• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TOTALLY UMBILICAL SUBMANIFOLD ON RIEMANNIAN MANIFOLD WITH AN ORTHOGONAL CONNECTION

    2017-07-18 11:47:12LIKaipengWANGXusheng
    數(shù)學(xué)雜志 2017年4期
    關(guān)鍵詞:流形點(diǎn)子聯(lián)絡(luò)

    LI Kai-peng,WANG Xu-sheng

    (School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

    TOTALLY UMBILICAL SUBMANIFOLD ON RIEMANNIAN MANIFOLD WITH AN ORTHOGONAL CONNECTION

    LI Kai-peng,WANG Xu-sheng

    (School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

    In this paper,we investigate the fundamental equations of submanifolds under orthogonal connections and apply the results in totally umbilical submanifolds.By using the method of Cartan to split the torsion tensor into three components,we calculate and attain the fundamental equations.We consider a special orthogonal connection with which the Riemannian curvature has the same properties as the Levi-Civita connection.We use the fundamental equations to argue totally umbilical submanifolds on spaces with constant curvature,which generalizes the results under the Levi-Civita connection.

    orthogonal connections;fundamental equations in Riemannian manifolds;submanifold;umbilical point

    1 Introduction

    Orthogonal connections are affine connections compatible with the metric.Cartan researched general orthogonal connections in the 1920s.An orthogonal connection minus the Levi-Civita equals a tensor which is called torsion.Cartan found that in general the torsion tensor can split into three components:the vectorial torsion,the totally anti-symmetric one and the one of Cartan-type.Taking the scalar curvature of orthogonal connections one attains the Einstein-Cartan-Hilbert functional.Its critical points are Einstein manifolds,in particular the torsion of a critical point is zero.

    We review Cartan’s classi fi cation and Einstein-Cartan theory in Section 2.Under an orthogonal connection,in general,the Bianchi identity is not always hold,so many properties are not as brief as the Levi-Civita connection.We try to fi nd an orthogonal connection which is not the Levi-Civita connection satisfying the Bianchi identity.In this paper,we focus on totally umbilical submanifold in a constant curvature space.We calculate the fundamental equations,and want to use the Causs equation to express the curvature and investigate thetotally umbilical submanifold under an orthogonal connection.To read more results about orthogonal connections,especially properties on subminifolds,please refer to our other work.

    2 Preliminaries

    We consider ann-dimensional manifoldMequipped with some Riemannian metricg.Let?denote the Levi-Civita connection on the tangent bundle.For any affine connection?′on the tangent bundle there exists a(2,1)-tensor fi eldAsuch that

    for all vector fi eldsX,Y.

    In this article we will require all connections?′to be orthogonal,i.e.,for all vector

    fieldsX,Y,Z,one has

    where 〈·,·〉denotes the scalar product given by the Riemannian metricg.For any tangent vectorXone gets from(2.1)and(2.2)that the endomorphismA(X,·)is skew-adjoint

    Next,we want to express some curvature quantities for?′in terms ofAand curvature quantities for?.To that end we fi x some pointp∈M,and we extend any tangent vectorsX,Y,Z,W∈TpMto vector fi elds again denoted byX,Y,Z,Wbeing synchronous inp,which means

    Furthermore,we choose a local orthogonal frame of vector fi eldsE1,···,Enon a neighbourhood ofp,all being synchronous inp,then the Lie bracket[X,Y]=?XY-?YX=0 vanishes inp,and synchronicity inpimplies

    Hence,inpthe Riemann tensor of?′reads as

    where Riem′denotes the Riemann tensor of?.We note that Riem′(X,Y)Zis anti-symmetric inXandY.And by di ff erentiation of(2.3)we get that(?EiA)(Ej,·)and(?EjA)(Ei,·)are skewadjoint,and therefore we have

    In general,Riem′does not satisfy the Bianchi identity.The Ricci curvature of?′is defined as

    by(2.4)this can be expressed as

    where ric′is the Ricci curvature of?′.We have used thatA(Ei,·)andA(X,·)are skewadjoint.

    One obtains the scalar curvatureR′of?′by taking yet another trace,inpit is given asFor the following calculation we use that(?VA)(X,·)is skew-adjoint for any tangent vectorsV,X,and we get

    whereRdenotes the scalar curvature of?.

    From(2.3)we know that the torsion tensorA(X,·)is skew-adjoint on the tangent spaceTpM.Any torsion tensorAinduces a(3,0)-tensor by setting

    We define the space of all possible torsion tensors onTpMby

    This vector space carries a scalar product

    ForA∈Υ(TpM)andZ∈TpMone denotes the trace over the fi rst two entries by

    Using the de fi nition of inner product of tensors,we denote

    Theorem 2.1For dim(M)≥ 3,one has the following decomposition of(TpM)into irreducibleO(TpM)-subrepresentations

    This decomposition is orthogonal with respect to 〈·,·〉,and it is given by

    For dim(M)=2 theO(TpM)-representation(TpM)=1(TpM)is irreducible.

    ProofStep 1Proof the decomposition exists.

