• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    k-NORMAL DISTRIBUTION AND ITS APPLICATIONS

    2017-07-18 11:47:12HANTianyongWENJiajinSONGAnchaoYEJianhua
    數(shù)學(xué)雜志 2017年4期
    關(guān)鍵詞:正態(tài)分布對數(shù)分類號

    HAN Tian-yong,WEN Jia-jin,SONG An-chao,YE Jian-hua

    (1.College of Information Science and Engineering,Chengdu University,Chengdu 610106,China)(2.School of Statistics,Southwestern University of Finance and Economics,Chengdu 611130,China)

    k-NORMAL DISTRIBUTION AND ITS APPLICATIONS

    HAN Tian-yong1,WEN Jia-jin1,SONG An-chao2,YE Jian-hua1

    (1.College of Information Science and Engineering,Chengdu University,Chengdu 610106,China)(2.School of Statistics,Southwestern University of Finance and Economics,Chengdu 611130,China)

    In this paper,we study the truncated variables andk-normal distribution.By using the theory of logarithmic concave function,we obtain the inequality chains involving variances of truncated variables and the function of truncated variables,which is the generalization of some classical results involving normal distribution and the hierarchical teaching model.Some simulation results and a real data analysis are shown.

    truncated random variables;k-normal distribution;hierarchical teaching model;logarithmic concave function;simulation

    1 Introduction

    With the expansion of university enrollment,various work to improve students’ability all round was continued to be carried out.How to increasingly improve teaching quality in the courses with large number of students(such as advanced mathematics)are discussed repeatedly.Since the examination scores of the large number of students obey normal distribution,statistical theory is a natural research tool for study of a large scale teaching(see[1,2]).

    The math score of the students of some grades in a university is a random variableξI,whereξI∈I=[0,100).Assume that the students are taught by divided intonclasses according to their math scores,written as:Class[a1,a2),Class[a2,a3),···,Class[an,an+1),wheren≥ 3,0=a1<a2<···<an+1=100,andai,ai+1are the lowest and the highest math scores of the students of the Class[ai,ai+1),respectively.This model of teaching is called hierarchical teaching model(see[1-4,7]).This teaching model is often used in college English and college mathematics teaching.In teaching practice,the previously mentioned score maybe the math score of national college entrance examination or entrance exams which represent the mathematical basis of the students,or in mathematical language,the initial value of the teaching.

    No doubt that this teaching model is better than traditional teaching model.However,the real reason for it’s high efficiency and the further improvement are not found.As far as we know,not many papers were published to deal these since the difficulty of computing the inde fi nite integrals involving the normal distribution density function.In[3],by means of numerical simulation,the authors proved the variance of the hierarchical class is smaller.In[4],the authors established some general properties of the variance of the hierarchical teaching,and established a linear model of teaching efficiency of hierarchical teaching model.If the students are divided into Superior-Middle-Poor three classes,the authors believe that the three classes,especially the third one will bene fi t most from the hierarchical teaching.

    In order to study the hierarchical teaching model,we need to give the de fi nition of truncated variables.

    De fi nition 1.1LetξI∈Ibe a continuous random variable,and let its probability density function(p.d.f.)bef:I→(0,∞).IfξI?∈I??Iis also a continuous random variable and its probability density function is

    then we call the random variableξI?a truncated variable of the random variableξI,denoted byξI??ξI;ifξI??ξI,andI??I,then we call the random variableξI?a proper Truncated Variable of the random variableξI,denoted byξI??ξI,hereI,I??(-∞,∞),IandI?are intervals.

    In the hierarchical teaching model,the math score of Class[ai,ai+1)is also a random variableξ[ai,ai+1)∈[ai,ai+1).Since[ai,ai+1)?I,we say it is a proper truncated variables of the random variableξI,written asξ[ai,ai+1)?ξI,i=1,2,···,n.Assume that Class[ai,ai+1)and Class[ai+1,ai+2)are merged into one,i.e.,

    Since[ai,ai+1)?[ai,ai+2)and[ai+1,ai+2)?[ai,ai+2),we know thatξ[ai,ai+1)andξ[ai+1,ai+2)are the proper truncated variables of the random variableξ[ai,ai+2).

    We remark here ifξI∈Iis a continuous random variable,and its p.d.f.isf:I→(0,∞),then the integrationfconverges,and it satis fi es the following two conditions

    According to the de fi nitions of the mathematical expectationEξI?and the varianceDξI?(see[8,9])with De fi nition 1.1,we are easy to get

    and

    whereξI?is a truncated variable of the random variableξI.

    In the hierarchical teaching model,what we concerned about is the relationship between the variance ofξ[ai,ai+1)and the variance ofξI,wherei=1,2,···,n.Its purpose is to determine the superiority and inferiority of the hierarchical teaching model and the traditional mode of teaching.If

    then we believe that the hierarchical teaching model is better than the traditional mode of teaching.Otherwise,we believe that the hierarchical teaching model is not worth promoting.

