• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FINITE GROUPS WHOSE ALL MAXIMAL SUBGROUPS ARE SMSN-GROUPS

    2017-07-18 11:47:12GUOPengfei
    數(shù)學(xué)雜志 2017年4期
    關(guān)鍵詞:自同構(gòu)鵬飛子群

    GUO Peng-fei

    (1.School of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China)(2.School of Mathematics and Information Engneering,Lianyungang Normal College,Lianyungang 222006,China)

    FINITE GROUPS WHOSE ALL MAXIMAL SUBGROUPS ARE SMSN-GROUPS

    GUO Peng-fei1,2

    (1.School of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China)(2.School of Mathematics and Information Engneering,Lianyungang Normal College,Lianyungang 222006,China)

    A fi nite groupGis called an SMSN-group if its 2-maximal subgroups are subnormal inG.In this paper,the author investigates the structure of fi nite groups which are not SMSN-groups but all their proper subgroups are SMSN-groups.Using the idea of local analysis,a complete classi fi cation of this kind of groups is given,which generalizes some results of the structure of fi nite groups.

    power automorphisms;nilpotent groups;minimal non-nilpotent groups;minimal non-SMSN-groups

    1 Introduction

    All groups in this paper are fi nite and our notation is standard(see[1]).Let Σ be an abstract group theoretical property,for example,nilpotency,supersolvability,solvability,etc.If all proper subgroups of a groupGhave the property Σ butGdoes not have the property Σ,thenGis called a minimal non-Σ-group.

    One of the hottest topics in group theory is to determinate the structure of minimal non-Σ-groups and many meaningful results about this topic were obtained.The speci fi c papers about this topic can refer to[2-10].

    The aim of this paper is to study the structure of a kind of minimal non-Σ-groups.We call the groups whose 2-maximal subgroups are subnormal SMSN-groups.A groupGis a minimal non-SMSN-group if every proper subgroup ofGis an SMSN-group butGitself is not,and we classify the minimal non-SMSN-groups completely.

    2 Preliminaries

    In this section,we give some de fi nitions and some lemmas needed in this paper.

    Lemma 2.1(see[5,Lemma 5])Every 2-maximal subgroup of a groupGis subnormal if and only if eitherGis nilpotent orGis a Schmidt group with abelian Sylow subgroups.

    Lemma 2.2IfGis a solvable minimal non-SMSN-group,then|π(G)|≤3.

    ProofIf|π(G)|≥ 4,then every maximal subgroup ofGhas at least three prime divisors sinceGis solvable.Applying Lemma 2.1,Gis minimal non-nilpotent,a contradiction.Hence|π(G)|≤3.

    Lemma 2.3(see[10]) Any minimal simple group(non-abelian simple group all of whose proper subgroups are solvable)is isomorphic to one of the following simple groups

    (1)PSL(3,3);

    (2)PSL(2,p),wherepis a prime withp>3 and

    (3)PSL(2,2q),whereqis a prime;

    (4)PSL(2,3q),whereqis an odd prime;

    (5)The Suzuki group Sz(2q),whereqis an odd prime.

    Lemma 2.4(see[11])Suppose thatp′-groupHacts on ap-groupG.Let

    IfHacts trivially on Ω(G),thenHacts trivially onGas well.

    Lemma 2.5(see[7,Lemma 2.9])If ap-groupGof orderpn+1has a unique non-cyclic maximal subgroup,thenGis isomorphic to one of the following groups

    (I)Cpn×Cp=〈a,b|apn=bp=1,[a,b]=1〉,wheren≥ 2;

    (II)Mpn+1=〈a,b|apn=bp=1,b-1ab=a1+pn-1〉,wheren≥ 2 andn≥ 3 ifp=2.

    Lemma 2.6(see[12])LetGbe a group andHa nilpotent subnormal subgroup ofG.ThenGcontains a nilpotent normal subgroup ofGcontainingH.

    3 Main Results

    In this section,we give the speci fi c classi fi cation of the minimal non-SMSN-groups.

    Theorem 3.1A non-solvable groupGis a minimal non-SMSN-group if and only ifGis isomorphic toA5,whereA5is the alternating group of degree 5.

    ProofWe only prove the necessity part.

    SinceGis a non-solvable group whose maximal subgroups are all SMSN-groups,thenGis a minimal non-solvable group by Lemma 2.1,and soG/Φ(G)is a minimal simple group.

    Case 1Assume Φ(G)=1.ThenGis isomorphic to one of the simple groups mentioned in Lemma 2.3.

    LetPSL(2,2q).By[14,Corollary 2.2],Ghas maximal subgroups:the dihedral groups of order 2(2q±1);the Frobenius groupHof order 2q(2q-1);the alternating groupA4of degree 4 whenq=2.Clearly,5whenq=2 and it is a minimal non-SMSN-group.Ifq>2,then 3| 2q+1.It follows from Lemma 2.1 thatGis not a minimal non-SMSN-group.

    LetPSL(2,3q).Similar arguments as above,Ghas a dihedral groupBwhose Sylow 2-subgroups are neither cyclic nor normal,which contradicts the fact thatBis an SMSN-group.SoGPSL(2,3q).

    LetGSz(2q).By[15,Theorem 9],Ghas a Frobenius groupKof orderbut the Sylow 2-subgroups ofKare neither cyclic nor normal,a contradiction.SoG?Sz(2q).

    Case 2Assume Φ(G)1.It is easy to see that(G/Φ(G))=1 andG/(G)is a non-solvable minimal non-SMSN-group.Similar arguments as above and by induction,G/(G)5.HenceGhas two non-nilpotent maximal subgroupsM1andM2such thatM1/(G)4andM2/Φ(G)10,whereA4is the alternating group of degree 4 andD10is the dihedral group of order 10.SinceM1andM2are SMSN-groups,they are minimal non-nilpotent by Lemma 2.1.It makes|G|=2a·3·5 and|(G)| =2a-2,wherea≥ 3.By Lemma 2.1 again,the Sylow 2-subgroups ofM1are elementary abelian.At the same time,the Sylow 2-subgroups ofM2are cyclic whose orders are more than 2 by Lemma 2.1,a contradiction.