    Suppose anyA∈(TpM),A=A(1)+A(2)+A(3),A(i)∈i(TpM),i=1,2,3.We denoteAEiEjEkbyAijk,and denote〈Ei,Ej〉byδij,therefore

    we get

    soA(1)can be con fi rmed.Thenhence

    ThereforeA(2)is con fi rmed.

    We need to ensure thatA(3)=A-A(1)-A(2)is a Cartan-type.

    For anyX,Y,Z∈TpM,since,we have

    In the same way,

    Add the two sides of the equations,we get,consider

    Hence the decomposition exists.

    Step 2The decomposition is unique.

    LetA=0∈(TpM),ifA=A(1)+A(2)+A(3),then

    SoV=0,i.e.,A(1)=0.

    SoA(2)=0 andA(3)=0.

    Step 3The three space are orthogonal with each other.

    For more about this proof,cf.[12].

    The connections whose torsion tensor is contained inare called vectorial.Those whose torsion tensor is in2(TpM)=∧3T?pMare called totally anti-symmetric,and those with torsion tensor in3(TpM)are called of Cartan-type.

    We note that any Cartan-type torsion tensorA∈(TpM)is trace-free in any pair of entries,i.e.,for anyZ,one has

    The second equality holds asA∈(TpM),and the third one follows from the cyclic identityAXYZ+AYZX+AZXY=0.

    Remark 2.2The invariant quadratic form given in(2.12)has the null space2(TpM)⊕3(TpM).More precisely,one hasA∈2(TpM)⊕3(TpM)if and only ifc12(A)(Z)=0 for anyZ∈TpM.

    Remark 2.3The decomposition given in Theorem 2.1 is orthogonal with respect to the bilinear form given in(2.11),i.e.,forα,β∈{ 1,2,3},αβ,andAα∈α(TpM),Aβ∈β(TpM),one gets

    Corollary 2.4For any orthogonal connection?′on some Riemannian manifold of dimensionn≥3 there exist a vector fi eldV,a 3-formTand a(0,3)-tensor fi eldSwithSp∈3(TpM)for anyp∈Msuch thattakes the form

    whereT(X,Y,·)#andS(X,Y,·)#are the unique vectors with

    For any orthogonal connection theseV,T,Sare unique.

    Lemma 2.5The scalar curvature of an orthogonal connection is given by

    withV,T,Sas in Corollary 2.4,and div?(V)is the divergence of the vector fi eldVtaken with respect to the Levi-Civita connection.

    Corollary 2.6LetMbe a closed manifold of dimensionn≥3 with Riemannian metricgand orthogonal connection?′.Let dvol denote the Riemannian volume measure taken with respect tog.Then the Einstein-Cartan-Hilbert functional is

    3 The Fundamental Equations under Orthogonal Connections and Some Results

    LetMto be a submanifold ofThe signsare orthogonal connection,the Levi-Civita connection,torsion tensor and Riemannian curvature related toM.The signs?′,?,AandRare orthogonal connection,the Levi-Civita connection,torsion tensor and Riemannian curvature related toMinheriting fromand the Riemannian curvature ofM.

    We have the two orthogonal decomposition

    Under the Levi-Civita connection,we denoteB′byB.

    It is easy to check that?′and?′⊥keep compatible with metric,since

    And we have the fact that〈B′(X,Y),ξ〉=〈Aξ(X),Y〉.

    Theorem 3.1(Guass Equation)

    for anyX,Y,Z,W∈TpM.

    Proof

    Theorem3.2(Codazzi Equation)for anyX,Y,Z∈TpM,which

    Proof

    while

    So the equation is found.

    Theorem 3.3(Ricci Equation)

    for anyX,

    Proof

    Proposition 3.4If(X,Y)∈TpMfor anyX,Y∈TpM,thenB′(X,Y)=B′(Y,X)=B(X,Y).

    Proof

    thenB′(X,Y)-B(X,Y)=0,B′(X,Y)=B(X,Y).

    De fi nition 3.5We define the mean curvature vector bytrB′.If for anyX∈TM,,we callMis a submanifold with parallel mean curvature vector.

    It is easy to check that ifMis a submanifold ofwith parallel mean curvature vector,we have‖H′‖is a constant.Since for any

    De fi nition 3.6Mis a submanifold of,then

    (1)IfAξ(x):TxM→TxMsatis fi esAξ(x)=λξ(x)·Id,whichλξ(x)is a constant related to pointx,andIdis identity mapping.Then we call x is a umbilical point related to normal vectorξ.

    (2)If for allx∈M,xis a umbilical point related toξ.Then we callMis umbilical related to normal vectorξ.

    (3)IfMis umbilical related to any normal vectorξ∈T⊥M.Then we callMis a totally umbilical submanifold.

    Proposition 3.7LetMnto be a submanifold ofthenMis a totally umbilical submanifold if and only ifB′(X,Y)=g(X,Y)H′,?X,Y∈TpM.

    ProofIfMis a totally umbilical submanifold,then

    B′(X,Y)=g(X,Y)H′.