    2 k-Normal Distribution

    The normal distribution(see[3,4,8,9])is considered as the most prominent probability distribution in statistics.Besides the important central limit theorem that says the mean of a large number of random variables drawn from a common distribution,under mild conditions,is distributed approximately normally,the normal distribution is also tractable in the sense that a large number of related results can be derived explicitly and that many qualitative properties may be stated in terms of various inequalities.

    One of the main practical uses of the normal distribution is to model empirical distributions of many di ff erent random variables encountered in practice.For fi t the actual data more accurately,many research for generalizing this distribution are carried out.Some representative examples are the following.In 2001,Armando and other authors extended the p.d.f.to the normal-exponential-gamma form which contains four parameters(see[5]).In 2005,Saralees generalized it into the formKexp(see[6]).In 2014,Wen Jiajin rewrote the p.d.f ask-Normal Distribution as follows(see[7]).

    De fi nition 2.1Ifξis a continuous random variable and its p.d.f.is

    then we call the random variableξfollows thek-normal distribution,denoted by,whereμ∈(-∞,∞),σ∈(0,∞),k∈(1,∞),anddxis the gamma function.

    By the graph of the functionω(k)(depicted in Figure 3),we know that the functionis monotonically increasing.Hence the functionis monotonically decreasing.Note thatω?(2)=1,we get

    Using(2.4)and(2.5),we get our desired result(2.3).

    Figure 3:The graph of the functionω(k),0<k<1

    According to the previous results,we fi nd thatk-normal distribution is a new distribution similar to but di ff erent from the normal distribution and the generalized normal distribution(see[5,6]),it is also a natural generalization of the normal distribution,and it can be used to fi t a number of empirical distributions with di ff erent skewness and kurtosis as well.

    We remark here thatk-normal distribution has similar but distinct form to the generalized normal distribution in[6].By De fi nition 2.1,we know thatis the p.d.f.of normal distributionN(μ,σ).But the p.d.f.fors=2(in[6])is

    which does not match with normal distribution.So,to a certain extent,k-normal distribution is a better form of the generalized normal distribution.

    3 Main Results

    In this section,we will study the relationship among the variances of truncated variables.The main result of the paper is as follows.

    Theorem 3.1Let the p.d.f.f:I→(0,∞)of the random variableξIbe di ff erentiable,and letDξI?,DξI?,DξIbe the variances of the truncated variablesξI?,ξI?,ξI,respectively.If

    (i)f:I→(0,∞)is a logarithmic concave function;

    (ii)ξI??ξI,ξI??ξ,I??I?,

    then we have the inequalities

    Before prove Theorem 3.1,we fi rst establish the following three lemmas.

    Lemma 3.1LetξI∈Ibe a continuous random variable,and let its p.d.f.bef:I→(0,∞).IfξI??ξI,ξI??ξI,I??I?,then we have

    ifξI??ξI,ξI??ξI,I??I?,then we have

    ProofBy virtue of the hypotheses,we get

    thus

    It follows therefore from the above facts and De fi nition 1.1 that we have

    Lemma 3.2Let the functionf:I→(0,∞)be di ff erentiable.Iffis a logarithmic concave function,then we have

    ProofWe define an auxiliary functionFof the variablesuandvas

    Ifv=u,then we have

    By Cauchy mean value theorem,there exists a real numberθ∈(0,1)forsuch that

    Ifu<v,then we have

    Combining(3.5)and(3.6),we obtain

    SoF(u,v)≥f(u)>0.This proves inequality(3.4)foru<v.

    Ifu>v,then we have

    Combining(3.5)and(3.7),we obtain

    Lemma 3.3Let the functionf:I→(0,∞)be di ff erentiable.Iffis a logarithmic concave function,then the function

    satis fi es the following inequalities

    ProofFor the convenience of notation,two real numbers with same signαandβwill be written as.

    By the de fi nition,we know that

    The power mean inequality asserts(see[10])that

    then we are easy to get

    where

    Combining(3.9),(3.14),(3.17),v>uwith Lemma 3.2,we can do the straight calculation as follows

    By(3.17)andv>u,we get

    By(3.16)and(3.18),we get

    By(3.19)andv>u,we get

    From(3.11)and(3.20),for the case ofv>u,result(3.8)of Lemma 3.3 follows immediately.

    Next,we prove the case ofu>v.Based on the above analysis,we obtain the following relations

    Thus inequalities(3.8)still hold foru>v.This completes our proof.

    Now we turn our attention to the proof of Theorem 3.1.

    ProofWithout loss of generality,we can assume that

    Note that

    Ifα≤a<b<β,so according to(1.2),(3.10)and Lemma 3.3,we get

    hence

    Ifα<a<b≤β,so,according to(1.2),(3.10)and Lemma 3.3,we get

    That is to say,inequality(3.21)still holds.