    Theorem 3.2The minimal non-SMSN-groupGwhose order has exactly two prime divisorspandqis exactly one of the following types(PandQare Sylow subgroups)

    (1)G=〈x,y|xp=yqn=1,y-1xy=xi〉,whereiq/1(modp),iq2≡ 1(modp),p>q,n≥2 and 0<i<p;

    (2)G=〈x,y|xpq=yq=1,y-1xy=xi〉,wherep≡ 1(modq),i≡ 1(modq),iq≡1(modp)and 1<i<p;

    (3)G=〈x,y|x4p=1,y2=x2p,y-1xy=x-1〉;

    (4)G=〈x,y,z|xp=yqn-1=zq=1,y-1xy=xi,[x,z]=1,[y,z]=1〉wherep>q,1(modp),iq≡1(modp)andn≥3;

    (5)G=〈x,y,z|xp=yqn-1=zq=1,y-1xy=xi,[x,z]=1,z-1yz=y1+qn-2〉,wherep>q,1(modp),iq≡1(modp),n≥3 andn≥4 ifq=2;

    (6)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group withr≥ 2,Q=〈y〉with|y|=qnandn≥ 2,〈yq〉acts irreducibly onPand〈yq2〉centralizesP;

    (7)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group andr≥ 2,Q=〈y〉with|y|=qnandn≥ 1,[a1,Q]=1,Qacts irreducibly on〈a2〉×···×〈ar〉and Φ(Q)centralizesP;

    (8)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group withr≥ 2,Q=〈y〉with|y|=qnandn≥ 1,Qacts irreducibly on〈a1〉×···×〈al-1〉and〈al〉×···×〈ar〉withl≥2,and Φ(Q)centralizesP;

    (9)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉(r≥ 2)is ap-group with|a1| =|a2| =···=|ar| =p2,Q=〈y〉with|y|=qnandn≥ 1,Qacts irreducibly on Φ(P),Φ(Q)centralizesP,andG/Φ(P)is a minimal non-abelian group;

    (10)G=PQ,wherePis a non-abelian specialp-group of rank 2m,the order ofpmoduloqbeing 2m,Q=〈y〉is cyclic of orderqr>1,yinduces an automorphism inPsuch thatP/Φ(P)is a faithful and irreducibleQ-module,andycentralizes Φ(P).Furthermore,|P/Φ(P)| =p2mand|P′|≤pm;

    (11)G=PQ,wherePis a non-abelian specialp-group with exp(P)≤p2and| Φ(P)|≥p2,Q=〈y〉with|y|=qnandn≥ 1,Qacts irreducibly on Φ(P),Φ(Q)centralizesP,andG/Φ(P)is a minimal non-abelian group;

    (12)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group withr≥ 2,Q=〈a,b|aq=bq=1,[a,b]=1〉,[P,b]=1,〈a〉acts irreducibly onP;

    (13)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group withr≥ 2,Q=〈a,b|aq=bq=1,[a,b]=1〉,〈a〉and〈b〉act irreducibly onP;

    (14)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group withr≥ 2,Q=〈a,b|a4=1,b2=a2,b-1ab=a-1〉,[P,b]=1 and〈a〉acts irreducibly onP;

    (15)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group withr≥ 2,Q=〈a,b|a4=1,b2=a2,b-1ab=a-1〉,[P,a2]=1,〈a〉and〈b〉act irreducibly onP;

    (16)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group withr≥2,Q=〈y,z|yqn-1=zq=1,[y,z]=1〉withn≥ 3,z∈Z(G),〈y〉acts irreducibly onPand〈yq〉centralizesP;

    (17)G=PQ,whereP=〈a1〉×〈a2〉×···×〈ar〉is an elementary abelianp-group withr≥2,Q=〈y,z|yqn-1=zq=1,z-1yz=y1+qn-2〉withn≥ 3 andn≥ 4 ifq=2,〈z〉≤CG(P),〈y〉acts irreducibly onPand〈yq〉centralizesP;

    (18)G=PQ,whereP=〈x〉Gwith|P|=p,Q=(〈a1〉×〈a2〉×···×〈ar-1〉)〈ar〉is a non-normalq-group with3,F(G)=Oq(G)=〈a1〉×〈a2〉×···×〈ar-1〉,Pacts irreducibly onOq(G),a-1rxar=xiandp>q,whereiis a primitiveq-th root of unity modulop,F(G)is the Fitting subgroup ofG.

    ProofIfGis a solvable minimal non-SMSN-group whose order has exactly two prime divisors,then we assumeG=PQ,whereP∈Sylp(G)andQ∈Sylq(G).

    Assume thatPandQare neither cyclic nor normal inG.The solvability ofGimplies thatGhas a normal subgroupMof prime index,sayq.LetMpbe a Sylowp-subgroup ofM.SinceMis an SMSN-group,we have thatMpis either cyclic or normal inMby Lemma2.1.ClearlyMpmust be normal inMsince it is also a Sylowp-group ofG.Now it follows fromMpcharMGthatMpG,a contradiction.SoGhas a Sylow subgroup which is either cyclic or normal.

    (1)Assume thatPandQare cyclic and letP=〈x〉andQ=〈y〉with|x|=pm,|y|=qnandp>q.In this case,y-1xy=xiwithiqn≡1(modpm),0<i<pmand(pm,qn(i-1))=1.Considering the maximal subgroupsP〈yq〉and〈xp〉QofG,if〈xp〉Q=〈xp〉×Q,then by Lemma 2.4,Gis nilpotent,a contradiction.This implies〈xp〉Q=〈xp〉Q.By Lemma 2.1,xp=1,〈yq〉is not normal inG,but〈yq2〉is normal inG.Soiq1(modp),iq2≡ 1(modp)andGis of type(1).