    IfB′(X,Y)=g(X,Y)H′,?X,Y∈TpM,then?ξ∈T⊥pM,

    while〈B′(X,Y),ξ〉=〈Aξ(X),Y〉,henceAξ(X)=〈H′,ξ〉X.

    Proposition 3.8LetMto be a submanifold of,thenMis a totally geodesic if and only ifMis totally umbilical andH′≡0.

    ProofIfB′≡0,then

    soMis totally umbilical.By Proposition 3.7,B′=gH′,thenH′≡ 0.

    IfMis totally umbilical andH′≡ 0,thenB′=gH′=0,soB′≡ 0,Mis a totally geodesic submanifold.

    Under the Levi-Civita connections,the Riemannian curvatureRhas the following properties

    But under orthogonal connections,(iii),(iv)do not always hold.

    We usually denoteG(X,Y,Z,W)〈X,Z〉〈Y,W〉-〈X,W〉〈Y,Z〉.It is easy to check thatGhas the same properties(3.1)asR.

    In the rest of this section,we argue Lemma 3.9,Theorem 3.10,Corallary 3.11,and Theorem 3.12 in 3-dimensional Reimannian manifold equipped with an orthogonal connection which torsionTis a totally anti-symmetric satisfyingT=fW1∧W2∧W3(W1,W2,W3is the dual bases ofE1,E2,E3),fis a constant.

    Lemma 3.9(M,g)is under the conditions above,then the fi rst Bianchi identity is founded,that is to say

    ProofAt any pointp∈M,we choose parallel unit vector fi eldsE1,E2,E3as the bases in the neighborhood ofp.

    Since the curvature tensorR′(X,Y)Zat pointpis not related to the extensions ofX|p,Y|p,Z|p,we let the extensions to be

    whichXi,Yi,Ziare constants,i=1,2,3,then

    Ifi,j,kare at least two identical,

    We consideri,j,kare di ff erent from each other,then

    Without of loss generality,we leti=1,j=2,k=3,

    soR′(E1,E2)E3+R′(E2,E3)E1+R′(E3,E1)E2=0.That is to say,in the case ofi,j,kare di ff erent from each other,

    Therefore

    So property(iv)of(3.1)is founded.Since dimM=3,we have?T=0,then

    corresponding to the(iii)of(3.1).

    After all,(3.1)holds for an orthogonal in 3-dimension under the conditions above.

    Theorem 3.10If dimM=3,under an orthogonal connection above,then the curvature tensor ofMat pointpis determined by the all(sections’)sectional curvatures.

    ProofBecuase(3.1)holds forR′,we prove the theorem as following.In order to proof the theorem,we only need to prove that if there is another(0,4)-tensor′(X,Y,Z,W)satisfying(3.1),and for any linearly independent vectorsX,Y∈TpM,it always hold that′(X,Y,X,Y)=R′(X,Y,X,Y),then for anyX,Y,Z,W∈TpM,we have′(X,Y,Z,W)=R′(X,Y,Z,W).So letS(X,Y,Z,W)=′(X,Y,Z,W)-R′(X,Y,Z,W),the argument above is equivalent to that if for anyX,Y∈TpM,S(X,Y,X,Y)=0,thenS≡0.Obviously,Sis a(0,4)-tensor satisfying(3.1).ExpandingS(X+Z,Y,X+Z,Y)=0,we have

    Then expandingS(X,Y+W,Z,Y+W)=0,we have

    Via(iv)S(X,Y,Z,W)+S(X,Z,W,Y)+S(X,W,Y,Z)=0,we obtain

    Likewise,

    Hence,for anyX,Y,Z,W∈TpM,S(X,Y,Z,W)=0.

    Corollary 3.11Let(M,g)a Riemannian manifold,dimM=3,under an orthogonal connection above,thenMis a isotropic manifold if and only if fi xing anyp∈M,

    Theorem 3.12is constant curvature Riemannian manifold whichdim=3 and curvature is,equipped with an orthogonal connection above,denoted by (the torsion is).LetMbe a submanifold ofwhich is connected and is totally umbilical,then

    (1)Mis a submanifold with a parallel mean curvature vector,andR⊥(X,Y)ξ≡0 under the Levi-Civita connection.

    (2)Mis a submanifold of constant curvature,which curvature is

    ProofAt fi rst,for convenience,we proof the case ofunder the Levi-Civita connection andn-dimension

    Sinceis a constant curvature manifold,then

    Using Proposition 3.7,B(X,Y)=〈X,Y〉H,we have

    We pickY=Z/=0,X⊥Y,thenfor anyX,Y∈TpM,,i.e.,His parallel related to

    Next,proof ofR⊥≡0.

    Sinceis constant curvature manifold,then.We have,whileB=B(X,λξY)=λξB(X,Y)=B(Y,Aξ(X)).

    (2)Via the Gauss equation,?X,Y,Z,W∈TpM,we have

    soMis a constant curvature manifold with sectional curvature+‖H‖2,whileis a totally anti-symmetric tensor,Tis also a totally anti-symmetric tensor.Because of dim=3,dimM≤2,T≡0.So the Codazzi equation is the same as the case of the Levi-Civita connection,i.e.,

    Combined with Corollary 3.11,we can get the result.