    By Lemma 3.1,we haveξI??ξI,ξI??ξI,I??I??ξI??ξI?.Using inequality(3.21)forξI?,ξI?,we can obtain

    Combining inequalities(3.21)and(3.22),we get inequalities(3.1).

    This completes the proof of Theorem 3.1.

    From Theorem 3.1 we know that if the probability density function of the random variableξIis di ff erentiable and log concave,andξI?is the proper truncated variables of the random variableξI?,the variance ofξI?is less than the variance ofξI?.This result is of great signi fi cance in the hierarchical teaching model,see the next theorem.

    For the convenience of use,Theorem 3.1 can be slightly generalized as follows.

    Theorem 3.2Letφ:I→(-∞,∞)andf:I→(0,∞)be di ff erentiable functions,wherefbe the p.d.f.of the random variableξI,and letDφ(ξI?),Dφ(ξI?)withDφ(ξI)be the variances of the truncated variablesφ(ξI?),φ(ξI?)withφ(ξI),respectively.If

    (i)φ′(t)>0,?t∈I;

    (ii)the function(f? φ-1)(φ-1)′:φ(I)→(0,∞)is log concave;

    (iii)ξI??ξI,ξI??ξI,I??I?,

    then we have the following inequalities

    ProofSet.By condition(i),we can see that0 and

    By condition(ii),we can see thatis a logarithmic concave function.Combining conditions(i)and(iii)with Lemma 3.1,we have

    We can deduce from Theorem 3.1 that the following is true

    Thus inequalities(3.23)is valid.

    4 Applications

    In the hierarchical teaching model,the math score of the students of some grade in a university is a random variableξI,whereI=[0,100),ξI?ξ,ξ∈(-∞,∞).By using the central limit theorem(see[8]),we know thatξfollows a normal distribution,that is,2(μ,σ).If,in the grade,the top students and poor students are few,that is to say,the varianceDξof the random variableξis small,according to Figure 1 and Figure 2 with Lemma 2.1,we believe that there is a real numberk∈[2,∞)such that(μ,σ).Otherwise,there is a real numberk∈(1,2)such that(μ,σ).Then thek,σofNk(μ,σ)can be determined according to[5].

    We have collected three real data setsX1,X2 andX3,which are all math test score of the students from the unhierarchical,the fi rst level(superior)and the second level(poor)classes,containing 263,149 and 145 records,respectively.For further analyzing the data,we fi rst estimate parametersk,μ,σofNk(μ,σ),then draw probability density function ofNk(μ,σ)and frequency histogram of the corresponding data set in the same coordinate system,which also contains the probability density function curve graph of normal distribution.After that,we obtain three graphs forX1,X2 andX3,respectively(see Figure 4,Figure 5 and Figure 6 in Appendix B).These three fi gures show thatk-normal distribution is superior to normal distribution since kurtosis is bigger and variance is smaller.

    Further more,as shown in the histograms,the variance ofX1,X2 andX3 is decreasing.By observing the proportion of scores less than 60 ofX1,X2 andX3,we fi nd that the hierarchical teaching model bring better results,and that the second category(represented byX3)classes receive more signi fi cant bene fi ts from this teaching model.

    According to Theorem 3.1 and Lemma 2.1,we have

    Theorem 4.1In the hierarchical teaching model,if(μ,σ),wherek>1,then for alli,n:1≤i≤n-1,n≥3,we have

    where

    We accomplish simulation analysis about Theorem 3.1.The procedure of simulation design is shown in Appendix A.The results of the simulation are listed in the tables(see Tables 1-4 in Appendix A).By comparing the data in these tables,we fi nd that,no matter how to change the parametersk,μorσ,the variance of truncated variable is strictly less than that of untruncated variable.For example,for anyk,μorσas shown in Tables 1-4,

    this does verify the truth of Theorem 3.

    From Tables 1 and 3,we see that for eachσandI?(-∞,∞),if

    thenDξ1I<Dξ2I<Dξ3I.From Tables 2 and 4,for eachμandI?(-∞,∞),if

    thenDη1I<Dη2I<Dη3I.The truth of Theorem 3.1 is verified.

    Actually in appendix,the data set X1 is the math test score of unhierarchical students,X2 and X3 are math test score of hierarchical students.We have fi gured out their variances

    The factsD(X3)<D(X1)andD(X2)<D(X1),just show that the hierarchical teaching is more efficiency than unhierarchical teaching.

    [1]Yao Hui,Dai Yong,Xie Lin.Pareto-geometric distribution[J].J.Math.,2012,32(2):339-351.

    [2]Deng Yuhui.Probablity distribution of sample spacing[J].J.Math.,2004,24(6):685-689.

    [3]Yang Chaofeng,Pu Yingjuan.Bayes analysis of hierarchical teaching[J].Math.Prac.The.(in Chinese),2004,34(9):107-113.