    (2)Assume thatPis a cyclic normal subgroup ofGandQis neither cyclic nor normal inG.Ifq>p,then by Burnside’s theorem[1,10.1.8],QG,a contradiction.Soq<p.IfQhas two non-cyclic maximal subgroupsQ1andQ2,then by Lemma 2.1,PQ1=P×Q1,PQ2=P×Q2and soQ=Q1Q2is normal inG,a contradiction.Therefore,every maximal subgroup ofQis cyclic orQhas a unique non-cyclic maximal subgroup,and soQis an elementary abelianq-group of orderq2,the quaternion groupQ8or one of the types in Lemma 2.5.

    Case 1AssumeP=〈z〉andQ=〈a,b|aq=bq=1,[a,b]=1〉.If〈a〉and〈b〉acting onPby conjugation are both trivial,thenGis nilpotent,a contradiction.Therefore,we may assume that〈a〉acting onPby conjugation is non-trivial.By Lemma 2.1,zp=1.IfCG(P)=P,thenG/CG(P)is an elementary abelianq-group of orderq2.However,G/CG(P)Aut(P),and Aut(P)is cyclic,a contradiction.Hencebis contained inCG(P).Clearly,CG(P)=〈x〉,y-1xy=xi,|x|=pq,y=a,q|p-1,i≡1(modq)andiq≡ 1(modp),wherex=zbis a generator ofCG(P).SoGis of type(2).

    Case 2AssumeP=〈z〉andQ=Q8=〈a,b|a4=1,b2=a2,b-1ab=a-1〉.Similar arguments as Case 1,we have thatzp=1,bis contained inCG(P)and|Z(G)| =2.SoCG(P)=〈x〉with|x|=4p,y=a,y-1xy=xiandi2≡ 1(mod 4p),wherex=zbis a generator ofCG(P).By computations,Gis of type(3).

    Case 3Assume thatP=〈x〉andQis the type of Lemma 2.5(I)with|Q|=qn.Namely,Q=〈y,z|yqn-1=zq=1,[y,z]=1〉,wheren≥ 3.ThenQhas maximal subgroupsH=〈y〉,K0=〈yq,z〉andKs=〈yq,zys〉=〈zys〉withs=1,···,q-1,whereK0is the unique noncyclic maximal subgroup ofQ.By hypothesis and Lemma 2.1,,PK0=P×K0andxp=1.HenceG=〈x,y,z|xp=yqn-1=zq=1,y-1xy=xi,[x,z]=1,[y,z]=1〉,where1(modp),iq≡1(modp).SoGis of type(4).

    Case 4 Assume thatP=〈x〉andQis the type of Lemma 2.5(II)with|Q|=qn.Namely,Q=〈y,z|yqn-1=zq=1,z-1yz=y1+qn-2〉,wheren≥ 3 andn≥ 4 ifq=2.In the similar way as above,we have thatxp=1,〈z〉≤CG(P)andy-1xy=xi,where1(modp)andiq≡ 1(modp).SoGis of type(5).

    (3)Assume thatPis a non-cyclic normal subgroup ofGandQ=〈y〉is non-normal cyclic subgroup ofGwith|y|=qn.If there exists a subgroupP?ofPwith 1<Φ(P)<P?<Psuch thatP?Q=QP?,thenP?GsinceP?is subnormal inG.By Maschke’s theorem[1,8.1.2],Phas a subgroupKwith 1<K<Psuch thatP/Φ(P)=P?/Φ(P)×K/Φ(P),KG,,and at least one ofP?QandKQis a non-nilpotent SMSN-group.By Lemma 2.1,it is easy to see thatP?∩K= Φ(P)=1,a contradiction.Hence Φ(P)=1 orP/Φ(P)is the minimal normal subgroup ofG/Φ(P)when Φ(P)/1.

    Case 1Assume Φ(P)=1.IfPis a minimal normal subgroup ofG,then by hypothesis,the maximal subgroupPΦ(Q)ofGis non-nilpotent.By Lemma 2.1,〈yq〉acts irreducibly onPand[P,yq2]=1.SoGis of type(6).IfPhas a non-trivial proper subgroupP1which is normal inG,then there exists a subgroupP2ofPsuch thatP=P1×P2andP2Gby Maschke’s theorem[1,8.1.2].Clearly,at least one action that〈y〉acts onP1andP2by conjugation is non-trivial.IfP1Q=P1×QandP2Q=P2Q,then by Maschke’s theorem[1,8.1.2]and Lemma 2.1,it is easy to see that|P1| =p,[P,yq]=1 andGis of type(7).IfP1Q=P1QandP2Q=P2Q,then by Lemma 2.1,〈y〉acts irreducibly onP1andP2,and[P,yq]=1.SoGis of type(8).

    Case 2Assume Φ(P)>1 andZ(P)=P.By the same arguments as the beginning of(3),it is easy to see that Φ(P)is the unique normal subgroup ofGwhich is contained inP,and soPis a homocyclicp-group(a product of some cyclic subgroups of the same order).By Lemma 2.1 and Lemma 2.4,we have easily that the exponent ofPisp2,one maximal subgroupPΦ(Q)ofGis nilpotent.Hence another maximal subgroup Φ(P)Qis non-nilpotent,and〈y〉acts irreducibly on Φ(P).Clearly the quotient groupG/Φ(P)is a minimal non-abelian group.SoGis of type(9).

    Case 3Assume Φ(P)>1 andZ(P)<P.Similarly,Φ(P)=Z(P)=P′is the unique non-trivial characteristic subgroup ofP,that is,Pis a specialp-group with exp(P)≤p2andPΦ(Q)is nilpotent.If Φ(P)Qis nilpotent also,then by a result in[4,Theorem 2],Gis of type(10).If| Φ(P)| =pandp<q,thenGbelongs to type(10).If Φ(P)Qis non-nilpotent with| Φ(P)| =pandp>q,thenGis minimal non-supersolvable.Examining a result in[4,Theorem 10],Gis not isomorphic to anyone of them.If Φ(P)Qis non-nilpotent with| Φ(P)|≥p2,then the quotient groupG/Φ(P)is a minimal non-abelian group.SoGis of type(11).