    [1]Cartan.Sur les varits connexion a ff ne et la thorie de la rlativit gnralise(premire partie)[J].Ann.Norm.Sup.,1923,40:325-412.

    [2]Cartan.Sur les varits connexion a ff ne et la thorie de la rlativit gnralise(premire partie suite)[J].Ann.Norm.Sup.,1924,41:1-25.

    [3]Cartan.Sur les varits connexion a ff ne et la thorie de la rlativit gnralise(deuxime partie)[J].Ann.Norm.Sup.,1925,42:17-88.

    [4]Agricola I.The Srn lectures on non-integrable geometries with torsion[J].Arch.Math.(Brno),2006,42:5-84.

    [5]Tricerri F,Vanhecke L.Homogeneous structures on Riemannian manifolds[M].London Math.Soc.Lecture Note Ser.,Vol.83,Cambridge:Cambridge University Press,1983.

    [6]Pfaffle F,Stephan C A.On gravity,torsion and the spectral action principle[J].J.Funct.Anal.,2012,262:1529-1565.

    [7]Kobayashi S,Nomizu K.Foundations of di ff erential geometry[M].New York:Interscience Publishers,1969.

    [8]Bai Z G,Shen Y B.An introduction to Riemann geometry(revised ed.)[M].Beijing:Higher Edu.Press,2004.

    [9]Isaac Chavel.Riemannian geometry,a modern introduction(2nd ed.)[M].Cambridge:Cambridge Cambridge University Press,2006.

    [10]Berger M.Quelques formules de variation pour une structure riemannienne[J].Ann.Norm.Sup.,1970,3(4):285-294.

    [11]Tricerri F,Vanhecke L.Homogeneous structures on Riemannian manifolds[M].London Math.Soc.,Lecture Note Ser.,Vol.83 Cambridge:Cambridge University Press,1983.

    [12]Nie Zhi.On the Guass equation and Chern connections of Finsler submanifolds[J].J.Math.,2004,24(5):537-542.

    黎曼流形在正交聯(lián)絡(luò)下的全臍點(diǎn)子流形

    李凱鵬,王旭升

    (武漢大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖北武漢 430072)

    本文研究了正交聯(lián)絡(luò)下子流形基本方程以及在全臍點(diǎn)子流形中的應(yīng)用.利用Cartan的方法將撓率張量分解成三個(gè)部分,計(jì)算得到正交聯(lián)絡(luò)下的三個(gè)基本方程,并考慮一個(gè)特殊的正交聯(lián)絡(luò),證明了其黎曼曲率會(huì)有類似于Levi-Civita聯(lián)絡(luò)下的性質(zhì).利用基本方程得到常曲率空間中的全臍點(diǎn)子流形的性質(zhì),推廣了Levi-Civita聯(lián)絡(luò)下的相應(yīng)結(jié)果.

    正交聯(lián)絡(luò);黎曼流形的基本方程;子流形;臍點(diǎn)

    O186.12

    on:53C05;53C17

    A Article ID: 0255-7797(2017)04-0672-13

    date:2017-01-10Accepted date:2017-03-27

    Supported by National Natural Science Foundation of China(11571259).

    Biography:Li Kaipeng(1989-),male,born at Fuzhou,Fujian,postguaduate,major in di ff erential geometry and geometric analysis.

