賀 丹,楊萬(wàn)里
(沈陽(yáng)航空航天大學(xué) 遼寧省飛行器復(fù)合材料結(jié)構(gòu)分析與仿真重點(diǎn)實(shí)驗(yàn)室,沈陽(yáng) 110136)
基于廣義變分原理和鋸齒理論的高精度層合梁模型
賀 丹,楊萬(wàn)里
(沈陽(yáng)航空航天大學(xué) 遼寧省飛行器復(fù)合材料結(jié)構(gòu)分析與仿真重點(diǎn)實(shí)驗(yàn)室,沈陽(yáng) 110136)
基于廣義變分原理和精化的zigzag理論建立了高精度的層合梁彎曲和自由振動(dòng)模型。為準(zhǔn)確預(yù)測(cè)層合梁的力學(xué)行為做出兩個(gè)預(yù)處理:首先采用線性zigzag函數(shù)[1]使面內(nèi)位移在梁高度方向(z方向)上呈鋸齒分布;然后通過(guò)彈性平衡方程構(gòu)造了預(yù)先滿足層間連續(xù)和自由表面條件的層間橫向剪力,因此不需要剪切修正因子。另外,基于Reissner混合變分原理推導(dǎo)了該梁模型的控制方程和邊界條件,并以正交鋪設(shè)的兩端簡(jiǎn)支層合梁為例,分析了靜彎曲和自由振動(dòng)行為。算例結(jié)果表明,該模型能夠準(zhǔn)確地預(yù)測(cè)位移、應(yīng)力和自振頻率,驗(yàn)證了本文方法的精度和可靠性。
Reissner混合變分原理;層合梁;層間應(yīng)力;zigzag函數(shù)
復(fù)合材料層合板/梁結(jié)構(gòu)由于輕質(zhì)、耐腐蝕及可設(shè)計(jì)性等優(yōu)點(diǎn)廣泛應(yīng)用于土木工程、航空航天等領(lǐng)域。在實(shí)際應(yīng)用中,層合板/梁結(jié)構(gòu)的主要破壞形式之一是層間的橫向剪力引起的分層破壞,現(xiàn)有軟件尚未考慮層間連續(xù)條件而無(wú)法準(zhǔn)確地計(jì)算層間應(yīng)力。因此對(duì)層間橫向剪力進(jìn)行準(zhǔn)確的計(jì)算非常必要[1-8]。
為準(zhǔn)確預(yù)測(cè)層合結(jié)構(gòu)的層間應(yīng)力,位移函數(shù)沿高度方向必須預(yù)先滿足層間連續(xù)條件[9],而位移的1階導(dǎo)數(shù)不連續(xù),即呈鋸齒分布。為模擬該條件,分層理論[3]通過(guò)對(duì)每個(gè)單層構(gòu)造運(yùn)動(dòng)學(xué)方程來(lái)滿足;整體局部理論[10]通過(guò)定義高階局部函數(shù)來(lái)滿足;zigzag理論[11]通過(guò)在面內(nèi)位移場(chǎng)添加線性局部函數(shù)來(lái)滿足?;诜謱永碚?,Plagianakos等[3]精確地預(yù)測(cè)了層合結(jié)構(gòu)的面內(nèi)位移分布和層間應(yīng)力分布。基于整體局部理論,Wu等[10]采用有限元法由求得的應(yīng)變精確計(jì)算了層間橫向剪力和面內(nèi)應(yīng)力,并采用平衡方程后處理方法準(zhǔn)確計(jì)算了層間法向應(yīng)力。近來(lái),Iurlaro等[11]基于精化的zigzag理論,通過(guò)Reissner混合變分原理對(duì)彈性平衡方程進(jìn)行預(yù)處理構(gòu)造了滿足上下表面條件和層間連續(xù)性條件的剪應(yīng)力,并求解了板的自振頻率;文獻(xiàn)結(jié)果表明[11-12],該模型在處理復(fù)合材料層合結(jié)構(gòu)問(wèn)題時(shí)具有非常高的精度。與分層理論和整體局部理論相比,精化的zigzag理論中對(duì)單層位移的定義更為簡(jiǎn)便,計(jì)算效率更高,且未知變量的個(gè)數(shù)獨(dú)立于層合結(jié)構(gòu)的層數(shù),非常適合工程應(yīng)用。另外,通過(guò)Reissner混合變分原理對(duì)彈性平衡方程進(jìn)行預(yù)處理所得的結(jié)果比其他方法所得的結(jié)果更加精確。