    (4)Assume thatPis a non-cyclic normal subgroup ofGandQis neither cyclic nor normal inG.If Φ(P)>1,then by Lemma 2.1,PQ1andPQ2are both nilpotent and soGis nilpotent,a contradiction,whereQ1andQ2are two distinct maximal subgroups ofQ.HencePis an elementary abelianp-group of orderprwithr≥2.Similar arguments as in(2),Qis an elementary abelianq-group of orderq2,the quaternion groupQ8or one of the types in Lemma 2.5.

    Case 1LetQ=〈a,b|aq=bq=1,[a,b]=1〉.Clearly,there exists a non-trivial automorphism that〈a〉or〈b〉acts onPby conjugation.We may assume that〈a〉acting onPby conjugation is non-trivial and〈b〉acting onPby conjugation is trivial.SoGis of type(12).If〈a〉and〈b〉acting onPby conjugation are both non-trivial,thenGis of type(13).

    Case 2LetQ=Q8=〈a,b|a4=1,b2=a2,b-1ab=a-1〉.Similar arguments as above,Gis of either type(14)or type(15).

    Case 3LetQbe as in Lemma 2.5(I)with|Q|=qn.Namely,Q=〈y,z|yqn-1=zq=1,[y,z]=1〉,wheren≥ 3.Similar arguments as Case 3 in(2),〈y〉acts irreducibly onP,[P,yq]=1 andz∈Z(G).SoGis of type(16).

    Case 4LetQbe as in Lemma 2.5(II)with|Q|=qn.Namely,Q=〈y,z|yqn-1=zq=1,z-1yz=y1+pn-2〉,wheren≥ 3 andn≥ 4 ifp=2.Similar arguments as Case 4 in(2),〈y〉acts irreducibly onP,[P,yq]=1 and〈z〉≤CG(P).SoGis of type(17).

    (5)Assume thatP=〈x〉is a non-normal cyclic subgroup ofGandQis neither cyclic nor normal inG.Clearlyp>q.The solvability ofGimplies thatGhas a normal subgroupMof prime index.If|G:M|=p,then it is easy to see thatGhas a normal Sylowq-group sinceMis an SMSN-group and applying Lemma 2.1,a contradiction.Therefore,|G:M|=q.If there exists a cyclic Sylowq-subgroupMqofM,thenMhas a normal Sylowp-subgroupMp,and soMpis a normal Sylowp-subgroup ofG,a contradiction.HenceMqis non-cyclic and|Q|≥q3.By Lemma 2.1,Mqis normal inMandMphas a maximal subgroupP1such thatP1is normal inM,whereMpis a Sylowp-subgroup ofM.HenceMqandP1are both subnormal inG.By Lemma 2.6,F(G)=P1×Mq=Op(G)×Oq(G).Clearly,Op(G)=〈xp〉andOq(G)=〈a1〉×〈a2〉×···×〈ar-1〉is an elementary abelianqgroup with|Oq(G)|≥q2.IfNG(P)is nilpotent,thenNG(P)=CG(P)sincePis cyclic.By Burnside Theorem[1,10.1.8],Gisp-nilpotent,a contradiction.HenceNG(P)=P〈ar〉is a Schmidt subgroup ofG,and soP〈aqr〉is nilpotent with|P|=pby Lemma 2.1,wherearis aq-element.SinceMis a Schmidt subgroup ofGalso,Oq(G)is a minimal normal subgroup ofGandG=MNG(P).HenceOq(G)〈ar〉is a Sylowq-subgroup ofGandFurthermore,|ar| =qsinceOq(G)Pis a Schmidt subgroup ofG.If Φ(Q)=1,thenQis abelian.HenceNG(Q)=CG(Q)=QG.SoGisq-nilpotent,a contradiction.If Φ(Q)1,thenQ=(〈a1〉×〈a2〉×···×〈ar-1〉)〈ar〉.SoGis of type(18).

    Conversely,it is clear that the groups of types(1)-(18)are minimal non-SMSN-groups.

    Theorem 3.3The solvable minimal non-SMSN-groupGwhose order has exactly three prime divisorsp,qandris exactly one of the following types(P,QandRare Sylow subgroups)

    (1)G=(P×Q)oR,where[P,R]=1,|P|=p,Qis an elementary abelianq-group,R=〈a〉is cyclic,Racts irreducibly onQand〈ar〉centralizesQ;

    (2)G=(P×Q)oR,wherePandQare both elementary abelian,R=〈a〉is cyclic,Racts irreducibly onPandQ,〈ar〉centralizesPQ;

    (3)G=P(Q×R),wherePis an elementary abelianp-group,Qis a group of orderq,Ris a group of orderr,QandRact irreducibly onP,respectively.

    ProofIt is easy to see thatGhas at least one normal Sylow subgroup and we assume thatG=PQR,whereP∈Sylp(G),Q∈Sylq(G),R∈Sylr(G),andPG,RG.Clearly,we only need consider the following cases.

    Case 1 IfQG,PR=P×RandQR=QR,thenQRis an SMSN-group.By Lemma 2.1,Qis an elementary abelianq-group andR=〈a〉is cyclic.If|,thenP1QRis nilpotent by Lemma 2.1 again,a contradiction,where 1<P1<P.Hence|P|=pandGis of type(1).

    Similarly,ifQG,PR=PRandQR=Q×R,thenGis isomorphic to type(1)also.IfQG,PR=PRandQR=QR,it is easy to see thatGis of type(2).

    Case 2IfQG,PQ=PQ,PR=P×R,QR=QR,then by Lemma 2.1,Pis an elementary abelianp-group,Q=〈a〉is a cyclic group of orderq,q>randR=〈b〉is cyclic.SinceCG(P)=P×RNG(P)=G,RG,a contradiction.

    IfQG,PQ=PQ,PR=PR,QR=Q×R,and Φ(R)1,thenPQΦ(R)is nilpotent by Lemma 2.1,a contradiction.Hence Φ(R)=1,thenGis of type(3).

    Similarly,ifQG,PQ=PQ,PR=PR,QR=QR,thenPis elementary abelian,Q=〈a〉is a group of orderq,R=〈b〉is a group of orderrandr|q-1.Let|P|=pα,α≥ 1.Then by[16,Theorem 1.5],pα≡ 1(modq),pα≡ 1(modr).Hencepα-1=qm=rn,wheremandnare integers.Soq=rnm-1,a contradiction.