    猜你喜歡
    流形點(diǎn)子聯(lián)絡(luò)
    緊流形上的Schr?dinger算子的譜間隙估計(jì)
    讓人大代表聯(lián)絡(luò)站不止于“聯(lián)絡(luò)”
    迷向表示分為6個(gè)不可約直和的旗流形上不變愛因斯坦度量
    近Hermite流形上聯(lián)絡(luò)的關(guān)系
    Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
    好點(diǎn)子不足以支撐好買賣
    基于多故障流形的旋轉(zhuǎn)機(jī)械故障診斷
    點(diǎn)子將軍
    奧秘(2014年1期)2014-01-17 12:54:56
    讓人驚嘆的極客好點(diǎn)子
    實(shí)名.挑戰(zhàn).餿點(diǎn)子
    精品一区二区三区人妻视频| 3wmmmm亚洲av在线观看| 99久久久亚洲精品蜜臀av| 亚洲av二区三区四区| 国语自产精品视频在线第100页| 国产精品一区二区三区四区免费观看| 国产伦一二天堂av在线观看| 人人妻人人看人人澡| 日韩大尺度精品在线看网址| 亚洲在线自拍视频| 老女人水多毛片| 国产91av在线免费观看| 欧美3d第一页| 欧美高清性xxxxhd video| 久久精品国产99精品国产亚洲性色| 中文字幕精品亚洲无线码一区| 国产真实乱freesex| 一级黄片播放器| 狠狠狠狠99中文字幕| 在线观看美女被高潮喷水网站| 嫩草影院精品99| 久久精品综合一区二区三区| 国产精品日韩av在线免费观看| 精品久久久久久久久av| 国产成人福利小说| 哪里可以看免费的av片| 我的女老师完整版在线观看| 欧美bdsm另类| 日韩中字成人| 99久久精品热视频| 热99在线观看视频| 哪个播放器可以免费观看大片| 人人妻人人澡欧美一区二区| 又粗又爽又猛毛片免费看| 午夜福利高清视频| 国产精品一区二区性色av| 亚洲第一区二区三区不卡| 不卡一级毛片| 我的老师免费观看完整版| 永久网站在线| 成人毛片60女人毛片免费| 99视频精品全部免费 在线| 欧美不卡视频在线免费观看| 大香蕉久久网| 麻豆成人av视频| 成人一区二区视频在线观看| 中文字幕久久专区| 99久久成人亚洲精品观看| 久久久a久久爽久久v久久| 精品人妻一区二区三区麻豆| 亚洲av成人精品一区久久| 日韩大尺度精品在线看网址| 国产在线精品亚洲第一网站| 国产在线精品亚洲第一网站| 日韩视频在线欧美| 国产精品麻豆人妻色哟哟久久 | 日韩av不卡免费在线播放| 一区二区三区高清视频在线| 人体艺术视频欧美日本| 九九在线视频观看精品| 三级男女做爰猛烈吃奶摸视频| 欧美日韩一区二区视频在线观看视频在线 | 日韩欧美一区二区三区在线观看| 久久99热这里只有精品18| 婷婷六月久久综合丁香| 99热网站在线观看| 日韩精品有码人妻一区| www日本黄色视频网| 哪个播放器可以免费观看大片| 黄片无遮挡物在线观看| 免费看a级黄色片| 欧美日韩精品成人综合77777| 欧美日本亚洲视频在线播放| av在线观看视频网站免费| 99国产极品粉嫩在线观看| 中国美白少妇内射xxxbb| 国产精品久久久久久精品电影| 国产黄色小视频在线观看| 中国国产av一级| 亚洲欧美日韩高清在线视频| 夜夜夜夜夜久久久久| a级毛色黄片| 国产一级毛片在线| 在线播放国产精品三级| 久久久a久久爽久久v久久| 99热精品在线国产| 亚洲在线观看片| 日韩一区二区视频免费看| 色5月婷婷丁香| 白带黄色成豆腐渣| 一本一本综合久久| 亚洲七黄色美女视频| 一个人观看的视频www高清免费观看| 六月丁香七月| 精品欧美国产一区二区三| 熟女人妻精品中文字幕| 国产视频内射| 成人亚洲精品av一区二区| 国产成人精品一,二区 | 久久婷婷人人爽人人干人人爱| 99热只有精品国产| 亚洲精品粉嫩美女一区| 91久久精品国产一区二区三区| 日本av手机在线免费观看| 好男人视频免费观看在线| 亚洲精品国产av成人精品| 少妇人妻精品综合一区二区 | 中文字幕av在线有码专区| 一个人看视频在线观看www免费| 九九在线视频观看精品| 插逼视频在线观看| 边亲边吃奶的免费视频| 亚洲欧美日韩无卡精品| 国产伦精品一区二区三区视频9| 欧美一区二区国产精品久久精品| 精品免费久久久久久久清纯| 男人的好看免费观看在线视频| 99久国产av精品国产电影| 午夜激情福利司机影院| 亚洲av电影不卡..