    [4]Han Tianyong,Wen Jiajin.Normal distribution and associated teaching efficiency[J].Math.Prac.The.(in Chinese).2014,44(6):183-193.

    [5]Armando D,Graciela G,Ramon M.A practical procedure to estimate the shape parameter in the generalized Gaussian distribution,technique report[OL].Available:http://www.cimat.mx/reportes/enlinea/I-01-18 eng.pdf,2001.

    [6]Saralees N.A generalized normal distribution[J].J.Appl.Stat.2008,32(7):685-694.

    [7]Wen Jianjin,Han Tianyong,Cheng S S.Quasi-log concavity conjecture and its applications in statistics[J].J.Inequal.Appl.,2014,DOI:10.1186/1029-242X-2014-339.

    [8]Johnson O.Information theory and the central limit theorem[M].London:Imperial College Press,2004.

    [9]Wlodzimierz B.The normal distribution: characterizations with applications[M].New York:Springer-Verlag,1995.

    [10]Wang Wanlan.Approaches to prove inequalities(in Chinese)[M]Harbin:Harbin Institute of Technology Press,2011.

    [11]Tong T L.An adaptive solution to ranking and selection problems[J].Ann.Stat.,1978,6(3):658-672.

    [12]Bagnoli M,Bergstrom T.Log-concave probability and its applications[J].Econ.The.,2005,26(2):445-469.

    Appendix

    A The Simulation and Comparison of Variances of Truncatedk-Normal Variable

    The procedure of simulation design is as follows

    Step 1Choose the appropriate parameterk,μandσin the distributionNk(μ,σ);

    Step 2Generate 200 random numbers obeying the distribution(μ,σ);

    Step 3Use the 200 numbers to calculate the variance for six truncatedk-normal variablesξ(-∞,∞),ξ[0,60),ξ[60,80),ξ[80,100),ξ[0,80)andξ[60,100);

    Step 4Repeat Step 1 and Step 2 for 50 times;

    Step 5Calculate the mean of 50 variances for each truncatedk-normal variable,denoted byDξ(-∞,∞),Dξ[0,60),Dξ[60,80),Dξ[80,100),Dξ[0,80)andDξ[60,100)respectively;

    Step 6Change the value ofk,μandσ,and repeat Step 1,Step 2,Step 3,Step 4.All the results are listed in Tables 1-4(NaN indicates there is no random number for corresponding truncated variable).

    Table 1:k=3,σ=10

    Table 2:k=3,μ=75

    Table 3:k=1.5,σ=10

    Table 4:k=1.5,μ=75

    B Curve Fitting for Three Real Data SetsX1,X2andX3

    The results of curve fi tting for three real data sets are as follows(see Figure 4-6)

    k-正態(tài)分布及其應(yīng)用

    韓天勇1,文家金1,宋安超2,葉建華1

    (1.成都大學(xué)信息科學(xué)與工程學(xué)院,四川成都 610106)(2.西南財經(jīng)大學(xué)統(tǒng)計學(xué)院,四川成都 611130)

    近本文研究了截斷隨機變量和k-正態(tài)分布.利用對數(shù)凹函數(shù)理論,獲得了涉及截斷隨機變量和截斷隨機變量的函數(shù)的方差的不等式鏈,推廣了涉及正態(tài)分布和分層教學(xué)模型的一些經(jīng)典結(jié)論.同時在附錄部分給出了仿真結(jié)果.

    截斷隨機變量;k-正態(tài)分布;分層教學(xué)模型;對數(shù)凹函數(shù);仿真

    O174.13;O211.3;O211.5

    Figure 4:FittingX1

    Figure 5:FittingX2

    Figure 6:FittingX3

    on:62J10;62P25;60E05;60E15;26D15;26E60

    A Article ID: 0255-7797(2017)04-0737-14

    date:2016-02-25Accepted date:2016-09-28

    Supported by the Natural Science Foundation of Sichuan Science and Technology Department(2014SZ0107).

    Biography:Han Tianyong(1976-),male,born at Chengdu,Sichuan,associate professor,major in dynamical system,inequality and its application.

