孟騰騰,魏 虹,管東方,馬 翠,吳廣勝
1.石河子大學醫(yī)學院組織胚胎學教研室,新疆 石河子 832002;
2. 柘城縣人民醫(yī)院心內(nèi)科,河南 柘城 476200;
3.石河子大學醫(yī)學院第一附屬醫(yī)院血液風濕科,新疆 石河子 832002
骨髓基質(zhì)細胞調(diào)控Hedgehog/GLI信號通路抑制HL-60細胞凋亡的研究
孟騰騰1,2,魏 虹1,管東方1,馬 翠1,吳廣勝3
1.石河子大學醫(yī)學院組織胚胎學教研室,新疆 石河子 832002;
2. 柘城縣人民醫(yī)院心內(nèi)科,河南 柘城 476200;
3.石河子大學醫(yī)學院第一附屬醫(yī)院血液風濕科,新疆 石河子 832002
背景與目的:骨髓基質(zhì)細胞(bone marrow stromal cells,BMSC)是造血微環(huán)境的核心組成成分。骨髓造血微環(huán)境中的BMSC能調(diào)節(jié)急性髓系白血病(acute myelogenous leukemia,AML)的增殖、存活及耐藥。因此,除了直接針對AML的治療外,阻斷白血病與BMSC的相互作用將為白血病的治療提供新的策略。Hedgehog(Hh)蛋白屬于分泌蛋白家族,廣泛表達于哺乳動物和非哺乳動物等多個物種中,參與調(diào)控多種腫瘤的形成、器官成熟、血管生成、干細胞分化、免疫細胞及胚胎發(fā)育。Hh信號可以通過調(diào)節(jié)腫瘤細胞增殖、分化及免疫來創(chuàng)造適合腫瘤生存的微環(huán)境,進而為腫瘤發(fā)展和轉(zhuǎn)移創(chuàng)造環(huán)境。然而,骨髓造血微環(huán)境能否通過Hh信號影響HL-60細胞的存活仍不清楚。該研究旨在探究BMSC誘導的Hh信號對HL-60細胞存活的影響。方法:應用CCK-8試劑盒檢測不同實驗組間HL-60細胞增殖情況,AnnexinⅤ-FITC/PI雙染檢測各組HL-60細胞凋亡率,半定量反轉(zhuǎn)錄聚合酶鏈反應(semi-quantitative reverse transcription polymerase chain reaction,SQRT-PCR)等方法檢測各實驗組Hh信號通路組成成分GLI1基因及凋亡基因BCL-2、BCL-XL的表達情況,免疫熒光法檢測GLI1蛋白的表達狀況。結(jié)果:BMSC對HL-60細胞具有促進增殖和抑制凋亡的作用,以GLI為靶點的Hh信號通路抑制劑GANT61 10 μmol/L可以逆轉(zhuǎn)BMSC的這些作用。共培養(yǎng)體系中HL-60細胞GLI1蛋白及mRNA表達上調(diào),抑凋亡基因BCL-2和BCL-XL的mRNA表達上調(diào)。結(jié)論:BMSC對AML細胞具有保護作用,其機制可能是BMSC激活AML細胞中的Hh信號通路進而上調(diào)下游靶基因BCL-2和BCL-XL的表達。
急性髓系白血?。籊ANT61;Hedgehog-GLI信號通路
造血微環(huán)境是由基質(zhì)細胞(即成骨細胞、破骨細胞、內(nèi)皮細胞、周圍的網(wǎng)狀細胞及間充質(zhì)干細胞)、造血細胞、細胞外基質(zhì)、可溶性因子和膜結(jié)合因子構(gòu)成的復雜結(jié)構(gòu),它們協(xié)同支持正常造血[1]。骨髓基質(zhì)細胞(bone marrow stromal cells,BMSC)是骨髓造血微環(huán)境的重要組成成分[1],骨髓造血微環(huán)境中的BMSC調(diào)節(jié)白血病細胞的增殖[2-3]、分化[2]及凋亡[2-4],此外,BMSC作為白血病細胞的“避難所”有助于白血病細胞耐藥和體內(nèi)微小殘留病灶形成[5]。