the SDs are listed in Table 3.As the concentration of He atoms in ThO2increases,both ΔV/V and EIncincrease.A He hexamer in SD1has the largest incorporation energy of 3.35 eV,which also results in the largest volume change of 1.31%.As shown in Fig.5,the incorporation energies of He atoms in the SDs are significantly smaller than those in OISs,suggesting that He clusters prefer to reside in SDs.The volume changes induced by He atoms in the SDs are also smaller than those in OISs.This indicates that these SDs are favorable for the release of the strain induced by incorporation of He clusters in ThO2,especially for large clusters.

    Table 3.Volume changes ΔV/V(in%)and incorporation energies E Inc(in eV)of He clusters trapped in SDs with the increasing number of He atoms.

    Fig.5.(color online)The average volume changes ΔV/V and incorporation energies E Inc of He clusters trapped in SDs,with comparison to those in an OIS.

    Considering the energy cost for formation of the SD,we also calculated the solution energy

    Fig.6.(color online)Solution energies of He clusters in SDs,with the increasing concentration of He atoms in ThO2.Three configurations of SD are considered.

    Table 4.Solution energies E Sol(in eV)and binding energies E B(in eV)of He clusters trapped in SDs with the increasing number of He atoms.

    To access the possibility that isolated He atoms in OISs aggregate in one SD,we also calculated the binding energies (Table 4).All of the binding energies of He clusters in the SDs are negative,suggesting that the binding process is energetically favorable.For He clusters in SD1,the He trimer has the lowest binding energy and is the most stable cluster.For SD2and SD3,a He hexamer has the lowest binding energy, indicating that He atoms tend to form a large cluster in SD2and SD3.

    4.Conclusion

    We have performed first-principles calculations of He clustering in ThO2.As the concentration of He atoms in ThO2increases,the He atoms tend to form a cluster around an OIS. A He dimer is the most stable cluster in an OIS.However,one OIS is not large enough to accommodate a large cluster,such as a He hexamer.When He atoms are located in SDs,the strain induced by the He atoms is released and the incorporation and binding energies decrease.The negative binding energies indicate that He atoms located in isolated OISs can easily aggregate in a SD.A He trimer is the most stable cluster in SD1. Large He clusters,such as a He hexamer,can also form in SDs.For SD2and SD3,even large clusters(more than six He atoms)can exist according to the calculated binding energies. Finally,our results suggest that the growth of a larger He clusters may occur by the diffusion and aggregation of Schottky defects with He atoms.Our further studies may concern the formation and diffusion of these large defects in ThO2with a calculation using a larger supercell.The clustering behavior of He atoms will affect the mechanical properties of ThO2.The degradation of mechanical properties will also be investigated in further investigations.

    Acknowledgements

    We thank the Supercomputing Center of the Chinese Academy of Sciences(SCCAS)and the Shanghai Supercomputing Center for computer resources.

    [1]Lombardi C,Luzzi L,Padovani E and Vettraino F 2008 Prog.Nucl. Energy 50 944

    [2]Breza J,Daí? lek P and Ne?as V 2010 Ann.Nucl.Eng.37 685

    [3]Mirvakili S M,Gholamzadeh Z and Feghhi S A H 2016 Nucl.Sci.Tech. 27 79

    [4]Liu Z B,Liu Y,Liu G M and Hou J 2016 Nucl.Sci.Tech.27 123

    [5]Roudil D,Bonhoure J,Pik R,Cuney M,Jégou C and Gauthier-Lafaye F 2008 J.Nucl.Mater.378 70

    [6]Ansarifar G R and Akhavan H R 2016 Nucl.Sci.Tech.27 28

    [7]Sattonnay G,Vincent L,Garrido F and Thome L 2006 J.Nucl.Mater. 355 131

    [8]Grimes R W,Miller R H and Catlow C 1990 J.Nucl.Mater.172 123

    [9]Ronchi C and Hiernaut J 2004 J.Nucl.Mater.325 1

    [10]Han H,Wickramaratne D,Huang Q,Dai J,Li T,Wang H,Zhang W and Huai P 2016 RSC Advances 6 84262