在线观看| 中文在线观看免费www的网站| 成人午夜精彩视频在线观看| 97超碰精品成人国产| 黄色一级大片看看| 亚洲一区二区三区色噜噜| 黄片无遮挡物在线观看| 亚洲一级一片aⅴ在线观看| a级毛片免费高清观看在线播放| 校园人妻丝袜中文字幕| 欧美xxxx黑人xx丫x性爽| 1024手机看黄色片| 欧美3d第一页| 国产综合懂色| 91精品一卡2卡3卡4卡| 在线观看66精品国产| 亚洲av中文av极速乱| 日韩中字成人| 国产国拍精品亚洲av在线观看| 美女xxoo啪啪120秒动态图| 欧美成人一区二区免费高清观看| 能在线免费观看的黄片| 中文字幕制服av| 国产色婷婷99| 欧美日韩国产亚洲二区| 麻豆久久精品国产亚洲av| 欧美日本亚洲视频在线播放| 国产精品一及| 我要看日韩黄色一级片| 亚洲国产精品成人综合色| 好男人在线观看高清免费视频| 久久精品国产99精品国产亚洲性色| av在线老鸭窝| 色5月婷婷丁香| 成年女人看的毛片在线观看| 亚洲国产精品sss在线观看| 国产亚洲91精品色在线| 日本av手机在线免费观看| 给我免费播放毛片高清在线观看| 嘟嘟电影网在线观看| 国产 一区 欧美 日韩| 亚洲人成网站在线观看播放| 成人高潮视频无遮挡免费网站| 悠悠久久av| 3wmmmm亚洲av在线观看| 一级毛片电影观看 | 五月伊人婷婷丁香| АⅤ资源中文在线天堂| 丝袜美腿在线中文| 久久人人爽人人片av| 最近最新中文字幕大全电影3| 亚洲,欧美,日韩| 日本黄大片高清| 日本与韩国留学比较| 国产高清视频在线观看网站| 岛国在线免费视频观看| 亚洲国产精品成人久久小说 | 亚洲精品成人久久久久久| 黑人高潮一二区| 一区二区三区四区激情视频 | 99视频精品全部免费 在线| 亚洲乱码一区二区免费版| 亚洲欧美成人综合另类久久久 | 国产国拍精品亚洲av在线观看| 毛片一级片免费看久久久久| 人妻系列 视频| 又黄又爽又刺激的免费视频.| 人妻制服诱惑在线中文字幕| 国产免费一级a男人的天堂| 美女国产视频在线观看| 青青草视频在线视频观看| 老司机影院成人| 国产av一区在线观看免费| 久久精品国产亚洲av涩爱 | 日韩高清综合在线| 国产69精品久久久久777片| 中文字幕人妻熟人妻熟丝袜美| 麻豆精品久久久久久蜜桃| 国产中年淑女户外野战色| 乱码一卡2卡4卡精品| 大香蕉久久网| 亚洲精品日韩在线中文字幕 | 如何舔出高潮| 国产午夜精品论理片| 成人毛片60女人毛片免费| 欧美bdsm另类| 精品免费久久久久久久清纯| 狂野欧美白嫩少妇大欣赏| 日本一本二区三区精品| 波野结衣二区三区在线| 久久人人精品亚洲av| 亚洲精品粉嫩美女一区| 日韩欧美精品免费久久| 一级av片app| 亚洲丝袜综合中文字幕| 三级男女做爰猛烈吃奶摸视频| 国产精品福利在线免费观看| 亚洲av免费在线观看| 国产成人a∨麻豆精品| 久久久国产成人精品二区| 欧美日本视频| 天堂中文最新版在线下载 | 午夜福利高清视频| 美女黄网站色视频| 少妇猛男粗大的猛烈进出视频 | 十八禁国产超污无遮挡网站| 成年版毛片免费区| 日本五十路高清| 国产一区二区在线av高清观看| 亚洲四区av| 久久久国产成人精品二区| 99久久精品一区二区三区| 三级国产精品欧美在线观看| 久久精品国产亚洲av香蕉五月| 一个人免费在线观看电影| 久久精品夜色国产| 国产探花在线观看一区二区| 亚洲成人av在线免费| 日韩精品有码人妻一区| 日韩强制内射视频| 好男人在线观看高清免费视频| 校园春色视频在线观看| 成人高潮视频无遮挡免费网站| 国产三级在线视频| 成人特级av手机在线观看| 美女cb高潮喷水在线观看| 欧美极品一区二区三区四区| 天天一区二区日本电影三级| 国产极品天堂在线| 少妇的逼好多水| 一级毛片我不卡| 亚洲不卡免费看| 国产精品国产高清国产av| 国产精品无大码| 男女边吃奶边做爰视频| 一边摸一边抽搐一进一小说| 晚上一个人看的免费电影| 搞女人的毛片| av在线观看视频网站免费| 国产精品精品国产色婷婷| 国产中年淑女户外野战色| 国产欧美日韩精品一区二区| 婷婷精品国产亚洲av| 欧美bdsm另类| 卡戴珊不雅视频在线播放| 91精品国产九色| 伦精品一区二区三区| 神马国产精品三级电影在线观看| 久久久精品欧美日韩精品| 久99久视频精品免费| 久久久久久久亚洲中文字幕| 人体艺术视频欧美日本| 日韩制服骚丝袜av| 国模一区二区三区四区视频| 九九爱精品视频在线观看| 99久久九九国产精品国产免费| 最好的美女福利视频网| 综合色av麻豆| 国产精品美女特级片免费视频播放器| 老女人水多毛片| 中文亚洲av片在线观看爽| 亚洲国产欧美在线一区| 亚洲av免费高清在线观看| 亚洲人成网站高清观看| 国产亚洲精品久久久久久毛片| 久久精品久久久久久噜噜老黄 | 一级毛片电影观看 | 国产一区二区亚洲精品在线观看| 成人av在线播放网站| av在线老鸭窝| 国产高清不卡午夜福利| 亚洲欧美成人综合另类久久久 | 两个人视频免费观看高清| 嘟嘟电影网在线观看| 国产免费男女视频| 