• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    k-NORMAL DISTRIBUTION AND ITS APPLICATIONS

    2017-07-18 11:47:12HANTianyongWENJiajinSONGAnchaoYEJianhua
    數(shù)學(xué)雜志 2017年4期
    關(guān)鍵詞:正態(tài)分布對數(shù)分類號

    HAN Tian-yong,WEN Jia-jin,SONG An-chao,YE Jian-hua

    (1.College of Information Science and Engineering,Chengdu University,Chengdu 610106,China)(2.School of Statistics,Southwestern University of Finance and Economics,Chengdu 611130,China)

    k-NORMAL DISTRIBUTION AND ITS APPLICATIONS

    HAN Tian-yong1,WEN Jia-jin1,SONG An-chao2,YE Jian-hua1

    (1.College of Information Science and Engineering,Chengdu University,Chengdu 610106,China)(2.School of Statistics,Southwestern University of Finance and Economics,Chengdu 611130,China)

    In this paper,we study the truncated variables andk-normal distribution.By using the theory of logarithmic concave function,we obtain the inequality chains involving variances of truncated variables and the function of truncated variables,which is the generalization of some classical results involving normal distribution and the hierarchical teaching model.Some simulation results and a real data analysis are shown.

    truncated random variables;k-normal distribution;hierarchical teaching model;logarithmic concave function;simulation

    1 Introduction

    With the expansion of university enrollment,various work to improve students’ability all round was continued to be carried out.How to increasingly improve teaching quality in the courses with large number of students(such as advanced mathematics)are discussed repeatedly.Since the examination scores of the large number of students obey normal distribution,statistical theory is a natural research tool for study of a large scale teaching(see[1,2]).

    The math score of the students of some grades in a university is a random variableξI,whereξI∈I=[0,100).Assume that the students are taught by divided intonclasses according to their math scores,written as:Class[a1,a2),Class[a2,a3),···,Class[an,an+1),wheren≥ 3,0=a1<a2<···<an+1=100,andai,ai+1are the lowest and the highest math scores of the students of the Class[ai,ai+1),respectively.This model of teaching is called hierarchical teaching model(see[1-4,7]).This teaching model is often used in college English and college mathematics teaching.In teaching practice,the previously mentioned score maybe the math score of national college entrance examination or entrance exams which represent the mathematical basis of the students,or in mathematical language,the initial value of the teaching.

    No doubt that this teaching model is better than traditional teaching model.However,the real reason for it’s high efficiency and the further improvement are not found.As far as we know,not many papers were published to deal these since the difficulty of computing the inde fi nite integrals involving the normal distribution density function.In[3],by means of numerical simulation,the authors proved the variance of the hierarchical class is smaller.In[4],the authors established some general properties of the variance of the hierarchical teaching,and established a linear model of teaching efficiency of hierarchical teaching model.If the students are divided into Superior-Middle-Poor three classes,the authors believe that the three classes,especially the third one will bene fi t most from the hierarchical teaching.

    In order to study the hierarchical teaching model,we need to give the de fi nition of truncated variables.

    De fi nition 1.1LetξI∈Ibe a continuous random variable,and let its probability density function(p.d.f.)bef:I→(0,∞).IfξI?∈I??Iis also a continuous random variable and its probability density function is

    then we call the random variableξI?a truncated variable of the random variableξI,denoted byξI??ξI;ifξI??ξI,andI??I,then we call the random variableξI?a proper Truncated Variable of the random variableξI,denoted byξI??ξI,hereI,I??(-∞,∞),IandI?are intervals.

    In the hierarchical teaching model,the math score of Class[ai,ai+1)is also a random variableξ[ai,ai+1)∈[ai,ai+1).Since[ai,ai+1)?I,we say it is a proper truncated variables of the random variableξI,written asξ[ai,ai+1)?ξI,i=1,2,···,n.Assume that Class[ai,ai+1)and Class[ai+1,ai+2)are merged into one,i.e.,

    Since[ai,ai+1)?[ai,ai+2)and[ai+1,ai+2)?[ai,ai+2),we know thatξ[ai,ai+1)andξ[ai+1,ai+2)are the proper truncated variables of the random variableξ[ai,ai+2).