    [11]Wang H,Han H,Yin G,Wang C Y,Hou Y Y,Tang J,Dai J X,Ren C L,Zhang W and Huai P 2017 Materials 10 103

    [12]Han H,Yin G,Wang H,Wang C,Shao K,Zhang W,Dai J and Huai P 2017 Comput.Mater.Sci.133 159

    [13]Counts W,Wolverton C and Gibala R 2010 Acta Mater.58 4730

    [14]Wang B T,Shi H,Li W D and Zhang P 2010 J.Nucl.Mater.399 181

    [15]Lu Y,Yang Y and Zhang P 2012 J.Phys.:Condens.Matter 24 225801

    [16]Thompson A E and Wolverton C 2011 Phys.Rev.B 84 134111

    [17]Ma L and Ray A K 2012 Phys.Lett.A 376 1499

    [18]Brillant G,Gupta F and Pasturel A 2011 J.Nucl.Mater.412 170

    [19]Yun Y,Eriksson O and Oppeneer P M 2009 J.Nucl.Mater.385 72

    [20]Dabrowski L and Szuta M 2014 J.Alloys Compd.615 598

    [21]Wang C Y,Han H,Shao K,Cheng C and Huai P 2015 Chin.Phys.B. 24 097101

    [22]Kresse G and Furthmüller J 1996 Phys.Rev.B 54 11169

    [23]Kresse G and Joubert D 1999 Phys.Rev.B 59 1758

    [24]Bl?chl P E 1994 Phys.Rev.B 50 17953

    [25]Perdew J P,Chevary J,Vosko S,Jackson K A,Pederson M R,Singh D and Fiolhais C 1992 Phys.Rev.B 46 6671

    [26]Perdew J P,Burke K and Ernzerhof M 1996 Phys.Rev.Lett.77 3865

    [27]Alexandrov V,Gr?nbech-Jensen N,Navrotsky A and Asta M 2010 Phys.Rev.B 82 174115

    [28]Geng H Y,Chen Y,Kaneta Y,Kinoshita M and Wu Q 2010 Phys.Rev. B 82 094106

    [29]Dudarev S,Manh D N and Sutton A 1997 Philos.Mag.B 75 613

    [30]Henkelman G,Arnaldsson A and Jónsson H 2006 Comput.Mater.Sci. 36 354

    [31]Monkhorst H J and Pack J D 1976 Phys.Rev.B 13 5188

    [32]Zhang G,Xiang X,Yang F,Peng X,Tang T,Shi Y and Wang X 2016 Phys.Chem.Chem.Phys.18 1649

    [33]Zhang P,Zhao J and Wen B 2012 J.Nucl.Mater.423 164

    [34]de Lara-Castells M P,Stoll H and Mitrushchenkov A O 2014 J.Phys. Chem.A 118 6367

    [35]Olsen J S,Gerward L,Kanchana V and Vaitheeswaran G 2004 J.Alloys Compd.381 37

    [36]Dorado B,Freyss M and Martin G 2009 Eur.Phys.J.B 69 203

    [37]Yun Y,Kim H,Kim H and Park K 2008 J.Nucl.Mater.378 40

    [38]Henkelman G,Uberuaga B P and Jónsson H 2000 J.Chem.Phys.113 9901

    [39]Da?browski L and Szuta M 2014 J.Alloys Compd.615 598

    [40]Matzke H 1987 J.Chem.Soc.,Faraday Trans.283 1121

    [41]Lidiard A 1966 J.Nucl.Mater.19 106

    31 March 2017;revised manuscript

    18 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/097101

    ?Project supported by the Program of International Samp;T Cooperation,China(Grant No.2014DFG60230),the National Natural Science Foundation of China (Grant Nos.11605273,21571185,U1404111,11504089,21501189,and 21676291),the Shanghai Municipal Science and Technology Commission,China (Grant No.16ZR1443100),and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA02040104).

