盛秀蘭 郝宗艷 吳宏偉
(1.東南大學(xué)數(shù)學(xué)系,江蘇南京210096;2.江蘇開放大學(xué),江蘇南京210036)
二維非線性Klein-Gordon方程N(yùn)eumann邊值問題①
盛秀蘭1,2郝宗艷1吳宏偉1
(1.東南大學(xué)數(shù)學(xué)系,江蘇南京210096;2.江蘇開放大學(xué),江蘇南京210036)
利用邊界條件及非線性Klein-Gordon方程得到其在空間上的三階與五階導(dǎo)數(shù)的邊界值,進(jìn)而分別在內(nèi)點(diǎn)和邊界點(diǎn)建立三點(diǎn)和兩點(diǎn)緊差分格式;通過數(shù)值算例,得到了截斷誤差是關(guān)于時間和空間上的二階和四階結(jié)果.
非線性Klein-Gordon方程,緊差分格式,邊值問題
研究如下一維非線性Klein-Gordon方程N(yùn)eumann的邊值問題的數(shù)值解,
-utt-(uxx+uyy)+g(u)=f(x,,y,t),x,y∈Ω,0 (1) (2) (3) (4) 其中Ω=(0,1)×(0,1),g(u),f(x,y,t)為光滑函數(shù). Klein-Gordon方程是相對論量子力學(xué)和量子場論中用于描述零自旋粒子的自由運(yùn)動方程,關(guān)于它的數(shù)值解法已有不少研究結(jié)果.文獻(xiàn)[1]基于樣條基函數(shù)提出了一個數(shù)值格式.四階緊格式在文獻(xiàn)[2]中進(jìn)行了研究.基于變分迭代方法的班數(shù)值格式及邊界元方法可參見文獻(xiàn)[3,4]在文獻(xiàn)[5]中導(dǎo)出了以三層樣條差分格式逼近非線性Klein-Gordon方程.無界域上的問題的數(shù)值研究課參見文獻(xiàn)[6].文獻(xiàn)[7]中提出了一個基于有限差分和匹配法的新的數(shù)值格式,而文獻(xiàn)[8]提出了微分積分法.所有這些文獻(xiàn)中的研究都是針對Dirichlet邊界條件,對于Neumann邊界條件下的高階差分格式還沒有很好的結(jié)果.近年來,具有Neumann邊界條件的熱方程的高階差分格式已有一些研究結(jié)果[9-11].文獻(xiàn)[12]研究了Cahn-Hilliard方程N(yùn)eumann邊界條件下的三層線性化緊格式.最近,文獻(xiàn)[13]中建立了哈密爾頓非線性波方程N(yùn)eumann邊界條件下的高階顯格式,該方法空間方向基于緊格式,時間方向基于Runge-Kutta-Nystrom方法. 文獻(xiàn)[14]給出了邊界點(diǎn)處離散方程的方法. 通過分析以上文獻(xiàn),了解到Klein-Gordon方程N(yùn)eumann邊值問題的無條件穩(wěn)定的高階差分格式,目前還沒有這方面的結(jié)果,其主要困難是邊界點(diǎn)的處理.本文利用Klein-Gordon方程及邊界條件可得到在邊界處的三階導(dǎo)數(shù)和五階導(dǎo)數(shù)的函數(shù)值,從而建立邊界點(diǎn)和內(nèi)點(diǎn)處的兩點(diǎn)和三點(diǎn)緊差分格式.最后給出了一些數(shù)值算例,計算出收斂階數(shù)為O(τ2+h4). 由(1)式中的方程可得 auxx=utt+g(u)-f(x,t), (5) 由(5)式分別求其關(guān)于x的k(k=3,4,5)階導(dǎo)數(shù),且由邊界條件可得 (6) (6)式在建立差分格式時起到了重要的作用. 取正整數(shù)m,n,記空間步長與時間步長為 引理1[13]記α(s)=(1-s)3[5-3(1-s)2],s∈[0,1]. utt(x,y,t)-v(x,y,t)-w(x,y,t)+g(u(x,y,t))=f(x,,y,t),x,y∈Ω,0 (7) 令 則由算子Α,Β及引理1,可以得到 (8) (9) (10) (11) (12) (13) 由Taylor展開式可知 (14) (15) (16) 將(8)—(13) 、(14)—(16)式代入(7)式,并由引理2可得 (17) (18) (19) (20) (21) (22) 其中該問題的精確解為 f(x,t)=-[x2(x-1)2y2(y-1)2+2x2(x-1)2(6y2-6y+1)+2y2(y-1)2(6x2-6x+1)cost+x4(x-1)4y4(y-1)4cos2t]. 表2 取不同步長時數(shù)值解的最大誤差 [1]DehghanM,ShokriA.NumericalsolutionofthenonlinearKlein-Gordonequationusingradialbasisfunctions[J].JComputApplMath, 2009, 230(2):400-410. [2]DehghanM,MohebbiA,AsghariZ.Fourth-ordercompactsolutionofthenonlinearKlein-Gordonequation[J].NumericalAlgorithms, 2009, 52(4): 523-540. [3]ShakeriF,DehghanM.NumericalsolutionoftheKlein-GordonequationviaHe’svariationaliterationmethod[J].NonlinearDynamics, 2008, 51(1-2): 89-97. [4]DehghanM,GhesmatiA.ApplicationofthedualreciprocityboundaryintegralequationtechniquetosolvethenonlinearKlein-Gordonequation[J].ComputPhysCommun, 2010, 181 (8):1 410-1 418. [5]RashidiniaJ,MohammadiR.TensionsplineapproachforthenumericalsolutionofnonlinearKlein-Gordonequation[J].ComputerPhysicsCommunications,2010, 181(1):78-91. [6]HanH,ZhangZ.Splitlocalabsorbingconditionsforone-dimensionalnonlinearKlein-Gordonequationonunboundeddomain[J].JComputPhys, 2008, 227(20): 8 992-9 004. [7]LakestaniM,DehghanM.Collocationandfinitedifference-collocationmethodsforthesolutionofnonlinearKlein-Gordonequation[J].ComputerPhysicsCommunications, 2010, 181(8):1 392-1 401. [8]KumarS,JiwariR,VermaA.AnumericalschemebasedondifferentialquadraturemethodfornumericalsimulationofnonlinearKlein-Gordonequation[J].InternationalJournalofNumericalMethodsforHeatFluidFlow, 2014, 24 (7):1 390-1 404. [9]SunZhizhong.CompactdifferenceschemesforheatequationwithNeumannboundaryconditions[J].NumericalMethodsforPartialDifferentialEquations, 2009,25(6):1 459-1 486. [10]LiaoWenyuan,ZhuJianping,KhaliqQM.AFourth-OrderCompactAlgorithmforNonlinearReaction-DiffusionEquationswithNeumannBoundaryConditions[J].NumerMethodsPartialDifferentialEq, 2006, 22(3): 600-616. [11]SunZhizhong.CompactDifferenceSchemesforHeatEquationwithNeumannBoundaryConditions[J].NumerMethodsPartialDifferentialEq, 2009, 25(6): 1 459-1 486. [12]LiJuan,SunZhizhong,ZhaoXuan.AthreelevellinearizedcompactdifferenceschemefortheCahn-Hilliardequation[J].ScienceChina,Mathematics, 2012,55 (4):805-826. [13]LiuChangying,ShiWei,WuXinyuan.Anefficienthigh-orderexplicitschemeforsolvingHamiltoniannonlinearwaveequations[J].AppliedMathematicsandComputation, 2014, 246(c): 696-710. [14] 盛秀蘭.Kdv方程的Crank-Nicolson差分格式[J].聊城大學(xué)學(xué)報:自然科學(xué)版,2012,25(4):23-26. [15] 孫志忠.偏微分方程數(shù)值解[M].北京:科學(xué)出版社, 2004. The Two Nonlinear Klein-Gordon Equation with Neumann Boundary Conditions SHENG Xiu-lan1,2HAO Zong-yan1WU Hong-wei1 (1.School of Mathematics, Southeast University, Nanjing 210096,China; 2.Jiangsu Open University, Nanjing 210036,China) By use of the boundary values of three-order and five-order derivatives, the three points scheme at inside points and two points scheme at boundary points are established respectively. Numerical results are conducted to the truncation error of difference scheme,that is second order in time and fourth order in space. nonlinear Klein-Gordon equation,compact difference scheme,boundary value problem 2017-03-25 國家自然科學(xué)基金項目(11671081);江蘇省高等職業(yè)院校專業(yè)帶頭人高端研修項目(2016GRFX011);江蘇開放大學(xué)“十三五”規(guī)劃課題(16SSW-Y-009)資助 盛秀蘭,E-mail:113525336@qq.com. O241.82 A 1672-6634(2017)02-0001-061 記號及引理
2 差分格式的建立
3 數(shù)值試驗