因此,本文基于精化的zigzag理論和廣義變分原理建立了預(yù)先滿足層間連續(xù)條件和自由表面條件的層合梁彎曲和自由振動(dòng)模型。另外,基于Reissner混合變分原理推導(dǎo)了該模型的平衡方程和邊界條件。文中以正交鋪設(shè)的兩端簡(jiǎn)支梁模型為例,分析了不同鋪設(shè)方式下彎曲變形和自由振動(dòng),并與相關(guān)文獻(xiàn)進(jìn)行對(duì)比檢驗(yàn)本文方法的精度。
1.1 位移場(chǎng)
基于精化zigzag理論[1]的梁模型如圖1所示,其位移場(chǎng)以1階Timoshenko梁函數(shù)為基礎(chǔ)函數(shù),并分層添加線性zigzag函數(shù)模擬了面內(nèi)位移在高度z方向上呈鋸齒分布,具體表達(dá)式為:
uk=u0(x,t)+zθ(x,t)+φk(z)ψ(x,t)
w=w(x,t)
(1)
其中,u0為中面的平動(dòng)位移,w為撓度,θ為截面轉(zhuǎn)角,k表示第k層,φk(z)為第k層的線性zigzag函數(shù),ψ(x)為zigzag幅值函數(shù)。圖中,zk=zk-1+2hk,2hk為第k層的高度,N表示層數(shù)。另外,z0=-h,zN=h,分別表示梁的上下表面,z∈(-h,h)。pt和pb分別表示上下表面的外載荷。
圖1 層合梁承載示意圖Fig.1 Schematic figure of a laminated composite beam subjected to transverse loads
分層表示的線性zigzag函數(shù)[1]可寫(xiě)成:
(2)
(3)
其中,uk(k=1,2,…,N)為層間軸向位移[1]。
1.2 層合梁的本構(gòu)方程
經(jīng)坐標(biāo)變換之后,第k層的應(yīng)力-應(yīng)變關(guān)系在結(jié)構(gòu)坐標(biāo)系(x,y,z)下可以寫(xiě)為:
σk=Qkε
(4)
其中,
ε=[εxγxz]T
(5)
Qk=TkTCkTk
(6)
其中,T為坐標(biāo)變換矩陣,C為材料彈性系數(shù)矩陣。
梁的剛度矩陣Qk,表述如下:
(7)
為滿足層間應(yīng)力連續(xù)條件,進(jìn)行如下預(yù)處理[11]:
1)忽略體力的第k層平衡方程可寫(xiě)成:
(8)
將式(4)代入式(8),則式(8)可改寫(xiě)成:
(9)
2)式(9)等號(hào)左右兩端沿z方向積分可得:
(10)
3)將z=h代入式(10),則
(11)
(12)
4)將式(12)代入式(10),層間橫向剪力可表示為:
(13)
其中,
(14)
根據(jù)Reissner混合變分原理,放松剪應(yīng)變和替換剪應(yīng)力后得到的修正泛函[11-12]的變分可表示為:
(15)
(16)
其中,We為外力功,Wi為慣性力做的功。式(15)表示域內(nèi)的平衡,式(16)為用Lagrange乘子表示的應(yīng)變約束條件。
(17)
其中,B=[1 ?φk/?z],q=[θ+?w/?xψ]T。
將式(17)代入式(13),層間橫向剪力的表達(dá)式變?yōu)椋?/p>
(18)
將式(1)和式(18)代入式(15)并分部積分,則式(15)可改寫(xiě)成:
δWe-δWi=0
(19)
外力功的一階變分可表示為:
(20)
(21)
慣性力所做的功的一階變分可表示為:
(22)
令
m0=<ρk>,m1=
(23)
則慣性力所做的功一階變分可改寫(xiě)成:
(24)
將式(20)、(21)和(24)代入式(19)可得梁的平衡方程為:
(25)
在x=0和x=L處的邊界條件為:
(26)
將本構(gòu)方程代入式(25),用位移表示的平衡方程可表示為:
(27)
以正交鋪設(shè)的簡(jiǎn)支層合梁為例,首先對(duì)受正弦載荷時(shí)的彎曲行為進(jìn)行分析并檢驗(yàn)了本文方法的精度。如圖2所示,簡(jiǎn)支梁僅承受z向圓柱彎曲載荷fw=q0sin(πx/L),且各單層的高度和材料屬性均相同。另外,進(jìn)一步分析了該模型的自由振動(dòng)行為。
圖2 簡(jiǎn)支梁示意圖Fig.2 Schematic figure of a simply supported beam
簡(jiǎn)支梁的邊界條件為:
(28)
(29)
4.1 彎曲分析
對(duì)于彎曲分析,由于沒(méi)有慣性力,因此令Wi=0。另外,滿足全部邊界條件的位移函數(shù)可設(shè)為:
(30)
4.1.1 位移與正應(yīng)力
4.1.2 層間橫向剪切應(yīng)力
(a)0°/90°
(b)0°/90°/0°圖3 x=0處的軸向位移Fig.3 The axial displacement at x=0
(a)0°/90°
(b)0°/90°/0°圖4 梁中面撓度Fig.4 Center deflection of the beam
(a)0°/90°
(b)0°/90°/0°圖5 x=L/2處的正應(yīng)力Fig.5 The normal stress at the mid-span at x=L/2
(a)0°/90°
(b)0°/90°/0°
(c)90°/0°/90°
(d)0°/90°/0°/90°/0°圖6 x=0處梁的剪應(yīng)力Fig.6 The transverse shear stress of the beam at x=0
4.2 自由振動(dòng)分析
本節(jié)分析了正交鋪設(shè)簡(jiǎn)支層合梁的自由振動(dòng),并給出了不同鋪設(shè)方式下的自振頻率。對(duì)于自由振動(dòng)分析,滿足全部邊界條件的位移函數(shù)可設(shè)為:
(31)
其中,ωn為自振頻率,i2=-1。
將式(31)代入式(27),則層合梁的控制方程可改寫(xiě)成:
Ku=ω2Mu
(32)
由表1可知:0°/90°/90°/0°鋪設(shè)時(shí),本文結(jié)果與文獻(xiàn)解[14]吻合。但文獻(xiàn)[14]中采用了1階剪切變形理論,不能滿足層間連續(xù)條件和上下自由表面條件,因此,采用了剪切修正因子進(jìn)行了修正。然而剪切修正因子在不同材料中取不同的值[15],不具有普適性。本文的自由振動(dòng)模型預(yù)先滿足層間連續(xù)條件和自由表面條件,不需要采用剪切修正因子,因此更適合工程應(yīng)用。
表1 不同鋪設(shè)方式下層合梁的自振頻率
與采用1階理論的梁模型相比,本文基于zigzag理論和Reissner混合變分原理建立的層合梁彎曲和自由振動(dòng)模型預(yù)先滿足了層間連續(xù)條件和自由表面條件,不需要剪切修正因子。另外,該模型梁高方向的位移函數(shù)呈鋸齒分布,能夠準(zhǔn)確地預(yù)測(cè)層間應(yīng)力,且未知變量的個(gè)數(shù)不隨層數(shù)的增加而增加。研究結(jié)果表明,本文模型不僅可以準(zhǔn)確地預(yù)測(cè)梁的位移、應(yīng)力和自振頻率,而且不犧牲計(jì)算效率。因此,該梁模型在航空航天等領(lǐng)域有著廣泛的應(yīng)用前景。
[1] Tessler A, Sciuva M D, Gherlone M. A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics[J]. Journal of Mechanics of Materials & Structures, 2010, 5(2): 341-367.