    ?Corresponding author.E-mail:hanhan@sinap.ac.cn

    ?Corresponding author.E-mail:huaiping@sinap.ac.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張偉
    Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model?
    文化名家
    ——張偉
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    Solvability for Fractional p-Laplacian Differential Equation with Integral Boundary Conditions at Resonance on Infinite Interval
    Relationship between characteristic lengths and effective Saffman length in colloidal monolayers near a water-oil interface?
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    藝術(shù)廣角
    數(shù)學(xué)潛能知識月月賽
    真的記住了
    故事會(2014年10期)2014-05-14 15:24:18
    久久精品人妻少妇| 亚洲,欧美,日韩| 老师上课跳d突然被开到最大视频| 中文字幕免费在线视频6| 久热久热在线精品观看| 国产亚洲一区二区精品| 久久久久久久大尺度免费视频| 国产免费又黄又爽又色| 亚洲精品成人av观看孕妇| 少妇熟女欧美另类| 久久精品久久久久久久性| 日本黄色片子视频| 亚洲成人一二三区av| 韩国av在线不卡| 男人狂女人下面高潮的视频| 男人狂女人下面高潮的视频| 亚洲精品乱码久久久v下载方式| 高清在线视频一区二区三区| 极品少妇高潮喷水抽搐| 在线观看人妻少妇| 一级爰片在线观看| 秋霞伦理黄片| 97超碰精品成人国产| 亚洲在久久综合| 精品酒店卫生间| 国产免费福利视频在线观看| 男女边摸边吃奶| 日韩av在线免费看完整版不卡| 欧美亚洲 丝袜 人妻 在线| 国产 一区精品| 亚洲国产精品专区欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 婷婷色麻豆天堂久久| 人妻夜夜爽99麻豆av| 男人舔奶头视频| 少妇人妻一区二区三区视频| 亚洲欧美成人综合另类久久久| 亚洲国产av新网站| 色吧在线观看| 亚洲av福利一区| 一级片'在线观看视频| 狂野欧美激情性xxxx在线观看| 欧美性感艳星| 91精品伊人久久大香线蕉| 高清欧美精品videossex| 国产淫片久久久久久久久| 三级国产精品片| 蜜桃久久精品国产亚洲av| 亚洲人成网站高清观看| 亚洲av中文字字幕乱码综合| 蜜桃在线观看..| 日韩在线高清观看一区二区三区| 高清视频免费观看一区二区| 国产成人精品福利久久| 全区人妻精品视频| 日韩一本色道免费dvd| 日本色播在线视频| 精品久久久久久电影网| 色吧在线观看| 日韩三级伦理在线观看| 久久精品国产亚洲av天美| 麻豆成人午夜福利视频| 国产老妇伦熟女老妇高清| 青春草国产在线视频| 国产91av在线免费观看| av黄色大香蕉| 精品久久久噜噜| 亚洲三级黄色毛片| 蜜桃在线观看..