    We remark here ifξI∈Iis a continuous random variable,and its p.d.f.isf:I→(0,∞),then the integrationfconverges,and it satis fi es the following two conditions

    According to the de fi nitions of the mathematical expectationEξI?and the varianceDξI?(see[8,9])with De fi nition 1.1,we are easy to get

    and

    whereξI?is a truncated variable of the random variableξI.

    In the hierarchical teaching model,what we concerned about is the relationship between the variance ofξ[ai,ai+1)and the variance ofξI,wherei=1,2,···,n.Its purpose is to determine the superiority and inferiority of the hierarchical teaching model and the traditional mode of teaching.If

    then we believe that the hierarchical teaching model is better than the traditional mode of teaching.Otherwise,we believe that the hierarchical teaching model is not worth promoting.

    2 k-Normal Distribution

    The normal distribution(see[3,4,8,9])is considered as the most prominent probability distribution in statistics.Besides the important central limit theorem that says the mean of a large number of random variables drawn from a common distribution,under mild conditions,is distributed approximately normally,the normal distribution is also tractable in the sense that a large number of related results can be derived explicitly and that many qualitative properties may be stated in terms of various inequalities.

    One of the main practical uses of the normal distribution is to model empirical distributions of many di ff erent random variables encountered in practice.For fi t the actual data more accurately,many research for generalizing this distribution are carried out.Some representative examples are the following.In 2001,Armando and other authors extended the p.d.f.to the normal-exponential-gamma form which contains four parameters(see[5]).In 2005,Saralees generalized it into the formKexp(see[6]).In 2014,Wen Jiajin rewrote the p.d.f ask-Normal Distribution as follows(see[7]).

    De fi nition 2.1Ifξis a continuous random variable and its p.d.f.is

    then we call the random variableξfollows thek-normal distribution,denoted by,whereμ∈(-∞,∞),σ∈(0,∞),k∈(1,∞),anddxis the gamma function.

    By the graph of the functionω(k)(depicted in Figure 3),we know that the functionis monotonically increasing.Hence the functionis monotonically decreasing.Note thatω?(2)=1,we get

    Using(2.4)and(2.5),we get our desired result(2.3).

    Figure 3:The graph of the functionω(k),0<k<1

    According to the previous results,we fi nd thatk-normal distribution is a new distribution similar to but di ff erent from the normal distribution and the generalized normal distribution(see[5,6]),it is also a natural generalization of the normal distribution,and it can be used to fi t a number of empirical distributions with di ff erent skewness and kurtosis as well.

    We remark here thatk-normal distribution has similar but distinct form to the generalized normal distribution in[6].By De fi nition 2.1,we know thatis the p.d.f.of normal distributionN(μ,σ).But the p.d.f.fors=2(in[6])is

    which does not match with normal distribution.So,to a certain extent,k-normal distribution is a better form of the generalized normal distribution.

    3 Main Results

    In this section,we will study the relationship among the variances of truncated variables.The main result of the paper is as follows.

    Theorem 3.1Let the p.d.f.f:I→(0,∞)of the random variableξIbe di ff erentiable,and letDξI?,DξI?,DξIbe the variances of the truncated variablesξI?,ξI?,ξI,respectively.If

    (i)f:I→(0,∞)is a logarithmic concave function;

    (ii)ξI??ξI,ξI??ξ,I??I?,

    then we have the inequalities

    Before prove Theorem 3.1,we fi rst establish the following three lemmas.

    Lemma 3.1LetξI∈Ibe a continuous random variable,and let its p.d.f.bef:I→(0,∞).IfξI??ξI,ξI??ξI,I??I?,then we have

    ifξI??ξI,ξI??ξI,I??I?,then we have

    ProofBy virtue of the hypotheses,we get

    thus

    It follows therefore from the above facts and De fi nition 1.1 that we have

    Lemma 3.2Let the functionf:I→(0,∞)be di ff erentiable.Iffis a logarithmic concave function,then we have

    ProofWe define an auxiliary functionFof the variablesuandvas

    Ifv=u,then we have

    By Cauchy mean value theorem,there exists a real numberθ∈(0,1)forsuch that

    Ifu<v,then we have

    Combining(3.5)and(3.6),we obtain

    SoF(u,v)≥f(u)>0.This proves inequality(3.4)foru<v.