因此,除了針對白血病細胞的治療,闡明白血病細胞和BMSC相互作用的機制,將為白血病治療提供新的治療策略。Hedgehog(Hh)信號通路參與調(diào)控器官成熟、血管生成、干細胞分化、免疫細胞及胚胎發(fā)育,Hh信號通路的異常激活參與多種腫瘤發(fā)生,如基底細胞癌、肺癌、乳腺癌、胃癌、肝癌、胰腺癌及前列腺癌[6]。近年研究發(fā)現(xiàn),Hh信號通路在BMSC對慢性淋巴細胞性白血病[7-8]、多發(fā)性骨髓瘤[9]的保護中起重要作用。那么在BMSC對急性髓系白血病(acute myelogenous leukemia,AML)的保護作用中,該信號通路是否發(fā)揮作用呢?BMSC HS-5可產(chǎn)生多種細胞因子(如GM-CSF、M-CSF及LIF等)促進骨髓前體細胞的增殖,支持長期造血[4]。本研究擬采用人AML細胞株HL-60與HS-5細胞體外建立共培養(yǎng)模式,模擬體內(nèi)白血病細胞與其周圍的造血微環(huán)境的相互作用,研究造血微環(huán)境對白血病細胞凋亡的影響及作用的可能機制,為探索以阻斷二者相互作用為靶標的白血病治療藥物的研制奠定理論基礎。
1.1 藥物和試劑
GANT61購自美國Selleck公司,RPMI 1640培養(yǎng)基和胎牛血清購自美國Gibco公司,CCK-8試劑盒購自日本同仁化學研究所,AnnexinV FITC/PI細胞凋亡檢測試劑盒購自南京凱基生物科技發(fā)展有限公司,TRIzol購自美國Invitrogen公司,逆轉(zhuǎn)錄試劑盒購自美國Thermo Fisher Scientific公司,GLI1抗體購自英國Abcam公司。
1.2 細胞株及培養(yǎng)條件
BMSC HS-5和AML細胞HL-60購自中國科學院上海生命科學研究院生物化學與細胞生物學研究所細胞庫,細胞培養(yǎng)均采用含10%胎牛血清的RPMI-1640,在37 ℃、CO2體積分數(shù)為5%的飽和濕度培養(yǎng)箱中培養(yǎng)。取生長良好、細胞存活率(臺盼藍拒染法)大于95%的細胞進行實驗。
1.3 方法
實驗分為HL-60細胞單獨培養(yǎng)組、HL-60+ GANT61 10 μmol/L培養(yǎng)組、HL-60+HS-5細胞培養(yǎng)組和HL-60+HS-5+GANT61 10 μmol/L培養(yǎng)組。
1.3.1 BMSC對HL-60細胞增殖特性的影響
將HL-60細胞按4×104個/mL接種于有或無BMSC HS-5(3×104個/mL,培養(yǎng)24 h)的96孔板內(nèi),100 μL/孔,設定3個復孔。對照組僅接種BMSC HS-5。每日固定時相點取1個96孔板,每孔加入10 μL CCK-8溶液作用2 h,用酶標儀測450 nm處各孔的吸光度(D)值,繪制HL-60細胞的增殖曲線。
1.3.2 AnnexinⅤ-FITC/PI 雙染檢測細胞凋亡率
將HL-60細胞按5×105個/mL接種于有或無HS-5細胞(1×105個/mL,培養(yǎng)48 h)的24孔板內(nèi),每天固定時相收集對數(shù)生長期HL-60細胞,用冷PBS洗滌2次,1 000×g離心5 min去上清液。用Annexin結(jié)合液重懸細胞,調(diào)整細胞濃度為1×106個/mL,向細胞懸液加5 μL AnnexinⅤ-FITC 混勻,4 ℃避光溫育15 min,加入10 μL PI,4 ℃避光溫育5 min,上流式細胞儀檢測。
1.3.3 半定量反轉(zhuǎn)錄聚合酶鏈反應(semiquantitative reverse transcription polymerase chain reaction,SQRT-PCR)檢測HL-60細胞中Hh信號通路成分和抑凋亡基因表達