| 国产在线免费精品| 欧美日韩一区二区视频在线观看视频在线| 国产爱豆传媒在线观看| 日本与韩国留学比较| 国产 一区精品| av免费在线看不卡| 丰满乱子伦码专区| 我要看日韩黄色一级片| av在线播放精品| 亚洲av免费高清在线观看| a级毛色黄片| 伊人久久国产一区二区| 国产成人精品一,二区| 18+在线观看网站| 欧美激情极品国产一区二区三区 | 三级国产精品欧美在线观看| 国产极品天堂在线| 欧美bdsm另类| 在线观看三级黄色| 一级毛片电影观看| 国精品久久久久久国模美| 男人爽女人下面视频在线观看| 欧美丝袜亚洲另类| 狂野欧美白嫩少妇大欣赏| 三级国产精品片| 内地一区二区视频在线| 在线观看免费视频网站a站| 精品少妇黑人巨大在线播放| 欧美三级亚洲精品| 黄片无遮挡物在线观看| 草草在线视频免费看| 精品午夜福利在线看| 我要看日韩黄色一级片| 欧美xxxx黑人xx丫x性爽| 色婷婷久久久亚洲欧美| 久久久久性生活片| 久久久久久人妻| 国产淫语在线视频| 久久久欧美国产精品| 岛国毛片在线播放| av在线播放精品| 卡戴珊不雅视频在线播放| 欧美成人a在线观看| 国产精品久久久久成人av| 99热6这里只有精品| 中文字幕免费在线视频6| 日韩一区二区视频免费看| 内射极品少妇av片p| 亚洲第一区二区三区不卡| 日日啪夜夜撸| 男女下面进入的视频免费午夜| 免费av中文字幕在线| av在线播放精品| 下体分泌物呈黄色| 狠狠精品人妻久久久久久综合| 午夜免费观看性视频| 女人久久www免费人成看片| 成人毛片60女人毛片免费| 91aial.com中文字幕在线观看| 日本vs欧美在线观看视频 | 天堂8中文在线网| 我要看黄色一级片免费的| a级毛色黄片| 日本欧美视频一区| 国产探花极品一区二区| 在线看a的网站| 观看av在线不卡| 多毛熟女@视频| 美女福利国产在线 | 国产成人a区在线观看| 另类亚洲欧美激情| 成年美女黄网站色视频大全免费 | 乱码一卡2卡4卡精品| 久久这里有精品视频免费| 欧美激情极品国产一区二区三区 | 最新中文字幕久久久久| 夫妻午夜视频| 少妇猛男粗大的猛烈进出视频| 51国产日韩欧美| 高清在线视频一区二区三区| 国产精品国产av在线观看| 夜夜看夜夜爽夜夜摸| av免费观看日本| 国国产精品蜜臀av免费| 毛片一级片免费看久久久久| 亚洲精品成人av观看孕妇| 国产成人a区在线观看| 亚洲欧美日韩东京热| 午夜福利在线在线| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 韩国av在线不卡| 久久国产精品男人的天堂亚洲 | 免费av不卡在线播放| av专区在线播放| 久久久久久久久久成人| 赤兔流量卡办理| 人人妻人人澡人人爽人人夜夜| 久久久久久九九精品二区国产| 久久久成人免费电影| 免费大片18禁| 99久久精品国产国产毛片| 国产v大片淫在线免费观看| 夜夜爽夜夜爽视频| 色网站视频免费| 2022亚洲国产成人精品| 亚洲国产精品专区欧美| 天堂8中文在线网| 国产精品一区www在线观看| 欧美 日韩 精品 国产| 成年女人在线观看亚洲视频| 九草在线视频观看| 边亲边吃奶的免费视频| 成人黄色视频免费在线看| 少妇的逼好多水| 卡戴珊不雅视频在线播放| a级毛色黄片| 免费人成在线观看视频色| 国产黄片美女视频| 一区二区三区精品91| 五月玫瑰六月丁香| 久久韩国三级中文字幕| 国产亚洲一区二区精品| 亚洲人成网站高清观看| 欧美日韩综合久久久久久| 久久99精品国语久久久| 大码成人一级视频| 久久 成人 亚洲| 日本黄色片子视频| 日韩在线高清观看一区二区三区| 色5月婷婷丁香| 亚洲欧美一区二区三区黑人 | 99久久人妻综合| 亚洲人成网站在线观看播放| 日本-黄色视频高清免费观看| 欧美日韩精品成人综合77777| 国产精品一区二区在线不卡| 国产精品嫩草影院av在线观看| 精品99又大又爽又粗少妇毛片| 国产精品人妻久久久久久| 大话2 男鬼变身卡| 国产精品av视频在线免费观看| 视频中文字幕在线观看| 老司机影院成人| 国产亚洲av片在线观看秒播厂| 黄色配什么色好看| 黑丝袜美女国产一区| 久久久午夜欧美精品| 亚洲国产欧美在线一区| 卡戴珊不雅视频在线播放| 香蕉精品网在线| 在线播放无遮挡| 高清黄色对白视频在线免费看 | 我的女老师完整版在线观看| 欧美zozozo另类| 婷婷色av中文字幕| 国产精品国产av在线观看| 两个人的视频大全免费| 中国三级夫妇交换| 欧美xxxx黑人xx丫x性爽| 久久久久久人妻| 人妻制服诱惑在线中文字幕| 汤姆久久久久久久影院中文字幕| 免费久久久久久久精品成人欧美视频 | 久久鲁丝午夜福利片| 免费高清在线观看视频在线观看| 国产男女内射视频| 日本欧美国产在线视频| 一个人免费看片子| 熟女电影av网| 七月丁香在线播放| 亚洲国产最新在线播放| 99久久人妻综合| .