    Conversely,it is clear that the groups of types(1)-(3)are minimal non-SMSN-groups.

    By Lemma 2.1,combining Theorem 3.1,Theorem 3.2 and Theorem 3.3,the complete classi fi cation of the minimal non-SMSN-groups is as follows.

    Corollary 3.4The minimal non-SMSN-groups are exactly the groups ofA5,types(1)to(18)of Theorem 3.2 and types(1)to(3)of Theorem 3.3,whereA5is the alternating group of degree 5.

    [1]Robinson D J S.A course in the theory of groups[M].New York,Heidelberg,Berlin:Springer-Verlag,1980.

    [4]Ballester-Bolinches A,Esteban-Romero R.On minimal non-supersoluble groups[J].Rev.Mat.Iberoamericana,2007,23(1):127-142.

    [5]Lutsenko1 Y V,Skiba A N.Finite groups with subnormal second or third maximal subgroups[J].Math.Notes.,2012,91(5):680-688.

    [6]Guo Wenbin,Legchekova E V,Skiba A N.Finite groups in which every 3-maximal subgroup commutes with all maximal subgroups[J].Math.Notes,2009,86(3):325-332.

    [7]Guo Pengfei,Guo Xiuyun.On minimal non-MSN-groups[J].Front.Math.China,2011,6(5):847-854.

    [8]Ma Lijie,Huang Benwen.Structure of a kind of groups of orderpnm[J].J.Math.,2010,30(4):671-674(in Chinese).

    [9]Qian Guohua.Finite groups to be able written as the union of four proper subgroups[J].J.Math.,2011,31(5):891-892(in Chinese).

    [10]Thompson J G.Nonsolvable fi nite groups all of whose local subgroups are solvable[J].Bull.Amer.Math.Soc.,1968,74:383-437.

    [11]La ff ey T J.A Lemma on fi nitep-group and some consequences[J].Math.Proc.Cambridge Phil.Soc.,1974,75(2):133-137.

    [13]Conway J H,Curtis R T,Norton S P,Parker R A,Wilson R A.Atlas of fi nite groups[M].Oxford:Oxford University Press,1985.

    [14]King O H.The subgroup structure of fi nite classical groups in terms of geometric con fi gurations[C].Surveys in Combinatorics,London Math.Soc.,Lecture Note,2005,327:29-56.

    [15]Suzuki M.On a class of doubly transitive groups[J].Ann.Math.,1962,75(1):105-145.

    [16]Chen Zhongmu.Inner and outer-∑ groups and mininmal non-∑ groups[M].Chongqing:Southwest Normal University Press,1988(in Chinese).

    所有極大子群都為SMSN-群的有限群

    郭鵬飛1,2

    (1.海南師范大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,海南???571158)

    (2.連云港師范高等??茖W(xué)校數(shù)學(xué)與信息工程學(xué)院,江蘇連云港 222006)

    若有限群G的每個2-極大子群在G中次正規(guī),則稱G為SMSN-群.本文研究了有限群G的每個真子群是SMSN-群但G本身不是SMSN-群的結(jié)構(gòu),利用局部分析的方法,獲得了這類群的完整分類,推廣了有限群結(jié)構(gòu)理論的一些成果.

    冪自同構(gòu);冪零群;內(nèi)冪零群;極小非SMSN-群

    ??20D10;20E34

    O152.1

    on:20D10;20E34

    A Article ID: 0255-7797(2017)04-0714-09

    date:2015-09-06Accepted date:2015-12-03

    Supported by National Natural Science Foundation of China(11661031);Jiangsu Overseas Research&Training Program for University Prominent Young&Middle-Aged Teachers and Presidents;“333” Project of Jiangsu Province(BRA2015137);“521” Project of Lianyungang City.

    Biography:Guo Pengfei(1972-),male,born at Wuxiang,Shanxi,professor,major in fi nite group theory.