采用SQRT-PCR檢測48 h的HL-60細胞GLI1、BCL-2、BCL-XL和GAPDH的表達。按照TRIzol試劑盒說明書提取總RNA,將mRNA反轉(zhuǎn)錄為cDNA,反轉(zhuǎn)錄產(chǎn)物進行上述基因擴增,擴增條件見表1。擴增產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳后凝膠成像系統(tǒng)拍照,照片用Image J進行mRNA表達分析和灰度掃描。
表 1 SQRT-PCR基因信息匯總Tab. 1 Primer sequences used for SQRT-PCR analysis
1.3.4 免疫熒光法檢測GLI1表達
收集各組48 h時HL-60細胞,冷PBS洗2次,將100 μL細胞混懸液均勻滴加至多聚賴氨酸包被的載玻片上風干。采用4%多聚甲醛固定30 min,PBS洗3次,5 min/次,0.5% Triton X-100透膜處理10 min,PBS洗3次,5 min/次,10%山羊血清37 ℃封閉1 h,兔抗人GLI1抗體(1∶100)4 ℃溫育過夜,PBS洗3次,5 min/次,用FITC熒光標記山羊抗兔二抗(1∶150)室溫避光溫育1 h,PBS洗3次,5 min/次,終濃度為0.1 mg/L PI室溫避光溫育1 min,PBS洗3次,5 min/次,封固,在共聚焦顯微鏡下觀察。
1.4 統(tǒng)計學處理
2.1 HL-60細胞增殖曲線
通過CCK-8試劑盒檢測細胞增殖情況,結(jié)果顯示,與HS-5共培養(yǎng)的HL-60細胞生長速度比單獨懸浮培養(yǎng)的HL-60細胞快,24 h時差異無統(tǒng)計學意義(P>0.05),48、72和96 h時差異有統(tǒng)計學意義(P<0.05);與HS-5共培養(yǎng)的HL-60生長速度比GANT61 10 μmol/L處理的共培養(yǎng)中的HL-60細胞快,同樣24 h時差異無統(tǒng)計學意義(P>0.05),48、72和96 h時差異有統(tǒng)計學意義(P<0.05,圖1)。
2.2 BMSC HS-5對AML細胞HL-60凋亡率的影響
24、48和72 h時,HL-60細胞培養(yǎng)組中HL-60細胞凋亡率均高于HL-60+HS-5細胞培養(yǎng)組,差異有統(tǒng)計學意義(P<0.05);24、48和72 h時,HL-60+HS-5+GANT61培養(yǎng)組中HL-60細胞凋亡率均高于HL-60+HS-5細胞培養(yǎng)組,24 h時差異無統(tǒng)計學意義(P>0.05),而48和72 h時差異有統(tǒng)計學意義(P<0.05);24、48和72 h時,HL-60+GANT61 10 μmol/L培養(yǎng)組中HL-60細胞凋亡率與HL-60細胞單獨培養(yǎng)組中凋亡率差異無統(tǒng)計學意義(P>0.05,表2)。HS-5細胞抑制HL-60細胞凋亡,然后用GANT61抑制Hh信號通路可以逆轉(zhuǎn)此作用(表2,圖2)。
圖 1 各實驗組中HL-60細胞增殖情況Fig. 1 The proliferation of HL-60 cells in di ff erent treatment groups
表 2 不同處理組對HL-60細胞早期凋亡率的比較Tab. 2 Comparison of early apoptosis rate of HL-60 cells in di ff erent treatment groups (n=3, x±s)
圖 2 不同處理組對HL-60細胞凋亡率的比較Fig. 2 Comparison of apoptosis rate of HL-60 cells in di ff erent treatment groups