国产精品久久| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 建设人人有责人人尽责人人享有的 | 国产大屁股一区二区在线视频| 少妇高潮的动态图| av国产免费在线观看| 校园人妻丝袜中文字幕| 成年免费大片在线观看| 亚洲精华国产精华液的使用体验| 日韩av不卡免费在线播放| 欧美国产精品一级二级三级 | 在线免费观看不下载黄p国产| 国产伦精品一区二区三区四那| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91 | 久久午夜福利片| 亚洲图色成人| 成人免费观看视频高清| 深夜a级毛片| 久久6这里有精品| 蜜桃久久精品国产亚洲av| 性高湖久久久久久久久免费观看| 欧美bdsm另类| 国产av国产精品国产| 性色av一级| 日日摸夜夜添夜夜添av毛片| 国产精品国产三级专区第一集| 欧美少妇被猛烈插入视频| 国产精品一区www在线观看| 男女无遮挡免费网站观看| 1000部很黄的大片| 一边亲一边摸免费视频| 日韩 亚洲 欧美在线| 午夜免费男女啪啪视频观看| 男女边摸边吃奶| 一级毛片电影观看| 国产中年淑女户外野战色| 欧美高清成人免费视频www| 欧美精品一区二区大全| 国产精品三级大全| 精品一区二区三区视频在线| 婷婷色av中文字幕| 91精品一卡2卡3卡4卡| 黄色日韩在线| 久久国产乱子免费精品| 欧美zozozo另类| 日日啪夜夜爽| 欧美日韩综合久久久久久| 18禁裸乳无遮挡动漫免费视频| 久久国内精品自在自线图片| 国产免费又黄又爽又色| 精品人妻偷拍中文字幕| 国产精品一区二区在线不卡| 狂野欧美激情性bbbbbb| 国产精品人妻久久久久久| av播播在线观看一区| 日日摸夜夜添夜夜爱| av在线app专区| 我的老师免费观看完整版| 狂野欧美激情性xxxx在线观看| 国产视频内射| 国产精品一区二区三区四区免费观看| 久久99热这里只有精品18| 我要看黄色一级片免费的| 日韩欧美一区视频在线观看 | 久久99精品国语久久久| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美 | 下体分泌物呈黄色| 国产又色又爽无遮挡免| 亚洲欧美日韩无卡精品| 一区二区三区四区激情视频| 国产精品久久久久久精品电影小说 | 国产黄片美女视频| 少妇人妻久久综合中文| 中文乱码字字幕精品一区二区三区| av视频免费观看在线观看| 欧美精品一区二区免费开放| 一区二区三区四区激情视频| 中文在线观看免费www的网站| 久久人妻熟女aⅴ| 夫妻午夜视频| 性色av一级| 国产黄片美女视频| 日韩中文字幕视频在线看片 | 国产精品一区二区性色av| 精品久久国产蜜桃| 免费看av在线观看网站| 国产白丝娇喘喷水9色精品| 成人国产av品久久久| 肉色欧美久久久久久久蜜桃| 亚洲av.av天堂| 下体分泌物呈黄色| 国产精品不卡视频一区二区| 99热国产这里只有精品6| 国产精品久久久久成人av| 免费看不卡的av| 美女主播在线视频| 好男人视频免费观看在线| 中文字幕久久专区| 免费高清在线观看视频在线观看| 日本av手机在线免费观看| 涩涩av久久男人的天堂| 午夜福利高清视频| 久久综合国产亚洲精品| 九九爱精品视频在线观看| 寂寞人妻少妇视频99o| 噜噜噜噜噜久久久久久91| 中文字幕亚洲精品专区| 久久人妻熟女aⅴ| 国产精品精品国产色婷婷| 熟妇人妻不卡中文字幕| 