    猜你喜歡
    自同構(gòu)鵬飛子群
    超聚焦子群是16階初等交換群的塊
    一類無限?ernikov p-群的自同構(gòu)群
    子群的核平凡或正規(guī)閉包極大的有限p群
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    關(guān)于有限Abel p-群的自同構(gòu)群
    剩余有限Minimax可解群的4階正則自同構(gòu)
    恰有11個極大子群的有限冪零群
    日日摸夜夜添夜夜爱| 美女视频免费永久观看网站| 免费黄网站久久成人精品| 久久精品aⅴ一区二区三区四区 | 国产精品不卡视频一区二区| 99视频精品全部免费 在线| 超色免费av| 日本wwww免费看| 亚洲av电影在线观看一区二区三区| 精品久久久精品久久久| 亚洲精品一区蜜桃| videosex国产| 国产国语露脸激情在线看| 欧美国产精品一级二级三级| av女优亚洲男人天堂| 丝瓜视频免费看黄片| 免费在线观看完整版高清| 免费女性裸体啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕 | 日韩制服丝袜自拍偷拍| 人人妻人人澡人人爽人人夜夜| 如日韩欧美国产精品一区二区三区| 国产国拍精品亚洲av在线观看| 美女内射精品一级片tv| 国产一级毛片在线| 欧美激情 高清一区二区三区| 精品福利永久在线观看| 草草在线视频免费看| 黑人欧美特级aaaaaa片| 黄网站色视频无遮挡免费观看| 亚洲丝袜综合中文字幕| 久久免费观看电影| 日韩三级伦理在线观看| 亚洲婷婷狠狠爱综合网| 亚洲美女搞黄在线观看| 亚洲人成77777在线视频| 欧美人与性动交α欧美精品济南到 | 久久久久精品人妻al黑| 国产精品一国产av| 亚洲色图综合在线观看| 国产乱来视频区| 精品人妻在线不人妻| 交换朋友夫妻互换小说| 久久久精品94久久精品| 亚洲精品成人av观看孕妇| 免费人成在线观看视频色| 久久人妻熟女aⅴ| 精品久久久久久电影网| 美国免费a级毛片| 成年av动漫网址| 精品人妻熟女毛片av久久网站| 2022亚洲国产成人精品| 制服人妻中文乱码| 亚洲精品中文字幕在线视频| 国产欧美亚洲国产| 超色免费av| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩综合在线一区二区| 国产女主播在线喷水免费视频网站| 男女免费视频国产| 七月丁香在线播放| 免费看光身美女| 日本与韩国留学比较| 久久久久人妻精品一区果冻| 激情视频va一区二区三区| 久久毛片免费看一区二区三区| 欧美xxⅹ黑人| 亚洲内射少妇av| 亚洲精品日本国产第一区| 亚洲国产看品久久| 人成视频在线观看免费观看| 久久久国产一区二区| 99久国产av精品国产电影| av在线老鸭窝| 肉色欧美久久久久久久蜜桃| 有码 亚洲区| 下体分泌物呈黄色| 国产av一区二区精品久久| 成人毛片60女人毛片免费| 亚洲av福利一区| 日本欧美国产在线视频| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 国精品久久久久久国模美| 黄色 视频免费看| 国产探花极品一区二区| 亚洲美女视频黄频| 中文字幕精品免费在线观看视频 | 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三区视频在线| 在线观看免费视频网站a站| 国产女主播在线喷水免费视频网站| 一边亲一边摸免费视频| 九色亚洲精品在线播放| 高清视频免费观看一区二区| 成人国产麻豆网| 美女福利国产在线| 少妇精品久久久久久久| 男女下面插进去视频免费观看 | 精品少妇黑人巨大在线播放| 亚洲综合色惰| 9热在线视频观看99| 久久精品熟女亚洲av麻豆精品| 国产女主播在线喷水免费视频网站| 日韩av免费高清视频| 亚洲精品日本国产第一区| 自线自在国产av| 成人午夜精彩视频在线观看| 22中文网久久字幕| 日本wwww免费看| 精品卡一卡二卡四卡免费| 亚洲图色成人| 成年美女黄网站色视频大全免费| www.熟女人妻精品国产 | 日本午夜av视频| 精品少妇久久久久久888优播| 亚洲国产成人一精品久久久| 大陆偷拍与自拍| av片东京热男人的天堂| 久久午夜福利片| 亚洲国产精品国产精品| 日本黄大片高清| 久久人人爽人人爽人人片va| 在线观看www视频免费| 亚洲性久久影院| 日本与韩国留学比较| 国产成人av激情在线播放| 热re99久久精品国产66热6| 亚洲成av片中文字幕在线观看 | 亚洲欧美成人综合另类久久久| 久久久久久久精品精品| 乱人伦中国视频| 欧美日韩一区二区视频在线观看视频在线| 多毛熟女@视频| 亚洲人与动物交配视频| 在线天堂中文资源库| 99热国产这里只有精品6| 91精品伊人久久大香线蕉| 老熟女久久久| 成人毛片60女人毛片免费| www.熟女人妻精品国产 | av片东京热男人的天堂| www日本在线高清视频| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片| 美女福利国产在线| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 伦理电影免费视频| 午夜精品国产一区二区电影| 亚洲av电影在线进入| 一本—道久久a久久精品蜜桃钙片| 春色校园在线视频观看| 久久毛片免费看一区二区三区| 国产精品成人在线| 好男人视频免费观看在线| 新久久久久国产一级毛片| 在线看a的网站| 国产片内射在线| 亚洲av综合色区一区| 国产欧美亚洲国产| 少妇的逼好多水| 最近的中文字幕免费完整| 亚洲精品一二三| 国产精品一国产av| 99久国产av精品国产电影| 赤兔流量卡办理| 国产 一区精品| 久久韩国三级中文字幕| 日韩电影二区| 日本色播在线视频| 亚洲婷婷狠狠爱综合网| kizo精华| 菩萨蛮人人尽说江南好唐韦庄| 欧美国产精品va在线观看不卡| 赤兔流量卡办理| 观看av在线不卡| 性色avwww在线观看| 成年动漫av网址| 这个男人来自地球电影免费观看 | 国产男人的电影天堂91| 免费看av在线观看网站| 一级毛片黄色毛片免费观看视频| 久久午夜综合久久蜜桃| 99久久人妻综合| 欧美xxⅹ黑人| 国产成人av激情在线播放| 丝瓜视频免费看黄片| 满18在线观看网站| 久久久国产一区二区| 欧美人与性动交α欧美软件 | 少妇的逼水好多| 国产在线免费精品| 寂寞人妻少妇视频99o| 丝袜人妻中文字幕| 一级毛片 在线播放| 少妇的丰满在线观看| 免费av中文字幕在线| 一二三四中文在线观看免费高清| 黄色视频在线播放观看不卡| 啦啦啦啦在线视频资源| 亚洲欧美色中文字幕在线| 看免费成人av毛片| 国产女主播在线喷水免费视频网站| 日本色播在线视频| 久久久久精品性色| 女人久久www免费人成看片| 五月玫瑰六月丁香| 久热久热在线精品观看| 亚洲一码二码三码区别大吗| 亚洲色图综合在线观看| 久热这里只有精品99| 午夜av观看不卡| 王馨瑶露胸无遮挡在线观看| 蜜桃在线观看..