鄒一凡
【摘 要】本文主要針對數學與土木工程的關系,開展的相關探討,并基于對探討結果分析基礎上,加深對數學在土木工程中具體應用的理解。
【關鍵詞】數學;土木工程;關系
1 數學與土木工程基礎知識的特點
土木工程專業(yè)的基礎知識以數學和物理學科理論為代表,力學學科與數學學科基礎知識的相似性在于理論的抽象性、以及實踐應用的工具性。以下主要針對數學與土木工程基礎知識中的主要相似特點,展開的相關論述。
1.1 基礎知識的高度抽象性
土木工程的知識構造的形成,主要應用抽象的數學模型,形成的知識構架基礎。其中,對函數關系以及數學概念的分析、考察;對數學知識與土木工程中相關規(guī)律的理解;對事物之間量的關系以及量變規(guī)律的認識,都需要運用抽象思維加以概括理解。同時,還要注意,對該類知識的認識和理解并不會涉及對具體事物內容的了解,以及對具體對象的性質開展相關研究。
1.2 基礎知識的高度邏輯性
土木工程專業(yè)的基礎知識以及數學專業(yè)的基礎知識,其中涉及到具體知識相關概念的理解、推理演算、以及具體運算法則的理解環(huán)節(jié),都表現為對確定性的嚴格把握。具體體現在對土木工程專業(yè)的基礎知識以及數學專業(yè)的基礎知識的了解,一般要求從確定的概念出發(fā),并依據具體定義的運用,嚴格按照一定的邏輯法則開展相關的推理理解。上述對土木工程專業(yè)的基礎知識以及數學專業(yè)的基礎知識的運用理解環(huán)節(jié),以及對具體結論必然性認識的過程中,都必須將邏輯上的確定性和必然性加以重點認識和重點強調。
1.3 公理化方法的獨特性
在對數學中定理開展具體應用過程中,要注意強調當數學應用在自然科學中,自身具備體現的公理化方法的獨特性。而土木工程中相關概念的提出、定論的檢驗、以及邏輯的推理過程,都需要將數學知識的公理化方法以及基本概念應用于其中。
2 數學與土木工程基礎知識專業(yè)知識的相同點
2.1 實踐發(fā)展的需要
數學和土木工程專業(yè)的知識,在知識類別劃分上都屬于應用型技術知識。加強對數學和土木工程專業(yè)知識的學習,最終目的在于對具體知識的合理運用?;趯ν聊竟こ虒I(yè)的基礎知識認識以及數學專業(yè)的基礎知識認識之上,實現專業(yè)知識在實踐環(huán)節(jié)的有效運用。土木工程專業(yè)的專業(yè)知識以及數學專業(yè)的知識,都源于人們的具體實踐,是人們在實踐基礎上,對生活經驗以及工程經驗的總結。其目的是為了實現,對人們日常生活活動發(fā)揮更好的指導作用。
2.2 影響因素復雜多樣
在對數學和土木工程的專業(yè)知識了解環(huán)節(jié)、以及在分析數學與土木工程之間相互關系環(huán)節(jié),還需要對數學與土木工程相關的專業(yè)知識、以及其在具體應用環(huán)節(jié),對客觀問題解決狀況進行分析。在分析基礎上得出,影響數學和土木工程知識對實踐問題解決環(huán)節(jié),出現的問題發(fā)生可能性,主要在于其影響因素的復雜性。其影響因素的復雜性嚴格區(qū)分與其他基礎理論對事物基本特征、數量核實、以及數量約束等方面表現出的簡單性。
2.3 知識應用的區(qū)域性
數學和土木工程的知識應用,其影響范圍可以涉及到人們日常生活的各個領域。數學和土木工程的基礎知識在具體應用環(huán)節(jié),則主要表現為其在應用范圍方面的廣泛性,相對于數學和土木工程的基礎知識而言,數學和土木工程專業(yè)的專業(yè)知識則表現為“量身定做”的主要特征。
3 數學與土木工程之間的相互促進
3.1 對抽象性思維的把握
在實現對數學和土木工程直接關系分析比對的過程中,需要強調兩者對抽象性思維把握的共同性。此外,在分析研究數學與土木工程之間關系環(huán)節(jié),還需要進一步強調,兩者在基本特征和數量方面存在的相互依賴關系以及互相制約因素。在土木工程專業(yè)知識認識過程中,將數學學科知識中的公式定理、函數關系等相關知識的應用,必須做到詳盡掌握。此外,還要注意土木工程中的參數關系對數學演繹結果的再思考。在實現兩者相互作用的過程中,實現抽象思維能力培養(yǎng)的最大化。
3.2 學科知識的相互促進
對土木工程相關知識的認識與研究,需要從基礎知識的了解入手,并經過邏輯思維,轉換為學科領域的特殊專業(yè)知識。這一過程要求在實現對土木工程專業(yè)知識的理解,必須建立在對基礎理論學習的積淀基礎、以及思維方式理論化的基礎之上。為此,在實習對土木工程認識基礎之上,還需要強調對新思維建設的必要性。而實現新思維方式的建設,關鍵在于對工程問題中的數學建模以及數學思維方法,進行詳細的了解和細致的培養(yǎng)。只有在合理運用數學建模思想方法,實現對土木工程專業(yè)知識中的函數關系、工程問題的有效解決。
3.3 共同發(fā)展的目標追求
土木工程與數學課程以及具體實踐模式的推行,都注意強調對認識主體思維能力、以及問題解決能力的培養(yǎng),并通過一定的社會實踐分析,進一步論證了二者在實現共同發(fā)展環(huán)節(jié),所具備的共同性。為此,要實現數學與土木工程基礎知識和專業(yè)知識的有效融合。同時,還要注意對傳統(tǒng)知識結構中,關于數學和土木工程兩者之間認識的失誤,并在對問題分析、推理、以及歸納環(huán)節(jié),實現數學與土木工程發(fā)展方向的同向;從而有效實現兩者的相關知識實現銜接環(huán)節(jié)順利開展。
4 結語
數學作為一種應用范圍廣泛、應用方式直接、應用效果及時的使用技術,以其較強的創(chuàng)造力在人類文明史上發(fā)揮了重要的促進作用。此外,數學在推動科學技術不斷進步的同時,還對人們的日常生活產生了積極的影響,并不斷實現經濟利益的最大化。而土木工程需要一定的數學原理和數學方法作為實現自身發(fā)展的基礎和前提保障。同時,在實現對土木工程的了解和認識過程,數學理論和數學基礎進一步推動其概念的推導理解??傊?,在對數學思維和數學知識培養(yǎng)過程中,能夠為土木工程的施工和研究提供強大的理論支持;同時,在開展土木工程的施工和研究過程中,在對土木施工環(huán)節(jié)的開展和研究環(huán)節(jié),針對出現新問題的思考過程中,進一步實現數學具體應用和理論的不斷發(fā)展。
【參考文獻】
[1]吳銘亮.土木工程結構設計和施工技術之間呈現出來的相互關系[J].城市建設理論研究(電子版),2017(8).
[2]陳秋融,田從祥.土木工程結構設計與施工技術的關系分析[J].山西建筑,2017(2).
[責任編輯:田吉捷]