2.3 SQRT-PCR檢測48 h時不同實驗組中HL-60細胞中Hh信號通路成分和抑凋亡基因mRNA表達情況
與HS-5共培養(yǎng)的HL-60的GLI1、BCL-2和BCL-XL mRNA比GANT61 10 μmol/L處理的共培養(yǎng)中的HL-60細胞、單獨懸浮培養(yǎng)的HL-60細胞表達高,差異有統(tǒng)計學意義(P>0.05,圖3)。
2.4 細胞免疫熒光檢測HL-60細胞中GLI1蛋白的表達水平
與HL-60+HS-5細胞培養(yǎng)組中的HL-60細胞相比,HL-60細胞單獨培養(yǎng)組中熒光強度減弱,HL-60+HS-5+GANT61培養(yǎng)組中HL-60細胞中的熒光強度比HL-60+HS-5細胞培養(yǎng)組中HL-60細胞弱(圖4)。
圖 3 不同實驗組HL-60細胞GLI1、BCL-XL和BCL-2的mRNA表達情況Fig. 3 mRNA expression of GLI1, BCL-XL and BCL-2 of HL-60 cells in di ff erent treatment groups
圖 4 激光共聚焦觀察HL-60細胞GLI1表達狀況(×400)Fig. 4 GLI1 protein expression in HL-60 cells by immuno fluorescence staining (×400)
Moshaver等[3]應用CFSE熒光標記法研究發(fā)現(xiàn),BMSC HS-5具有促進HL-60和原代AML增殖的作用,本實驗應用CCK-8法檢測BMSC HS-5對HL-60細胞增殖的影響,同樣發(fā)現(xiàn)HS-5細胞確實可以促進HL-60細胞的增殖,Garrido等[4]的研究顯示,BMSC HS-5抑制AML細胞自發(fā)及化療藥物誘導的凋亡,Konopleva等[10]應用無血清及阿糖胞苷誘導HL-60細胞凋亡,發(fā)現(xiàn)鼠基質(zhì)細胞MS-5具有抑制HL-60凋亡的作用。本實驗無血清預處理HL-60細胞48 h后,建立共培養(yǎng)體系,AnnexinⅤ-FITC/PI雙染檢測細胞凋亡率發(fā)現(xiàn),HS-5細胞具有抑制HL-60細胞凋亡的作用。Hh信號通路最早由Nusslein-Volhard等[11]在1980年進行遺傳篩選影響果蠅胚胎形成的因素中發(fā)現(xiàn)。Hh-GLI信號通路包括分泌型信號糖蛋白配體Hh、跨膜蛋白受體Patched(PTCH)以及與G蛋白偶聯(lián)的磷酸化受體Smoothened(SMO)組成的復合體和膠質(zhì)瘤相關癌基因同源物(glioma-associated oncogene homolog,GLI)等蛋白成分,GLI是有鋅指結(jié)構(gòu)核轉(zhuǎn)錄因子,哺乳動物有3個GLI的同源基因GLI1、GLI2和GLI3,分別編碼GLI1、GLI2和GLI3蛋白[12],GLI3是一個主要的轉(zhuǎn)錄抑制因子,GLI2存在于全長的活性形式和截短的抑制形式[13-14],GLI1僅有活化Hh信號通路的作用[15],哺乳動物中Hh信號通路的活化還需要初級纖毛的參與[16]。在哺乳動物中,當Hh配體不存在時,PTCH受體表達于細胞膜,抑制SMO的表達及初級纖毛定位,從而抑制SMO活性,然后具有抑制作用的GLI2(GLI-R)片段特別是GLI3(GLI3R)片段細胞核轉(zhuǎn)移,充分抑制信號通路活化;當Hh配體與PTCH受體結(jié)合時,PTCH受體對SMO的抑制作用被解除,SMO初級纖毛上富集,促進有活性作用的GLI轉(zhuǎn)錄因子細胞核轉(zhuǎn)移,激活下游靶基因表達,如GLI1[12]。GLI1既是Hh信號通路的組成成分,又是信號的轉(zhuǎn)錄靶基因 ,因此GLI1可作為信號通路激活的標記基因[17-18],以此來判斷通路激活的程度。