    Ifu>v,then we have

    Combining(3.5)and(3.7),we obtain

    Lemma 3.3Let the functionf:I→(0,∞)be di ff erentiable.Iffis a logarithmic concave function,then the function

    satis fi es the following inequalities

    ProofFor the convenience of notation,two real numbers with same signαandβwill be written as.

    By the de fi nition,we know that

    The power mean inequality asserts(see[10])that

    then we are easy to get

    where

    Combining(3.9),(3.14),(3.17),v>uwith Lemma 3.2,we can do the straight calculation as follows

    By(3.17)andv>u,we get

    By(3.16)and(3.18),we get

    By(3.19)andv>u,we get

    From(3.11)and(3.20),for the case ofv>u,result(3.8)of Lemma 3.3 follows immediately.

    Next,we prove the case ofu>v.Based on the above analysis,we obtain the following relations

    Thus inequalities(3.8)still hold foru>v.This completes our proof.

    Now we turn our attention to the proof of Theorem 3.1.

    ProofWithout loss of generality,we can assume that

    Note that

    Ifα≤a<b<β,so according to(1.2),(3.10)and Lemma 3.3,we get

    hence

    Ifα<a<b≤β,so,according to(1.2),(3.10)and Lemma 3.3,we get

    That is to say,inequality(3.21)still holds.

    By Lemma 3.1,we haveξI??ξI,ξI??ξI,I??I??ξI??ξI?.Using inequality(3.21)forξI?,ξI?,we can obtain

    Combining inequalities(3.21)and(3.22),we get inequalities(3.1).

    This completes the proof of Theorem 3.1.

    From Theorem 3.1 we know that if the probability density function of the random variableξIis di ff erentiable and log concave,andξI?is the proper truncated variables of the random variableξI?,the variance ofξI?is less than the variance ofξI?.This result is of great signi fi cance in the hierarchical teaching model,see the next theorem.

    For the convenience of use,Theorem 3.1 can be slightly generalized as follows.

    Theorem 3.2Letφ:I→(-∞,∞)andf:I→(0,∞)be di ff erentiable functions,wherefbe the p.d.f.of the random variableξI,and letDφ(ξI?),Dφ(ξI?)withDφ(ξI)be the variances of the truncated variablesφ(ξI?),φ(ξI?)withφ(ξI),respectively.If

    (i)φ′(t)>0,?t∈I;

    (ii)the function(f? φ-1)(φ-1)′:φ(I)→(0,∞)is log concave;

    (iii)ξI??ξI,ξI??ξI,I??I?,

    then we have the following inequalities

    ProofSet.By condition(i),we can see that0 and

    By condition(ii),we can see thatis a logarithmic concave function.Combining conditions(i)and(iii)with Lemma 3.1,we have

    We can deduce from Theorem 3.1 that the following is true

    Thus inequalities(3.23)is valid.

    4 Applications

    In the hierarchical teaching model,the math score of the students of some grade in a university is a random variableξI,whereI=[0,100),ξI?ξ,ξ∈(-∞,∞).By using the central limit theorem(see[8]),we know thatξfollows a normal distribution,that is,2(μ,σ).If,in the grade,the top students and poor students are few,that is to say,the varianceDξof the random variableξis small,according to Figure 1 and Figure 2 with Lemma 2.1,we believe that there is a real numberk∈[2,∞)such that(μ,σ).Otherwise,there is a real numberk∈(1,2)such that(μ,σ).Then thek,σofNk(μ,σ)can be determined according to[5].

    We have collected three real data setsX1,X2 andX3,which are all math test score of the students from the unhierarchical,the fi rst level(superior)and the second level(poor)classes,containing 263,149 and 145 records,respectively.For further analyzing the data,we fi rst estimate parametersk,μ,σofNk(μ,σ),then draw probability density function ofNk(μ,σ)and frequency histogram of the corresponding data set in the same coordinate system,which also contains the probability density function curve graph of normal distribution.After that,we obtain three graphs forX1,X2 andX3,respectively(see Figure 4,Figure 5 and Figure 6 in Appendix B).These three fi gures show thatk-normal distribution is superior to normal distribution since kurtosis is bigger and variance is smaller.