亚洲av日韩在线播放| 99九九线精品视频在线观看视频| 国产在线一区二区三区精| 在线观看av片永久免费下载| 国产av国产精品国产| 成年女人在线观看亚洲视频| 亚洲欧美日韩无卡精品| 夜夜骑夜夜射夜夜干| 中文字幕久久专区| 亚洲精品日韩av片在线观看| 中文字幕精品免费在线观看视频 | 熟女av电影| 亚洲欧洲国产日韩| 丝袜脚勾引网站| 亚洲最大成人中文| 99热网站在线观看| 国产精品国产三级国产专区5o| 国产成人freesex在线| 最近最新中文字幕免费大全7| 亚洲国产色片| 少妇高潮的动态图| 777米奇影视久久| 特大巨黑吊av在线直播| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区| 91精品国产九色| 纵有疾风起免费观看全集完整版| 观看美女的网站| 国产乱人偷精品视频| 久久久亚洲精品成人影院| 嫩草影院入口| 国产在线男女| 日韩伦理黄色片| 简卡轻食公司| 女人久久www免费人成看片| 九色成人免费人妻av| 九九爱精品视频在线观看| 日韩一本色道免费dvd| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 在线观看一区二区三区| 亚洲av免费高清在线观看| 在线精品无人区一区二区三 | 丝瓜视频免费看黄片| 日韩人妻高清精品专区| 男男h啪啪无遮挡| 秋霞伦理黄片| 又大又黄又爽视频免费| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| 亚洲精品色激情综合| 成人二区视频| 1000部很黄的大片| 久久97久久精品| 国产伦精品一区二区三区四那| 哪个播放器可以免费观看大片| 国产老妇伦熟女老妇高清| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 观看免费一级毛片| 国产一区二区三区av在线| 午夜老司机福利剧场| 人妻一区二区av| 大码成人一级视频| 国产精品久久久久久久久免| 成人毛片60女人毛片免费| 99九九线精品视频在线观看视频| 性色av一级| 少妇的逼水好多| 一个人看的www免费观看视频| 亚洲电影在线观看av| 成人毛片a级毛片在线播放| 精品人妻视频免费看| 欧美国产精品一级二级三级 | 亚洲色图综合在线观看| a级毛色黄片| 插逼视频在线观看| 欧美日韩视频高清一区二区三区二| 国产成人精品一,二区| 成人国产麻豆网| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 国产精品精品国产色婷婷| 久久久久久久亚洲中文字幕| 观看av在线不卡| 少妇 在线观看| 欧美xxⅹ黑人| 国产成人免费无遮挡视频| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 晚上一个人看的免费电影| 日韩av不卡免费在线播放| 国语对白做爰xxxⅹ性视频网站| 人妻一区二区av| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 国产真实伦视频高清在线观看| 久久99热这里只频精品6学生| 精品视频人人做人人爽| 亚洲综合色惰| 国产精品久久久久久久久免| 久久久亚洲精品成人影院| 春色校园在线视频观看| 精品酒店卫生间| 18禁在线播放成人免费| 男女无遮挡免费网站观看| 一级毛片 在线播放| 免费看av在线观看网站| 中文字幕av成人在线电影| 美女cb高潮喷水在线观看| 久久综合国产亚洲精品| 国产成人免费无遮挡视频| 欧美高清成人免费视频www| 十分钟在线观看高清视频www | 欧美zozozo另类| 久久久欧美国产精品| 日韩中文字幕视频在线看片 | 国产一区二区在线观看日韩| 亚洲精品第二区| 永久网站在线| av国产久精品久网站免费入址| 国产探花极品一区二区| 我要看日韩黄色一级片| 中文字幕久久专区| 国产精品秋霞免费鲁丝片| 