所以本實驗選取檢測GLI1 mRNA和蛋白表達情況來判斷信號通路活化狀況。Hh信號通路的異?;罨瘏⑴c多種實體腫瘤[6]的發(fā)生,然而Hh信號通路在惡性血液病的發(fā)生中還存在很大爭論。Zhao等[19]和Dierks等[20]研究表明,BCR-ABL+CML干細胞中存在SMO高表達導致Hh信號通路活化,抑制SMO可減少CML干細胞存活,從而使白血病發(fā)病率降低。然而Hofmann等[21]的研究表明,SMO失活對正常造血無影響,包括外周血數(shù)目、干或祖細胞的數(shù)目、細胞周期狀態(tài)及造血細胞集落形成能力,此外,Hh信號通路在MLL-AF9誘導的AML的發(fā)生中沒有發(fā)揮作用。Gao等[22]的研究發(fā)現(xiàn),條件性降低和升高SMO的表達對正常造血干細胞的自我更新和功能沒有影響,而且T-ALL的發(fā)生不依賴Hh信號通路。Wellbrock等[23]應用GLI為靶點的Hh信號通路特異性抑制劑GANT61和shRNA在體內(nèi)外研究Hh信號通路與AML的關系,發(fā)現(xiàn)AML患者存在Hh信號通路的異?;罨珿LI的表達是一個不良的預后因素,可能是一種新的藥物靶點。Pan等[24]的研究發(fā)現(xiàn),以SMO為靶點的特異性Hh信號通路抑制劑環(huán)巴胺,對HL-60細胞的增殖和凋亡無影響,然而30 μmol/L的GANT61,48 h時明顯抑制其增殖,促進其凋亡,并且與雷帕霉素具有協(xié)同殺傷作用。本實驗應用GANT61處理的共培養(yǎng)組中,HL-60細胞的增殖速度慢于共培養(yǎng)組中HL-60細胞的增殖,而且凋亡率也高于共培養(yǎng)組,表明GANT61可以逆轉(zhuǎn)BMSC HS-5對AML細胞HL-60的保護作用,同時可推測Hh信號通路在BMSC對AML細胞的保護中發(fā)揮作用。Hegde等[8]的研究表明,環(huán)巴胺能夠抑制BMSC對B-CLL細胞的保護作用,從而說明Hh信號通路參與這種保護作用。Dierks等[25]的研究結(jié)果同樣支持上述觀點。為驗證Hh信號通路同樣參與骨髓微環(huán)境對AML的保護作用,本實驗應用SQRT-PCR和免疫熒光技術檢測GLI1在實驗組中的表達情況,發(fā)現(xiàn)共培養(yǎng)組中的HL-60細胞GLI1比HL-60細胞單獨懸浮培養(yǎng)的高,用GANT61處理共培養(yǎng)組后的GLI1表達量比共培養(yǎng)組中的HL-60細胞低,說明Hh信號通路在BMSC對AML細胞的保護作用中發(fā)揮作用。BCL-2家族蛋白是細胞凋亡的關鍵調(diào)節(jié)分子,線粒體是其調(diào)控內(nèi)在凋亡途徑的靶點[26]。本實驗檢測BCL-2家族中的抑凋亡基因BCL-2和BCL-XL,結(jié)果與GLI1在各組中的表達相一致。Moshaver等[3]和Konopleva等[10]的研究表明,BMSC可以上調(diào)AML細胞BCL-2的表達進而抑制其凋亡,與本研究結(jié)果一致。
綜上所述,BMSC HS-5可以促進AML細胞HL-60增殖,抑制其凋亡,這些作用可能是通過激活HL-60細胞中Hh信號通路進而上調(diào)抑凋亡基因BCL-2和BCL-XL來實現(xiàn)的。本研究體外初步探索BMSC對AML增殖和凋亡的影響及可能作用機制,為AML的治療提供新的治療策略。
[1] BLAU O. Bone marrow stromal cells in the pathogenesis of acute myeloid leukemia[J]. Front Biosci (Landmark Ed), 2014, 19: 171-180.