    MR(2010)主題分類號:62J10;62P25;60E05;60E15;26D15;26E60

    猜你喜歡
    正態(tài)分布對數(shù)分類號
    含有對數(shù)非線性項Kirchhoff方程多解的存在性
    指數(shù)與對數(shù)
    指數(shù)與對數(shù)
    對數(shù)簡史
    基于對數(shù)正態(tài)分布的出行時長可靠性計算
    正態(tài)分布及其應(yīng)用
    A Study on the Change and Developmentof English Vocabulary
    正態(tài)分布題型剖析
    χ2分布、t 分布、F 分布與正態(tài)分布間的關(guān)系
    Translation on Deixis in English and Chinese
    亚洲综合色网址| 亚洲成色77777| 久久精品国产a三级三级三级| 成人二区视频| 久久99热6这里只有精品| 美女国产高潮福利片在线看| 亚洲国产最新在线播放| 咕卡用的链子| 我要看黄色一级片免费的| 欧美日韩国产mv在线观看视频| 亚洲高清免费不卡视频| 久久99热这里只频精品6学生| 国国产精品蜜臀av免费| 黑人欧美特级aaaaaa片| 国产片内射在线| 最近中文字幕高清免费大全6| 在线观看国产h片| 高清av免费在线| 又粗又硬又长又爽又黄的视频| 少妇的逼好多水| 久久久精品94久久精品| 中文字幕最新亚洲高清| 午夜免费鲁丝| 日日摸夜夜添夜夜爱| 久久精品久久精品一区二区三区| 黄色怎么调成土黄色| 色视频在线一区二区三区| 一二三四中文在线观看免费高清| 久久久久久久精品精品| 精品第一国产精品| 国产综合精华液| 久久韩国三级中文字幕| 亚洲综合精品二区| a 毛片基地| 我要看黄色一级片免费的| 2021少妇久久久久久久久久久| 中文字幕精品免费在线观看视频 | 国产爽快片一区二区三区| 男人舔女人的私密视频| 欧美成人精品欧美一级黄| 熟妇人妻不卡中文字幕| 亚洲图色成人| 一个人免费看片子| 成年动漫av网址| 18禁国产床啪视频网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久国内精品自在自线图片| 美女国产高潮福利片在线看| 免费看av在线观看网站| 如何舔出高潮| 国产乱人偷精品视频| 夜夜爽夜夜爽视频| 久久毛片免费看一区二区三区| 91精品三级在线观看| 国产男女超爽视频在线观看| 国产福利在线免费观看视频| 寂寞人妻少妇视频99o| 美女大奶头黄色视频| 成人手机av| 免费播放大片免费观看视频在线观看| 亚洲综合色网址| 久久人人爽av亚洲精品天堂| 毛片一级片免费看久久久久| 又黄又粗又硬又大视频| 日韩 亚洲 欧美在线| 国产精品久久久久久精品古装| 亚洲图色成人| 久久久久久久亚洲中文字幕| 男女午夜视频在线观看 | a级毛色黄片| 久久这里只有精品19| av福利片在线| 少妇人妻久久综合中文| 爱豆传媒免费全集在线观看| 黑人高潮一二区| 一级毛片电影观看| 人人妻人人添人人爽欧美一区卜| 一二三四中文在线观看免费高清| 在线 av 中文字幕| 少妇 在线观看| 午夜精品国产一区二区电影| 亚洲国产精品国产精品| 久久久国产欧美日韩av| 一区二区日韩欧美中文字幕 | 大香蕉久久网| 国产高清不卡午夜福利| 国产福利在线免费观看视频| 亚洲激情五月婷婷啪啪| 超色免费av| 草草在线视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 国产伦理片在线播放av一区| 国产免费又黄又爽又色| 国产av一区二区精品久久| 国产在线视频一区二区| 国产av码专区亚洲av| 欧美精品人与动牲交sv欧美| av在线观看视频网站免费| 少妇人妻 视频| 欧美日韩视频精品一区| 99精国产麻豆久久婷婷| 免费人成在线观看视频色| 欧美精品亚洲一区二区| 啦啦啦在线观看免费高清www| 日韩av不卡免费在线播放| 91精品三级在线观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲人成网站在线观看播放| 国产在线一区二区三区精| 国产日韩欧美视频二区| 亚洲精品久久午夜乱码| 精品一区二区免费观看| 国产永久视频网站| 看免费成人av毛片| 亚洲国产看品久久| 久热久热在线精品观看| 在线观看www视频免费| 乱码一卡2卡4卡精品| 日韩电影二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产一级毛片在线| 内地一区二区视频在线| 国产亚洲精品第一综合不卡 | 国产精品免费大片| 啦啦啦中文免费视频观看日本| 好男人视频免费观看在线| 成年人午夜在线观看视频| 亚洲五月色婷婷综合| 国产乱人偷精品视频| 