亚洲精品日韩av片在线观看| av在线天堂中文字幕| 一级黄片播放器| 欧美人与善性xxx| 看非洲黑人一级黄片| 毛片一级片免费看久久久久| 欧美另类亚洲清纯唯美| 天天一区二区日本电影三级| 亚洲精品日韩av片在线观看| 午夜亚洲福利在线播放| 亚洲一区高清亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩无卡精品| 一夜夜www| 亚洲av不卡在线观看| 国产探花极品一区二区| 国产真实伦视频高清在线观看| 日本av手机在线免费观看| 女的被弄到高潮叫床怎么办| 搞女人的毛片| 国产成人一区二区在线| 2021天堂中文幕一二区在线观| 狂野欧美激情性xxxx在线观看| 精品无人区乱码1区二区| 97超碰精品成人国产| 精品久久久久久久久亚洲| 国产精品久久久久久av不卡| 久久久久久久久久久丰满| 国产成人精品久久久久久| 国产男人的电影天堂91| 国产精品久久久久久精品电影小说 | 在线天堂最新版资源| www.色视频.com| 成人无遮挡网站| 男女那种视频在线观看| av.在线天堂| 欧美精品国产亚洲| 乱系列少妇在线播放| 亚洲丝袜综合中文字幕| 亚洲成人久久性| 成人漫画全彩无遮挡| 女的被弄到高潮叫床怎么办| 欧美日韩一区二区视频在线观看视频在线 | 日韩一区二区三区影片| 在线播放无遮挡| 蜜臀久久99精品久久宅男| 在线观看美女被高潮喷水网站| 成年免费大片在线观看| 久久精品国产亚洲av涩爱 | 久久久久性生活片| 内射极品少妇av片p| 男人舔女人下体高潮全视频| 性插视频无遮挡在线免费观看| 中文在线观看免费www的网站| 男的添女的下面高潮视频| 乱人视频在线观看| 午夜福利成人在线免费观看| 插逼视频在线观看| 长腿黑丝高跟| 欧美色欧美亚洲另类二区| 在线观看66精品国产| 欧美性猛交黑人性爽| 一级av片app| 成人亚洲欧美一区二区av| 综合色av麻豆| 人妻久久中文字幕网| 欧美区成人在线视频| 亚洲欧洲日产国产| 国产精品伦人一区二区| 一级黄色大片毛片| 国产私拍福利视频在线观看| 欧美xxxx性猛交bbbb| 欧美日本视频| 成人国产麻豆网| 国产精品嫩草影院av在线观看| 国产成人午夜福利电影在线观看| 91av网一区二区| 国产精品久久视频播放| 美女被艹到高潮喷水动态| 久久国产乱子免费精品| 97热精品久久久久久| 国产日韩欧美在线精品| 最好的美女福利视频网| 日韩高清综合在线| 天堂av国产一区二区熟女人妻| 久久国产乱子免费精品| 欧美xxxx黑人xx丫x性爽| 国产激情偷乱视频一区二区| 中文欧美无线码| 亚洲精品影视一区二区三区av| 一级毛片aaaaaa免费看小| 蜜臀久久99精品久久宅男| 色播亚洲综合网| 成人美女网站在线观看视频| 此物有八面人人有两片| 日日干狠狠操夜夜爽| 十八禁国产超污无遮挡网站| 亚洲真实伦在线观看| 亚洲婷婷狠狠爱综合网| 免费一级毛片在线播放高清视频| 国产精品无大码| 午夜福利在线观看吧| 亚洲av中文字字幕乱码综合| 国产 一区精品| 99久久精品国产国产毛片| 在线播放无遮挡| 美女国产视频在线观看| 人妻系列 视频| av天堂中文字幕网| 精品久久国产蜜桃| 日本三级黄在线观看| 在线观看av片永久免费下载| 天天躁日日操中文字幕| 国产av麻豆久久久久久久| 亚洲欧美成人综合另类久久久 | 在线免费观看不下载黄p国产| 久久久久久久久久久免费av| 床上黄色一级片| 亚洲久久久久久中文字幕| 身体一侧抽搐| 日日摸夜夜添夜夜爱| 99热精品在线国产| 亚洲精品日韩av片在线观看| 午夜精品在线福利| 日韩国内少妇激情av| 一边亲一边摸免费视频| 亚洲久久久久久中文字幕| 日韩人妻高清精品专区| 亚洲婷婷狠狠爱综合网| 尾随美女入室| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲精品av在线| 国产蜜桃级精品一区二区三区| 久久久久性生活片| 中文亚洲av片在线观看爽| 超碰av人人做人人爽久久| 欧美最黄视频在线播放免费| 搡女人真爽免费视频火全软件| 热99re8久久精品国产| 国产精品1区2区在线观看.