[2] LIANG R, HUANG G S, WANG Z, et al. Effects of human bone marrow stromal cell line (HFCL) on the proliferation, differentiation and apoptosis of acute myeloid leukemia cell lines U937, HL-60 and HL-60/VCR[J]. Int J Hematol, 2008, 87(2): 152-166.
[3] MOSHAVER B, VAN DER POL M A, WESTRA A H, et al. Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival[J]. Leuk Lymphoma, 2008, 49(1): 134-148.
[4] GARRIDO S M, APPELBAUM F R, WILLMAN C L, et al. Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5)[J]. Exp Hematol, 2001, 29(4): 448-457.
[5] MEADS M B, HAZLEHURST L A, DALTON W S. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance[J]. Clin Cancer Res, 2008, 14(9): 2519-2526.
[6] RUBIN L L, DE SAUVAGE F J. Targeting the Hedgehog pathway in cancer[J]. Nat Rev Drug Discov, 2006, 5(12): 1026-1033.
[7] DESCH P, ASSLABER D, KERN D, et al. Inhibition of GLI, but not Smoothened, induces apoptosis in chronic lymphocytic leukemia cells[J]. Oncogene, 2010, 29(35): 4885-4895.
[8] HEGDE G V, PETERSON K J, EMANUEL K, et al. Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target[J]. Mol Cancer Res, 2008, 6(12): 1928-1936.
[9] KOBUNE M, IYAMA S, KIKUCHI S, et al. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms[J]. Blood Cancer J, 2012, 2: e87.
[10] KONOPLEVA M, KONOPLEV S, HU W, et al. Stromal cells prevent apoptosis of AML cells by up-regulation of antiapoptotic proteins[J]. Leukemia, 2002, 16(9): 1713-1724.
[11] NUSSLEIN-VOLHARD C, WIESCHAUS E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785): 795-801.
[12] IRVINE D A, COPLAND M. Targeting hedgehog in hematologic malignancy[J]. Blood, 2012, 119(10): 2196-2204.
[13] SASAKI H, NISHIZAKI Y, HUI C, et al. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling[J]. Development, 1999, 126(17): 3915-3924.
[14] HUI C C, ANGERS S. Gli proteins in development and disease[J]. Annu Rev Cell Dev Biol, 2011, 27: 513-537.
[15] STEPAN V, RAMAMOORTHY S, NITSCHE H, et al. Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells[J]. J Biol Chem, 2005, 280(16): 15700-15708.
[16] CORBIT K C, AANSTAD P, SINGLA V, et al. Vertebrate Smoothened functions at the primary cilium[J]. Nature, 2005, 437(7061): 1018-1021.
[17] OSTERLUND T, KOGERMAN P. Hedgehog signalling: how to get from Smo to Ci and Gli[J]. Trends Cell Biol, 2006, 16(4): 176-180.
[18] COHEN M M Jr. The hedgehog signaling network[J]. Am J Med Genet A, 2003, 123A(1): 5-28.
[19] ZHAO C, CHEN A, JAMIESON C H, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia[J]. Nature, 2009, 458(7239): 776-779.
[20] DIERKS C, BEIGI R, GUO G R, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation[J]. Cancer Cell, 2008, 14(3): 238-249.[21] HOFMANN I, STOVER E H, CULLEN D E, et al. Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis[J]. Cell Stem Cell, 2009, 4(6): 559-567.
[22] GAO J, GRAVES S, KOCH U, et al. Hedgehog signaling is dispensable for adult hematopoietic stem cell function[J]. Cell Stem Cell, 2009, 4(6): 548-558.