国产精品蜜桃在线观看| 国产精品偷伦视频观看了| 在线免费十八禁| 亚洲国产高清在线一区二区三| 18禁在线无遮挡免费观看视频| 黄色配什么色好看| 一级二级三级毛片免费看| 人妻 亚洲 视频| 少妇的逼好多水| tube8黄色片| 国产精品一及| 亚洲图色成人| 国内揄拍国产精品人妻在线| 成年免费大片在线观看| 亚洲av中文av极速乱| 欧美精品亚洲一区二区| 寂寞人妻少妇视频99o| 国模一区二区三区四区视频| 国产成人精品福利久久| 亚洲精品久久午夜乱码| 精品少妇黑人巨大在线播放| 在线观看国产h片| 日韩一区二区视频免费看| 一本色道久久久久久精品综合| av黄色大香蕉| 日本vs欧美在线观看视频 | 精品99又大又爽又粗少妇毛片| 国产午夜精品久久久久久一区二区三区| 少妇熟女欧美另类| 男女啪啪激烈高潮av片| 黄色视频在线播放观看不卡| 黄色日韩在线| 91精品国产国语对白视频| 国产在线免费精品| 久久青草综合色| 久久精品国产亚洲av涩爱| 丰满迷人的少妇在线观看| 秋霞伦理黄片| 男女边吃奶边做爰视频| 成人一区二区视频在线观看| 777米奇影视久久| 国产大屁股一区二区在线视频| 亚洲av男天堂| 精品亚洲乱码少妇综合久久| 亚洲怡红院男人天堂| 亚洲美女搞黄在线观看| 搡女人真爽免费视频火全软件| 国产深夜福利视频在线观看| 少妇丰满av| 丝瓜视频免费看黄片| 最新中文字幕久久久久| 午夜精品国产一区二区电影| 看非洲黑人一级黄片| 嘟嘟电影网在线观看| 在线观看免费日韩欧美大片 | 精品久久久久久电影网| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 少妇人妻 视频| 伊人久久国产一区二区| 日本vs欧美在线观看视频 | 黄色欧美视频在线观看| 中文精品一卡2卡3卡4更新| 久久国产精品男人的天堂亚洲 | 综合色丁香网| 日韩,欧美,国产一区二区三区| 日本爱情动作片www.在线观看| 黄色一级大片看看| 国产黄片视频在线免费观看| 国产在线免费精品| 美女福利国产在线 | 高清日韩中文字幕在线| 在线观看人妻少妇| 亚洲精品色激情综合| 日韩电影二区| 国产视频首页在线观看| 在线播放无遮挡| 黄色怎么调成土黄色| 在线精品无人区一区二区三 | 国产精品99久久久久久久久| av国产精品久久久久影院| 少妇高潮的动态图| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 久久久久网色| 亚洲激情五月婷婷啪啪| 性色av一级| 久久国产乱子免费精品| 蜜桃久久精品国产亚洲av| 美女国产视频在线观看| 99热这里只有是精品50| 国产国拍精品亚洲av在线观看| av视频免费观看在线观看| 丰满迷人的少妇在线观看| 色5月婷婷丁香| 国精品久久久久久国模美| av福利片在线观看| 一级毛片我不卡| 身体一侧抽搐| 51国产日韩欧美| 国产一区二区三区av在线| 国产亚洲一区二区精品| 美女主播在线视频| 高清毛片免费看| av又黄又爽大尺度在线免费看| 久久这里有精品视频免费| 久久久久视频综合| 国产久久久一区二区三区| 国产一区二区在线观看日韩| 妹子高潮喷水视频| 久久精品国产自在天天线| 伊人久久国产一区二区| 高清日韩中文字幕在线| 久久久久久久大尺度免费视频| 国产亚洲5aaaaa淫片| 亚洲精品456在线播放app| 免费人妻精品一区二区三区视频| 亚洲精品日本国产第一区| 三级国产精品欧美在线观看| 最近的中文字幕免费完整| 欧美日韩视频精品一区| 女的被弄到高潮叫床怎么办| 免费播放大片免费观看视频在线观看| av线在线观看网站| 日韩中文字幕视频在线看片 | 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕制服av| 久久国产乱子免费精品| 国产欧美日韩一区二区三区在线 | av专区在线播放| 我要看日韩黄色一级片| 伦理电影大哥的女人| 最后的刺客免费高清国语| 日韩欧美 国产精品|