| 免费观看a级毛片全部| videossex国产| 精品人妻在线不人妻| 国产 一区精品| 高清欧美精品videossex| 午夜免费男女啪啪视频观看| 视频区图区小说| 下体分泌物呈黄色| 国产高清不卡午夜福利| 色视频在线一区二区三区| 亚洲少妇的诱惑av| av播播在线观看一区| 精品久久久精品久久久| 国产不卡av网站在线观看| 免费在线观看黄色视频的| 在线 av 中文字幕| 伦理电影大哥的女人| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 黑丝袜美女国产一区| 亚洲欧洲日产国产| 久久久久久久亚洲中文字幕| 中文欧美无线码| 丰满少妇做爰视频| kizo精华| 九色成人免费人妻av| 黄色 视频免费看| 亚洲欧美精品自产自拍| 久久99热这里只频精品6学生| 免费少妇av软件| 精品国产乱码久久久久久小说| 春色校园在线视频观看| 亚洲中文av在线| 久久久国产一区二区| 久久久久久久大尺度免费视频| 免费观看在线日韩| 亚洲精品av麻豆狂野| 国产xxxxx性猛交| 香蕉国产在线看| 免费观看无遮挡的男女| 伊人久久国产一区二区| 精品酒店卫生间| 国产一区二区三区av在线| 国产精品免费大片| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久成人av| 久久久国产欧美日韩av| 国产欧美亚洲国产| 欧美亚洲 丝袜 人妻 在线| 一边亲一边摸免费视频| 大香蕉97超碰在线| 99久久人妻综合| 久久鲁丝午夜福利片| 婷婷色麻豆天堂久久| 欧美另类一区| 一级爰片在线观看| 亚洲欧洲国产日韩| 蜜桃国产av成人99| 亚洲精品,欧美精品| 色婷婷久久久亚洲欧美| 成人亚洲欧美一区二区av| 久久影院123| 亚洲国产毛片av蜜桃av| 精品国产一区二区久久| 婷婷色av中文字幕| 国产黄频视频在线观看| 亚洲人与动物交配视频| 交换朋友夫妻互换小说| 国产精品嫩草影院av在线观看| 成人亚洲精品一区在线观看| 亚洲欧美日韩卡通动漫| 免费看光身美女| 男女国产视频网站| 青春草视频在线免费观看| 又大又黄又爽视频免费| 亚洲成人一二三区av| 母亲3免费完整高清在线观看 | 一本大道久久a久久精品| 国产欧美亚洲国产| xxxhd国产人妻xxx| 尾随美女入室| 青春草亚洲视频在线观看| 亚洲三级黄色毛片| 日本wwww免费看| 韩国高清视频一区二区三区| 母亲3免费完整高清在线观看 | 水蜜桃什么品种好| 成人毛片60女人毛片免费| 人妻人人澡人人爽人人| 亚洲av电影在线进入| 最近中文字幕高清免费大全6| 亚洲精品一二三| 日韩av免费高清视频| 中文字幕制服av| 插逼视频在线观看| 亚洲内射少妇av| 国产成人欧美| 精品人妻偷拍中文字幕| 老司机影院成人| 亚洲成人av在线免费| 久久99热这里只频精品6学生| 亚洲精华国产精华液的使用体验| 97在线视频观看| av在线老鸭窝| 国产麻豆69| 国产精品99久久99久久久不卡 | 久热久热在线精品观看| 赤兔流量卡办理| 在线观看免费日韩欧美大片| 一本久久精品| 国产午夜精品一二区理论片| 亚洲精品自拍成人| av国产精品久久久久影院| 涩涩av久久男人的天堂| 成年美女黄网站色视频大全免费| 看非洲黑人一级黄片| 国产在视频线精品| 日韩电影二区| 亚洲一码二码三码区别大吗| 又粗又硬又长又爽又黄的视频| 又黄又粗又硬又大视频| 久久婷婷青草| 视频在线观看一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 七月丁香在线播放| 精品国产一区二区久久| 亚洲av电影在线观看一区二区三区| 中文字幕精品免费在线观看视频 | 两个人免费观看高清视频| 国产熟女欧美一区二区| 天天操日日干夜夜撸| 国产精品秋霞免费鲁丝片| 成人影院久久| 日韩一区二区三区影片| 国产成人精品一,二区| 久久女婷五月综合色啪小说| 91国产中文字幕| 综合色丁香网| 国产爽快片一区二区三区| av播播在线观看一区| av电影中文网址| 成人综合一区亚洲| 欧美日韩精品成人综合77777| 免费日韩欧美在线观看| 日本免费在线观看一区| 亚洲精品久久午夜乱码| 欧美精品高潮呻吟av久久| 少妇人妻久久综合中文| 纯流量卡能插随身wifi吗| 亚洲国产精品一区二区三区在线| 亚洲,一卡二卡三卡| 日韩电影二区| 日韩精品有码人妻一区| 丝袜在线中文字幕| 亚洲精品乱码久久久久久按摩| 久久精品久久精品一区二区三区| 黄色一级大片看看| 亚洲欧洲精品一区二区精品久久久 | 永久网站在线| 大片免费播放器 马上看| 少妇的逼水好多| 欧美精品av麻豆av| 成年动漫av网址| 欧美日韩视频精品一区| 建设人人有责人人尽责人人享有的| 精品国产一区二区三区久久久樱花| 中文字幕最新亚洲高清| 国产成人一区二区在线| 免费av中文字幕在线| 午夜视频国产福利| 色婷婷av一区二区三区视频| 欧美成人精品欧美一级黄| 亚洲熟女精品中文字幕| 亚洲五月色婷婷综合| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频| 18+在线观看网站| 日韩大片免费观看网站| 国产成人精品一,二区| 草草在线视频免费看| 性色av一级| 天天操日日干夜夜撸| 美国免费a级毛片| 成年美女黄网站色视频大全免费| 99九九在线精品视频| 蜜桃在线观看..