[2] Xiaohui R, Wanji C, Zhen W. A C0-type zigzag theory and finite element for laminated composite and sandwich plates with general configurations[J]. Archive of Applied Mechanics, 2011, 82(3): 391-406.
[3] Plagianakos T S, Saravanos D A. Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates[J]. Composite Structures, 2009, 87(1): 23-35.
[4] Rao M K, Desai Y M. Analytical solutions for vibrations of laminated and sandwich plates using mixed theory[J]. Composite Structures, 2004, 63(3-4): 361-373.
[5] Kant T, Swaminathan K. Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory[J]. Composite Structures, 2002, 56(4): 329-344.
[6] Matsunaga H. Assessment of a global higher-order deformation theory for laminated composite and sandwich plates[J]. Composite Structures, 2002, 56(3): 279-291.
[7] Kant T, Swaminathan K. Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory[J]. Composite Structures, 2001, 53(1): 73-85.
[8] Gaudenzi P, Barboni R, Mannini A. A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates[J].Composite Structures, 1995, 30(4): 427-440.
[9] Biscani F, Giunta G, Belouettar S, et al. Variable kinematic plate elements coupled via Arlequin method[J]. International Journal for Numerical Methods in Engineering, 2012, 91(12): 1264-1290.
[10] Wu Z, Chen R, Chen W. Refined laminated composite plate element based on global-local higher-order shear deformation theory[J].Composite Structures, 2005, 70(2): 135-152.
[11] Iurlaro L, Gherlone M, Di Sciuva M, et al. Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner’s Mixed Variational Theorem[J]. Composite Structures. 2015, 133: 809-817.
[12] Iurlaro L, Gherlone M, Sciuva M D. The (3,2)-Mixed Refined Zigzag Theory for generally laminated beams: Theoretical development and C0finite element formulation[J]. International Journal of Solids & Structures, 2015, 73: 1-19.
[13] Pagano N J. Exact solutions for composite laminates in cylindrical bending[J]. Journal of Composite Materials, 1969, 3(3): 72-85.
[14] Kidwell C. Free vibration of composite beams including rotary inertia and shear deformation[J]. Composite Structures, 1990, 14(4): 269-279.
[15] Ghugal Y M, Shimpi R P. A review of refined shear deformation theories of isotropic and anisotropic laminated plates[J]. Journal of Reinforced Plastics & Composites, 2002, 21(9): 775-813.
A High-accuracy Composite Laminated Beam Model Based on Generalized Variational Principle and Zigzag Theory
HE Dan, YANG Wan-li
(Key Laboratory of Liaoning Province for Composite Structural Analysis of Aerocraft and Simulation,Shenyang Aerospace University, Shenyang 110136, China)
A high-accuracy bending and free vibration model of composite laminated beam is developed based on generalized variational principle and zigzag theory. To predict the mechanical behaviors accurately, the following two-step processes are implemented in this paper. Firstly, the linear functions are employed to insure that in-plane displacements through the thickness direction (the direction ofzaxis) are of the zigzag form. Secondly, the interlaminar stresses which satisfy a prior continuity conditions at the interface and free conditions at the surface are derived with the aid of the Elasticity equilibrium equations. Therefore, the transverse shear correction factors are not required. Moreover, the Reissner’s Mixed Variational Theorem is employed to derive the governing equations and the boundary conditions. A simply supported cross-ply beam model is taken as an illustrative example, the problem of static bending and free vibration are analytically solved. Illustrative examples indicate that the displacements, stresses and natural frequencies predicted by present model are accurate which demonstrates the correctness and reliability of present formulation.
Reissner’s mixed variational theorem; Composite laminated beam; Interlaminar transverse shear stress;Zigzag functions
2017-02-28;
2017-04-13
國(guó)家自然科學(xué)基金(11572204)
賀丹(1979-),男,博士,副教授,研究方向?yàn)槲⒓{米力學(xué)、結(jié)構(gòu)優(yōu)化。E-mail:Danhe@sau.edu.cn
V41
A
2096-4080(2017)02-0026-07