国产又色又爽无遮挡免| 最近中文字幕2019免费版| freevideosex欧美| 国产成人91sexporn| 国产日韩一区二区三区精品不卡| 丝袜美足系列| 99热全是精品| 高清在线视频一区二区三区| 80岁老熟妇乱子伦牲交| 大香蕉久久网| 纵有疾风起免费观看全集完整版| 久久久久精品久久久久真实原创| 国国产精品蜜臀av免费| 成人无遮挡网站| 婷婷成人精品国产| 久久狼人影院| 大香蕉久久网| a级毛片在线看网站| av片东京热男人的天堂| 91在线精品国自产拍蜜月| 人妻少妇偷人精品九色| 欧美 日韩 精品 国产| 少妇的逼水好多| 国产有黄有色有爽视频| 69精品国产乱码久久久| 2018国产大陆天天弄谢| 91精品国产国语对白视频| 一边摸一边做爽爽视频免费| 日韩精品免费视频一区二区三区 | 色吧在线观看| 亚洲欧美日韩卡通动漫| 在现免费观看毛片| 欧美日韩亚洲高清精品| 99久久人妻综合| 国产深夜福利视频在线观看| 久久这里有精品视频免费| 交换朋友夫妻互换小说| 狠狠婷婷综合久久久久久88av| 亚洲三级黄色毛片| 国产爽快片一区二区三区| 少妇被粗大的猛进出69影院 | 中文天堂在线官网| 国产麻豆69| 在线观看美女被高潮喷水网站| 欧美日韩av久久| 精品亚洲成a人片在线观看| 欧美人与善性xxx| 国产永久视频网站| 各种免费的搞黄视频| 91精品伊人久久大香线蕉| 国产精品一区www在线观看| 狠狠精品人妻久久久久久综合| 国产淫语在线视频| 日本免费在线观看一区| 日韩制服骚丝袜av| 一区二区三区四区激情视频| 一边摸一边做爽爽视频免费| 在线观看免费视频网站a站| 国产av码专区亚洲av| 国产成人免费观看mmmm| 最近中文字幕高清免费大全6| 国产精品99久久99久久久不卡 | 亚洲美女视频黄频| 91久久精品国产一区二区三区| 欧美 亚洲 国产 日韩一| 久久久久久人妻| 色5月婷婷丁香| 汤姆久久久久久久影院中文字幕| 亚洲综合色网址| 春色校园在线视频观看| 欧美成人午夜免费资源| 日韩,欧美,国产一区二区三区| 国产精品成人在线| 国产成人精品婷婷| 黄色毛片三级朝国网站| 999精品在线视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产精品一区三区| 久久精品夜色国产| 久久久精品免费免费高清| 精品熟女少妇av免费看| 亚洲国产精品专区欧美| 色视频在线一区二区三区| 亚洲人与动物交配视频| 久久婷婷青草| 日本黄大片高清| 国产男女内射视频| 春色校园在线视频观看| 国产精品蜜桃在线观看| 人妻一区二区av| freevideosex欧美| 自拍欧美九色日韩亚洲蝌蚪91| 又黄又粗又硬又大视频| 91成人精品电影| 香蕉丝袜av| 国产欧美另类精品又又久久亚洲欧美| 2021少妇久久久久久久久久久| 国产亚洲av片在线观看秒播厂| 人体艺术视频欧美日本| 国产精品秋霞免费鲁丝片| av在线播放精品| 日韩制服丝袜自拍偷拍| 熟女av电影| 蜜臀久久99精品久久宅男| 久久ye,这里只有精品| 中文乱码字字幕精品一区二区三区| av黄色大香蕉| 黄色配什么色好看| 欧美日韩视频精品一区| 制服人妻中文乱码| 97精品久久久久久久久久精品| 国产色婷婷99| 波野结衣二区三区在线| 99热国产这里只有精品6| 黄色怎么调成土黄色| 亚洲精品456在线播放app| 欧美+日韩+精品| 国产极品天堂在线| 国产成人精品婷婷| 中文乱码字字幕精品一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲成色77777| 久久久久久伊人网av| 成人无遮挡网站| 丝袜喷水一区| 国产av精品麻豆| 亚洲欧洲国产日韩| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 国产在线视频一区二区| 亚洲精品,欧美精品| 少妇人妻久久综合中文| 国产欧美另类精品又又久久亚洲欧美| 精品国产国语对白av| 欧美 日韩 精品 国产| 综合色丁香网| 精品第一国产精品| 最近2019中文字幕mv第一页| 人妻 亚洲 视频| 国产免费福利视频在线观看| 我的女老师完整版在线观看| 欧美 亚洲 国产 日韩一| 男人添女人高潮全过程视频| 国产女主播在线喷水免费视频网站| 免费久久久久久久精品成人欧美视频 | 国产探花极品一区二区| 69精品国产乱码久久久| 成人无遮挡网站| 久久狼人影院| 亚洲精品,欧美精品| 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 成人国语在线视频| 亚洲四区av| 久久久精品免费免费高清| 欧美日韩成人在线一区二区| 日本爱情动作片www.