[23] WELLBROCK J, LATUSKE E, KOHLER J, et al. Expression of hedgehog pathway mediator Gli represents a negative prognostic marker in human acute myeloid leukemia and its inhibition exerts antileukemic effects[J]. Clin Cancer Res, 2015, 21(10): 2388-2398.
[24] PAN D, LI Y, LI Z, et al. Gli inhibitor GANT61 causes apoptosis in myeloid leukemia cells and acts in synergy with rapamycin[J]. Leuk Res, 2012, 36(6): 742-748.
[25] DIERKS C, GRBIC J, ZIRLIK K, et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies[J]. Nat Med, 2007, 13(8): 944-951.
[26] OLA M S, NAWAZ M, AHSAN H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis[J]. Mol Cell Biochem, 2011, 351(1-2): 41-58.
Study on the regulation of Hedgehog/GLI signaling pathway by bone marrow stromal cells to inhibit the apoptosis of HL-60 cells
MENG Tengteng1,2, WEI Hong1, GUAN Dongfang1, MA Cui1, WU Guangsheng3
(1. Department of Histology and Embryology, College of Medicine, Shihezi University, Shihezi 832002, Xinjiang Uyghur Autonomous Region, China; 2. Department of Cardiology, the People’s Hospital of Zhecheng, Zhecheng 476200, Henan Province, China; 3. Department of Blood Rheumatology, the First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi 832002, Xinjiang Uyghur Autonomous Region, China)
WEI Hong E-mail: weihong-2@163.com
Background and purpose: The key component of the hematopoietic microenvironment is bone marrow stromal cells (BMSC). Several studies have provided evidence suggesting that proliferation, survival, and drug resistance of AML can be modulated by BMSC within the bone marrow hematopoietic microenvironment. Therefore, in addition to therapies that directly target acute myelogenous leukemia (AML), interruption of leukemia cell and BMSC interactions should be considered when designing anti-AML therapeutic strategies. Hedgehog (Hh) protein belongs to a family of secreted proteins, which is widely expressed in mammals and non-mammals species and involved in the regulation of a variety of tumor formation in mature organs, angiogenesis, stem cell differentiation, immune cells, and embryonic development. Hh signaling allows for the modulation of the microenvironment to prepare a tumor-suitable niche by manipulatingtumor cell growth, differentiation, and immune regulation, thus creating an enabling environment for progression and metastasis. However, it remains unclear whether the bone marrow hematopoietic microenvironment contributes to the increased survival of HL-60 cells by Hh signaling. Therefore, we studied the influence of bone marrow stromal cell-induced Hh signaling on the survival of HL-60 cells. Methods: CCK-8 kit was used for the detection of HL-60 cell proliferation in different experimental groups. Annexin V-FITC/PI double staining was used to detect the HL-60 cell apoptotic rate. Semiquantitative reverse transcription polymerase chain reaction (SQRT-PCR) was used to detect the experimental group Hh signaling pathway components of GLI1 mRNA and BCL-2, BCL-XL expression. GLI1 apoptotic gene expression levels were measured using immunofluorescence assay. Results: Bone marrow stromal cells promote proliferation and inhibit apoptosis of HL-60 cells, and 10 μmol/L of GANT61 can reverse these effects of bone marrow stromal cells. In co-culture system of HL-60 cells, GLI1 protein and mRNA expression increased and apoptosis inhibiting gene expression of BCL-2 and BCL-XL mRNA were upregulated. Conclusion: Bone marrow stromal cells have a protective effect on acute myeloid leukemia cells. The mechanism may involve activation of the Hh signaling pathway in acute myeloid leukemia cells by bone marrow stromal cells leading to increased expression of downstream target gene BCL-2 and BCL-XL.
Acute myelogenous leukemia; GANT61; Hedgehog-GLI signaling pathway
10.19401/j.cnki.1007-3639.2017.07.004
R73-34
A
1007-3639(2017)07-0538-07
2017-02-01
2017-04-30)
魏 虹 E-mail: weihong-2@163.com