| 美女xxoo啪啪120秒动态图| 成人综合一区亚洲| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 桃花免费在线播放| 老女人水多毛片| 日本色播在线视频| 青春草国产在线视频| 国产一区二区三区av在线| 日韩 亚洲 欧美在线| 男女啪啪激烈高潮av片| 欧美人与性动交α欧美软件 | 2021少妇久久久久久久久久久| 免费大片黄手机在线观看| 综合色丁香网| 18禁动态无遮挡网站| 免费女性裸体啪啪无遮挡网站| 亚洲av福利一区| av女优亚洲男人天堂| 国产免费现黄频在线看| 精品久久蜜臀av无| 下体分泌物呈黄色| 亚洲欧美色中文字幕在线| av网站免费在线观看视频| 黑人欧美特级aaaaaa片| 天堂俺去俺来也www色官网| 亚洲精品美女久久久久99蜜臀 | 制服人妻中文乱码| av黄色大香蕉| 1024视频免费在线观看| 视频中文字幕在线观看| 久久久精品区二区三区| 日韩成人伦理影院| 国产成人精品无人区| 免费不卡的大黄色大毛片视频在线观看| 亚洲四区av| h视频一区二区三区| 纵有疾风起免费观看全集完整版| 少妇的逼好多水| 精品一区二区三区视频在线| 免费少妇av软件| 亚洲成色77777| 亚洲国产av影院在线观看| av女优亚洲男人天堂| 免费高清在线观看日韩| 亚洲,一卡二卡三卡| 大陆偷拍与自拍| 国产精品久久久久久av不卡| 国产av精品麻豆| av在线播放精品| 国产午夜精品一二区理论片| 亚洲,一卡二卡三卡| 99re6热这里在线精品视频| 国精品久久久久久国模美| 久久精品国产亚洲av涩爱| 欧美另类一区| 日韩,欧美,国产一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 久久久久精品久久久久真实原创| 久久久久久久国产电影| 国产精品一国产av| 精品人妻一区二区三区麻豆| 国产一区二区在线观看av| 一个人免费看片子| 极品人妻少妇av视频| 国产爽快片一区二区三区| av免费在线看不卡| 精品亚洲成a人片在线观看| 国产精品一国产av| videos熟女内射| 最新中文字幕久久久久| videossex国产| 亚洲美女搞黄在线观看| 日韩大片免费观看网站| 日本91视频免费播放| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 日产精品乱码卡一卡2卡三| 亚洲精品国产av蜜桃| 五月伊人婷婷丁香| 久久久国产欧美日韩av| 成人国产av品久久久| 午夜福利网站1000一区二区三区| 99久国产av精品国产电影| 国产黄色免费在线视频| 侵犯人妻中文字幕一二三四区| 日韩av在线免费看完整版不卡| 欧美亚洲日本最大视频资源| 国产黄频视频在线观看| 丰满饥渴人妻一区二区三| 久久99精品国语久久久| 秋霞在线观看毛片| 亚洲欧洲国产日韩| 亚洲图色成人| 国产精品免费大片| 国产日韩欧美亚洲二区| 草草在线视频免费看| 日韩视频在线欧美| 2018国产大陆天天弄谢| 欧美日本中文国产一区发布| 亚洲欧美日韩卡通动漫| 尾随美女入室| 久久久久久久精品精品| 两个人免费观看高清视频| 午夜免费鲁丝| 亚洲精品美女久久av网站| 高清欧美精品videossex| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品久久午夜乱码| 狠狠婷婷综合久久久久久88av| 亚洲欧美清纯卡通| 国产精品偷伦视频观看了| 蜜桃国产av成人99| 欧美日韩精品成人综合77777| 丁香六月天网| 久久人人爽人人爽人人片va| 亚洲在久久综合| 最近中文字幕高清免费大全6| 久久人妻熟女aⅴ| a级毛片黄视频| 黑丝袜美女国产一区| 亚洲四区av| 国产福利在线免费观看视频| 黄色 视频免费看| 免费观看a级毛片全部| 国产一区有黄有色的免费视频| 日本猛色少妇xxxxx猛交久久| 久久久久国产网址| 男男h啪啪无遮挡| 纵有疾风起免费观看全集完整版| 人妻少妇偷人精品九色| 男女下面插进去视频免费观看 | 久久免费观看电影| 99热6这里只有精品| 91aial.com中文字幕在线观看| 亚洲欧美日韩另类电影网站| 免费在线观看黄色视频的| 亚洲国产成人一精品久久久| 日韩av免费高清视频| 午夜视频国产福利| 亚洲婷婷狠狠爱综合网| 欧美xxⅹ黑人| 丝袜脚勾引网站| a级毛片在线看网站| 99热全是精品| 免费人妻精品一区二区三区视频| 精品亚洲成国产av| 亚洲av成人精品一二三区| 日韩精品免费视频一区二区三区 | 日本欧美国产在线视频| 日韩av在线免费看完整版不卡| 国产精品国产三级国产专区5o| 亚洲伊人久久精品综合| 精品国产一区二区三区四区第35| 看免费av毛片| 亚洲成色77777| 亚洲精品第二区| 一区在线观看完整版| 在线观看一区二区三区激情| 各种免费的搞黄视频| 一级爰片在线观看| 久久久久久久精品精品| 久久国产精品大桥未久av| 侵犯人妻中文字幕一二三四区| 91国产中文字幕| 国产日韩欧美在线精品| 国产亚洲最大av| 夫妻性生交免费视频一级片| 久久国内精品自在自线图片| 亚洲色图 男人天堂 中文字幕 | 欧美精品一区二区大全| 国产爽快片一区二区三区| 亚洲国产精品专区欧美| 国产成人一区二区在线| 日韩成人av中文字幕在线观看| 亚洲精品aⅴ在线观看| 一二三四在线观看免费中文在 | 精品少妇内射三级| 国产av精品麻豆| 韩国高清视频一区二区三区| 中文欧美无线码| 男女无遮挡免费网站观看| 精品第一国产精品| 亚洲国产精品一区二区三区在线| 秋霞在线观看毛片| 日韩三级伦理在线观看| 国产不卡av网站在线观看| 精品久久久精品久久久| 人成视频在线观看免费观看| 老熟女久久久| 一边亲一边摸免费视频| 久久久国产精品麻豆| 在现免费观看毛片| 亚洲欧美成人综合另类久久久| 国产xxxxx性猛交| 毛片一级片免费看久久久久| 最近最新中文字幕大全免费视频 | 午夜福利在线观看免费完整高清在| a级毛片黄视频| 精品一区二区免费观看| 成人综合一区亚洲| 亚洲婷婷狠狠爱综合网| 久久99一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | av在线app专区| 欧美另类一区| 99国产综合亚洲精品| 欧美精品亚洲一区二区| 婷婷色麻豆天堂久久| 亚洲第一av免费看| 久久热在线av| 亚洲国产精品一区二区三区在线| 亚洲成人一二三区av| 欧美另类一区|