在线观看| 乱码一卡2卡4卡精品| 人体艺术视频欧美日本| 自拍欧美九色日韩亚洲蝌蚪91| 欧美xxxx性猛交bbbb| 久久av网站| av福利片在线| 好男人视频免费观看在线| 日韩视频在线欧美| 日本-黄色视频高清免费观看| 亚洲内射少妇av| 51国产日韩欧美| 深夜精品福利| 又大又黄又爽视频免费| videossex国产| 免费黄频网站在线观看国产| 大话2 男鬼变身卡| 男女国产视频网站| 婷婷色av中文字幕| 亚洲成色77777| 国产一区二区在线观看av| 精品国产国语对白av| 日本欧美视频一区| 亚洲一码二码三码区别大吗| 97在线视频观看| 99热全是精品| 国产探花极品一区二区| 成人国产麻豆网| 我要看黄色一级片免费的| 亚洲第一av免费看| 91午夜精品亚洲一区二区三区| 看免费av毛片| 亚洲精品456在线播放app| 国产欧美亚洲国产| 18在线观看网站| 91久久精品国产一区二区三区| 超碰97精品在线观看| 免费大片黄手机在线观看| 亚洲av成人精品一二三区| 高清欧美精品videossex| 精品人妻在线不人妻| 波多野结衣一区麻豆| 18禁在线无遮挡免费观看视频| 久久久久久久亚洲中文字幕| 成人毛片60女人毛片免费| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av天美| 男女免费视频国产| 久久久精品94久久精品| 国产精品国产三级国产专区5o| 深夜精品福利| 日本vs欧美在线观看视频| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 免费播放大片免费观看视频在线观看| 婷婷色综合www| 国产精品人妻久久久久久| 看非洲黑人一级黄片| 欧美 亚洲 国产 日韩一| 97超碰精品成人国产| 日韩制服骚丝袜av| 九色亚洲精品在线播放| 大香蕉久久网| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲一区二区精品| 国产av码专区亚洲av| 亚洲情色 制服丝袜| 国产深夜福利视频在线观看| 国产女主播在线喷水免费视频网站| 黄片播放在线免费| 久久久久久久国产电影| 亚洲欧美精品自产自拍| 精品第一国产精品| 九九爱精品视频在线观看| 精品熟女少妇av免费看| 国产精品一区二区在线不卡| 黄色 视频免费看| 在线天堂最新版资源| 国产日韩一区二区三区精品不卡| 精品99又大又爽又粗少妇毛片| 男女免费视频国产| 久久影院123| 丁香六月天网| 久久99精品国语久久久| av卡一久久| 日本欧美视频一区| 如日韩欧美国产精品一区二区三区| 丝袜美足系列| 成人午夜精彩视频在线观看| 黄片无遮挡物在线观看| 亚洲综合精品二区| 日韩在线高清观看一区二区三区| 欧美人与性动交α欧美精品济南到 | 97超碰精品成人国产| 亚洲av成人精品一二三区| 国产黄色视频一区二区在线观看| 欧美激情国产日韩精品一区| 草草在线视频免费看| 亚洲欧美一区二区三区国产| 亚洲av电影在线进入| 有码 亚洲区| 女人被躁到高潮嗷嗷叫费观| 天堂中文最新版在线下载| 久久人人爽av亚洲精品天堂| 精品亚洲乱码少妇综合久久| 免费观看av网站的网址| 亚洲国产av新网站| 一级毛片我不卡| 日韩在线高清观看一区二区三区| 久久精品国产自在天天线| a 毛片基地| 成年动漫av网址| 大陆偷拍与自拍| 赤兔流量卡办理| 男女边摸边吃奶| 美女福利国产在线| 国产日韩欧美在线精品| 这个男人来自地球电影免费观看 | 免费看不卡的av| 精品国产乱码久久久久久小说| 女性被躁到高潮视频| 91精品三级在线观看| 日韩中文字幕视频在线看片| 国产成人欧美| 母亲3免费完整高清在线观看 | 少妇人妻久久综合中文| 亚洲国产色片| 亚洲精品一二三| 女人精品久久久久毛片| 国产乱来视频区| 99国产综合亚洲精品| 一级毛片电影观看| 内地一区二区视频在线| 精品福利永久在线观看| 精品第一国产精品| 又黄又爽又刺激的免费视频.| 国产一区二区三区av在线| 女性被躁到高潮视频| 成年人免费黄色播放视频| 国产一区亚洲一区在线观看| 成人二区视频| 最近最新中文字幕大全免费视频 | 99九九在线精品视频| 热99久久久久精品小说推荐| 美女国产视频在线观看| 国产乱来视频区| 永久网站在线| 高清不卡的av网站| 精品人妻在线不人妻| 精品久久久久久电影网| 少妇 在线观看| 日韩视频在线欧美| 欧美精品一区二区免费开放| 春色校园在线视频观看| 18禁国产床啪视频网站| 日韩制服骚丝袜av| 国产亚洲一区二区精品| 满18在线观看网站| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 成人国产av品久久久| 亚洲av免费高清在线观看| 精品少妇黑人巨大在线播放| √禁漫天堂资源中文www| 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| 夜夜骑夜夜射夜夜干| 十八禁网站网址无遮挡| 免费av中文字幕在线| 男女午夜视频在线观看 | 亚洲人与动物交配视频| 免费av不卡在线播放| 一级毛片电影观看| 蜜桃国产av成人99| 国产一区有黄有色的免费视频| 久久久久精品人妻al黑| 在线看a的网站| 午夜av观看不卡| 大码成人一级视频| 国精品久久久久久国模美| 韩国av在线不卡| 秋霞伦理黄片| 菩萨蛮人人尽说江南好唐韦庄| 久久国内精品自在自线图片| 亚洲精品美女久久av网站| 久久久精品94久久精品| 日本欧美视频一区| 99久久中文字幕三级久久日本| 青春草亚洲视频在线观看| 欧美精品亚洲一区二区| 成人亚洲欧美一区二区av| 国精品久久久久久国模美| 亚洲,欧美精品.