    Further more,as shown in the histograms,the variance ofX1,X2 andX3 is decreasing.By observing the proportion of scores less than 60 ofX1,X2 andX3,we fi nd that the hierarchical teaching model bring better results,and that the second category(represented byX3)classes receive more signi fi cant bene fi ts from this teaching model.

    According to Theorem 3.1 and Lemma 2.1,we have

    Theorem 4.1In the hierarchical teaching model,if(μ,σ),wherek>1,then for alli,n:1≤i≤n-1,n≥3,we have

    where

    We accomplish simulation analysis about Theorem 3.1.The procedure of simulation design is shown in Appendix A.The results of the simulation are listed in the tables(see Tables 1-4 in Appendix A).By comparing the data in these tables,we fi nd that,no matter how to change the parametersk,μorσ,the variance of truncated variable is strictly less than that of untruncated variable.For example,for anyk,μorσas shown in Tables 1-4,

    this does verify the truth of Theorem 3.

    From Tables 1 and 3,we see that for eachσandI?(-∞,∞),if

    thenDξ1I<Dξ2I<Dξ3I.From Tables 2 and 4,for eachμandI?(-∞,∞),if

    thenDη1I<Dη2I<Dη3I.The truth of Theorem 3.1 is verified.

    Actually in appendix,the data set X1 is the math test score of unhierarchical students,X2 and X3 are math test score of hierarchical students.We have fi gured out their variances

    The factsD(X3)<D(X1)andD(X2)<D(X1),just show that the hierarchical teaching is more efficiency than unhierarchical teaching.

    [1]Yao Hui,Dai Yong,Xie Lin.Pareto-geometric distribution[J].J.Math.,2012,32(2):339-351.

    [2]Deng Yuhui.Probablity distribution of sample spacing[J].J.Math.,2004,24(6):685-689.

    [3]Yang Chaofeng,Pu Yingjuan.Bayes analysis of hierarchical teaching[J].Math.Prac.The.(in Chinese),2004,34(9):107-113.

    [4]Han Tianyong,Wen Jiajin.Normal distribution and associated teaching efficiency[J].Math.Prac.The.(in Chinese).2014,44(6):183-193.

    [5]Armando D,Graciela G,Ramon M.A practical procedure to estimate the shape parameter in the generalized Gaussian distribution,technique report[OL].Available:http://www.cimat.mx/reportes/enlinea/I-01-18 eng.pdf,2001.

    [6]Saralees N.A generalized normal distribution[J].J.Appl.Stat.2008,32(7):685-694.

    [7]Wen Jianjin,Han Tianyong,Cheng S S.Quasi-log concavity conjecture and its applications in statistics[J].J.Inequal.Appl.,2014,DOI:10.1186/1029-242X-2014-339.

    [8]Johnson O.Information theory and the central limit theorem[M].London:Imperial College Press,2004.

    [9]Wlodzimierz B.The normal distribution: characterizations with applications[M].New York:Springer-Verlag,1995.

    [10]Wang Wanlan.Approaches to prove inequalities(in Chinese)[M]Harbin:Harbin Institute of Technology Press,2011.

    [11]Tong T L.An adaptive solution to ranking and selection problems[J].Ann.Stat.,1978,6(3):658-672.

    [12]Bagnoli M,Bergstrom T.Log-concave probability and its applications[J].Econ.The.,2005,26(2):445-469.

    Appendix

    A The Simulation and Comparison of Variances of Truncatedk-Normal Variable

    The procedure of simulation design is as follows

    Step 1Choose the appropriate parameterk,μandσin the distributionNk(μ,σ);

    Step 2Generate 200 random numbers obeying the distribution(μ,σ);

    Step 3Use the 200 numbers to calculate the variance for six truncatedk-normal variablesξ(-∞,∞),ξ[0,60),ξ[60,80),ξ[80,100),ξ[0,80)andξ[60,100);

    Step 4Repeat Step 1 and Step 2 for 50 times;

    Step 5Calculate the mean of 50 variances for each truncatedk-normal variable,denoted byDξ(-∞,∞),Dξ[0,60),Dξ[60,80),Dξ[80,100),Dξ[0,80)andDξ[60,100)respectively;

    Step 6Change the value ofk,μandσ,and repeat Step 1,Step 2,Step 3,Step 4.All the results are listed in Tables 1-4(NaN indicates there is no random number for corresponding truncated variable).