| 91久久精品国产一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 2021天堂中文幕一二区在线观| 一本久久精品| 国产精品乱码一区二三区的特点| 精品午夜福利在线看| 国产精品久久电影中文字幕| 精品久久久久久久末码| 国产精品美女特级片免费视频播放器| www.av在线官网国产| 又粗又硬又长又爽又黄的视频 | 人妻制服诱惑在线中文字幕| 久久精品影院6| 午夜福利成人在线免费观看| 久久久久久九九精品二区国产| 欧美成人a在线观看| 中国美白少妇内射xxxbb| 亚洲自偷自拍三级| 成年av动漫网址| 蜜臀久久99精品久久宅男| 亚洲va在线va天堂va国产| 日日摸夜夜添夜夜添av毛片| 免费av毛片视频| 亚洲精品456在线播放app| 亚洲成人久久性| 亚洲七黄色美女视频| 日韩欧美在线乱码| 久久精品国产清高在天天线| 美女高潮的动态| 欧美一区二区精品小视频在线| 免费搜索国产男女视频| 午夜免费男女啪啪视频观看| 国产成年人精品一区二区| 中文字幕制服av| 亚洲自拍偷在线| 麻豆成人午夜福利视频| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| 男女那种视频在线观看| 日本色播在线视频| 能在线免费观看的黄片| 高清午夜精品一区二区三区 | 国产伦精品一区二区三区四那| 亚洲美女视频黄频| 韩国av在线不卡| 国内少妇人妻偷人精品xxx网站| 美女内射精品一级片tv| 在线播放无遮挡| 国产精品人妻久久久影院| 亚洲久久久久久中文字幕| 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| av.在线天堂| 久久韩国三级中文字幕| 中国美白少妇内射xxxbb| 国国产精品蜜臀av免费| 亚洲在线观看片| 久久久成人免费电影| 欧美成人精品欧美一级黄| 午夜福利在线在线| 亚洲欧美日韩高清专用| 熟女电影av网| 99久久无色码亚洲精品果冻| 欧美+日韩+精品| 色综合站精品国产| 99热精品在线国产| 国产精品免费一区二区三区在线| 精品久久久久久成人av| 国产真实伦视频高清在线观看| 国产成人aa在线观看| 亚洲电影在线观看av| 免费搜索国产男女视频| 不卡视频在线观看欧美| 欧美一区二区亚洲| 欧美高清成人免费视频www| 国产成人福利小说| 十八禁国产超污无遮挡网站| 九九久久精品国产亚洲av麻豆| 女的被弄到高潮叫床怎么办| 只有这里有精品99| 最近的中文字幕免费完整| 亚洲成人久久性| 国产亚洲精品久久久com| h日本视频在线播放| 69av精品久久久久久| 亚洲在久久综合| 日本免费a在线| 在线国产一区二区在线| 丰满乱子伦码专区| 亚洲人成网站在线观看播放| 国产私拍福利视频在线观看| 久久久国产成人精品二区| 国语自产精品视频在线第100页| 亚洲av.av天堂| 亚洲五月天丁香| 晚上一个人看的免费电影| 美女被艹到高潮喷水动态| 欧美三级亚洲精品| 国产精品一区二区三区四区久久| 久久久久九九精品影院| 亚洲成av人片在线播放无| 最新中文字幕久久久久| 日本黄色片子视频| 午夜福利在线在线| 三级毛片av免费| 久久久久久九九精品二区国产| 亚洲欧美中文字幕日韩二区| 精品人妻偷拍中文字幕| 麻豆国产av国片精品| 麻豆久久精品国产亚洲av| 久久久色成人| 亚洲成人久久性| 成人性生交大片免费视频hd| 人妻夜夜爽99麻豆av| 国产精品一区www在线观看| 三级国产精品欧美在线观看| 久久久色成人| 国产极品精品免费视频能看的| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 99riav亚洲国产免费| 女同久久另类99精品国产91| 亚洲va在线va天堂va国产| 欧美三级亚洲精品| 国内精品宾馆在线| 12—13女人毛片做爰片一| 可以在线观看的亚洲视频| av天堂在线播放| 亚洲一区高清亚洲精品| 哪个播放器可以免费观看大片| 干丝袜人妻中文字幕| 久久精品国产自在天天线| 免费黄网站久久成人精品| 美女国产视频在线观看| 午夜久久久久精精品| 国产成年人精品一区二区| 国产成人a区在线观看| АⅤ资源中文在线天堂| 看片在线看免费视频| 淫秽高清视频在线观看| kizo精华| 日本免费a在线| 成年版毛片免费区| 成人无遮挡网站| 国产极品精品免费视频能看的| 在线免费十八禁| 亚洲av中文av极速乱| 国产69精品久久久久777片| 日韩中字成人| 久久精品国产鲁丝片午夜精品| 丰满人妻一区二区三区视频av| 黄色欧美视频在线观看| 床上黄色一级片| 麻豆一二三区av精品| 深爱激情五月婷婷| 亚洲在久久综合| 卡戴珊不雅视频在线播放| 国产老妇女一区| 亚洲四区av| 午夜福利高清视频| 青春草国产在线视频 | 一级毛片久久久久久久久女| 国内精品一区二区在线观看| 亚洲精品影视一区二区三区av| 成人亚洲欧美一区二区av| 能在线免费看毛片的网站| 身体一侧抽搐| 人妻系列 视频| 哪个播放器可以免费观看大片| 免费黄网站久久成人精品| 99热只有精品国产| 美女被艹到高潮喷水动态| 99九九线精品视频在线观看视频| 人妻制服诱惑在线中文字幕| 高清毛片免费观看视频网站| 国产爱豆传媒在线观看| 久久精品国产99精品国产亚洲性色| 久久久久久伊人网av| 成人午夜精彩视频在线观看| 亚洲欧美日韩卡通动漫| 日本黄大片高清|