| 国产激情久久老熟女| 又黄又爽又刺激的免费视频.| 少妇人妻 视频| 国产成人欧美| av在线观看视频网站免费| 精品一区二区三区视频在线| 99国产综合亚洲精品| 久久国产亚洲av麻豆专区| 成年人免费黄色播放视频| 国产片内射在线| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 男女啪啪激烈高潮av片| 999精品在线视频| 高清黄色对白视频在线免费看| 亚洲欧美日韩卡通动漫| 熟女av电影| 国产精品一区二区在线不卡| 精品一区二区三区视频在线| 日韩电影二区| 久久精品久久久久久噜噜老黄| 热re99久久精品国产66热6| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 少妇高潮的动态图| 久久99热这里只频精品6学生| 亚洲精华国产精华液的使用体验| 啦啦啦在线观看免费高清www| 丝袜喷水一区| 少妇人妻久久综合中文| 亚洲美女搞黄在线观看| 成人黄色视频免费在线看| 久久精品久久久久久久性| 亚洲精品,欧美精品| 国产成人aa在线观看| 人成视频在线观看免费观看| 国产亚洲精品久久久com| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频| 黄色配什么色好看| 人人妻人人添人人爽欧美一区卜| 久久av网站| 久久综合国产亚洲精品| 日韩成人伦理影院| √禁漫天堂资源中文www| 午夜免费观看性视频| 国产精品免费大片| 精品视频人人做人人爽| 777米奇影视久久| 亚洲欧美色中文字幕在线| 七月丁香在线播放| 久久精品国产亚洲av天美| 男人操女人黄网站| 成人二区视频| 亚洲熟女精品中文字幕| 欧美成人午夜精品| 婷婷色麻豆天堂久久| 黄色视频在线播放观看不卡| 高清黄色对白视频在线免费看| 欧美人与性动交α欧美软件 | 在线观看三级黄色| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| 日韩电影二区| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 午夜久久久在线观看| 精品国产一区二区三区四区第35| 一级片'在线观看视频| 精品视频人人做人人爽| 国产成人精品婷婷| 秋霞伦理黄片| 国国产精品蜜臀av免费| 人妻 亚洲 视频| 国产亚洲最大av| 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 国产毛片在线视频| 久久99热这里只频精品6学生| 性高湖久久久久久久久免费观看| 中文字幕av电影在线播放| 国产免费现黄频在线看| 国产免费一区二区三区四区乱码| 99国产综合亚洲精品| 国产精品嫩草影院av在线观看| 午夜福利在线观看免费完整高清在| 国产精品久久久久久精品电影小说| 制服丝袜香蕉在线| 9热在线视频观看99| 男的添女的下面高潮视频| 免费黄色在线免费观看| 两性夫妻黄色片 | 国产又爽黄色视频| 日韩精品有码人妻一区| a级毛色黄片| 欧美日韩成人在线一区二区| 欧美丝袜亚洲另类| 国产黄频视频在线观看| 欧美亚洲日本最大视频资源| av福利片在线| 精品亚洲成a人片在线观看| 久久久久视频综合| 成人综合一区亚洲| 高清av免费在线| 日韩精品免费视频一区二区三区 | 欧美xxxx性猛交bbbb| 国产精品国产三级专区第一集| 蜜桃国产av成人99| 26uuu在线亚洲综合色| 十八禁高潮呻吟视频| 少妇的丰满在线观看| 赤兔流量卡办理| 天堂8中文在线网| 黄色一级大片看看| 午夜91福利影院| 国产免费一级a男人的天堂| 侵犯人妻中文字幕一二三四区| 日本av免费视频播放| 丝瓜视频免费看黄片| 亚洲av男天堂| 国产精品久久久av美女十八| www.熟女人妻精品国产 | 人人澡人人妻人| 免费大片黄手机在线观看| 美国免费a级毛片| 国产福利在线免费观看视频| 久久久久国产精品人妻一区二区| 亚洲熟女精品中文字幕| 久久久久久人妻| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 免费观看性生交大片5| 久久国产精品大桥未久av| 大香蕉97超碰在线| 汤姆久久久久久久影院中文字幕|