    Table 1:k=3,σ=10

    Table 2:k=3,μ=75

    Table 3:k=1.5,σ=10

    Table 4:k=1.5,μ=75

    B Curve Fitting for Three Real Data SetsX1,X2andX3

    The results of curve fi tting for three real data sets are as follows(see Figure 4-6)

    k-正態(tài)分布及其應(yīng)用

    韓天勇1,文家金1,宋安超2,葉建華1

    (1.成都大學(xué)信息科學(xué)與工程學(xué)院,四川成都 610106)(2.西南財經(jīng)大學(xué)統(tǒng)計學(xué)院,四川成都 611130)

    近本文研究了截斷隨機變量和k-正態(tài)分布.利用對數(shù)凹函數(shù)理論,獲得了涉及截斷隨機變量和截斷隨機變量的函數(shù)的方差的不等式鏈,推廣了涉及正態(tài)分布和分層教學(xué)模型的一些經(jīng)典結(jié)論.同時在附錄部分給出了仿真結(jié)果.

    截斷隨機變量;k-正態(tài)分布;分層教學(xué)模型;對數(shù)凹函數(shù);仿真

    O174.13;O211.3;O211.5

    Figure 4:FittingX1

    Figure 5:FittingX2

    Figure 6:FittingX3

    on:62J10;62P25;60E05;60E15;26D15;26E60

    A Article ID: 0255-7797(2017)04-0737-14

    date:2016-02-25Accepted date:2016-09-28

    Supported by the Natural Science Foundation of Sichuan Science and Technology Department(2014SZ0107).

    Biography:Han Tianyong(1976-),male,born at Chengdu,Sichuan,associate professor,major in dynamical system,inequality and its application.

    MR(2010)主題分類號:62J10;62P25;60E05;60E15;26D15;26E60

    猜你喜歡
    正態(tài)分布對數(shù)分類號
    含有對數(shù)非線性項Kirchhoff方程多解的存在性
    指數(shù)與對數(shù)
    指數(shù)與對數(shù)
    對數(shù)簡史
    基于對數(shù)正態(tài)分布的出行時長可靠性計算
    正態(tài)分布及其應(yīng)用
    A Study on the Change and Developmentof English Vocabulary
    正態(tài)分布題型剖析
    χ2分布、t 分布、F 分布與正態(tài)分布間的關(guān)系
    Translation on Deixis in English and Chinese
    日韩欧美 国产精品| 最后的刺客免费高清国语| 蜜桃亚洲精品一区二区三区| 草草在线视频免费看| 亚洲五月天丁香| 精品久久久噜噜| 男人和女人高潮做爰伦理| 亚洲美女黄片视频| 人人妻人人看人人澡| 老熟妇乱子伦视频在线观看| 欧美日韩综合久久久久久| 精品熟女少妇av免费看| av在线观看视频网站免费| 欧美日韩在线观看h| 美女大奶头视频| 精品国产三级普通话版| 有码 亚洲区| 午夜亚洲福利在线播放| 免费观看的影片在线观看| 最近手机中文字幕大全| 国产视频内射| 级片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人av在线免费| 国产精品国产高清国产av| 欧美激情国产日韩精品一区| 变态另类成人亚洲欧美熟女| 一进一出抽搐gif免费好疼| 久久精品人妻少妇| 看非洲黑人一级黄片| 久久久久久伊人网av| 久久精品影院6| 精品午夜福利在线看| 久久人人爽人人爽人人片va| 久久精品久久久久久噜噜老黄 | 日韩高清综合在线| 中文字幕精品亚洲无线码一区| 国产美女午夜福利| 99久国产av精品| 亚洲av不卡在线观看| 国产在视频线在精品| 免费人成在线观看视频色| 欧美人与善性xxx| 三级经典国产精品| 亚洲av美国av| 国国产精品蜜臀av免费| av国产免费在线观看| 日韩三级伦理在线观看| 亚洲av第一区精品v没综合| 亚洲人与动物交配视频| 丝袜喷水一区| 欧美日韩综合久久久久久| h日本视频在线播放| 国产精品亚洲一级av第二区| 蜜臀久久99精品久久宅男| 国产真实伦视频高清在线观看| 午夜福利18| 日本五十路高清| www日本黄色视频网| 久久久久久久久大av| 有码 亚洲区| 亚洲av熟女| 狂野欧美白嫩少妇大欣赏| 欧美另类亚洲清纯唯美| 成人精品一区二区免费| 中文亚洲av片在线观看爽| 欧美日韩综合久久久久久| 午夜a级毛片| 在线免费观看的www视频| 国产一区二区激情短视频| 国产精品一区二区三区四区久久| 中文字幕熟女人妻在线| 亚洲av第一区精品v没综合| 俺也久久电影网| 97超级碰碰碰精品色视频在线观看| 亚洲av不卡在线观看| 啦啦啦观看免费观看视频高清| 三级经典国产精品| 久久国产乱子免费精品| 成年女人永久免费观看视频| 一级毛片我不卡| 禁无遮挡网站| 国产在视频线在精品| 在线播放无遮挡| 一级黄色大片毛片| 亚洲精品日韩av片在线观看| 亚洲精品色激情综合| 国产精品三级大全| 亚洲高清免费不卡视频| 99riav亚洲国产免费| 亚洲高清免费不卡视频| 国产美女午夜福利| 成人av在线播放网站| 欧美日韩乱码在线| 国产精品国产高清国产av| 天天躁日日操中文字幕| 一本精品99久久精品77| 我要看日韩黄色一级片| 国产高清视频在线观看网站| 欧美日本亚洲视频在线播放| 女同久久另类99精品国产91| 久久久久国产精品人妻aⅴ院| 免费黄网站久久成人精品| 99热全是精品| 久久午夜亚洲精品久久| 日韩高清综合在线| 毛片一级片免费看久久久久| 免费搜索国产男女视频| 校园人妻丝袜中文字幕| 麻豆国产97在线/欧美| 十八禁网站免费在线| 一夜夜www| 欧美色视频一区免费| 亚洲一区高清亚洲精品| 国内精品久久久久精免费| 伦精品一区二区三区| 久久精品91蜜桃| 3wmmmm亚洲av在线观看| av视频在线观看入口| 国模一区二区三区四区视频| 国产淫片久久久久久久久| 国产精品一区二区免费欧美| 成人一区二区视频在线观看| 国产午夜福利久久久久久| 日本 av在线| 国产精品爽爽va在线观看网站| 欧美成人一区二区免费高清观看| 特大巨黑吊av在线直播| 欧美中文日本在线观看视频| 久久久久国产精品人妻aⅴ院| 男人舔奶头视频| 免费不卡的大黄色大毛片视频在线观看 | 99视频精品全部免费 在线| 国产三级中文精品| 亚洲av成人av| 99在线视频只有这里精品首页| 国产日本99.免费观看| 午夜福利在线观看吧| 亚洲av免费高清在线观看| 精品99又大又爽又粗少妇毛片| 亚洲成人久久性| 热99在线观看视频| 舔av片在线| 99久久精品国产国产毛片| 国产真实乱freesex| 欧美极品一区二区三区四区| 人人妻人人看人人澡| 欧美成人精品欧美一级黄| 国产在视频线在精品| 国产极品精品免费视频能看的| 日本免费一区二区三区高清不卡| 日韩制服骚丝袜av| 亚洲精品国产成人久久av| 亚洲高清免费不卡视频| 可以在线观看的亚洲视频| 国产精品久久电影中文字幕| 国产精品99久久久久久久久| 男人舔女人下体高潮全视频| 禁无遮挡网站| 中文字幕久久专区| 亚洲国产精品合色在线| 久久久久久九九精品二区国产| 国产私拍福利视频在线观看| 狠狠狠狠99中文字幕| 日韩 亚洲 欧美在线| 又爽又黄a免费视频| 中国美白少妇内射xxxbb| 人妻制服诱惑在线中文字幕| 无遮挡黄片免费观看| 色综合站精品国产| 国产成人a∨麻豆精品| 国产视频内射| 国产在线男女| 国产aⅴ精品一区二区三区波| 99热精品在线国产| 成人欧美大片| 免费看美女性在线毛片视频| 国产成年人精品一区二区| 亚洲av二区三区四区| 国产久久久一区二区三区| 国产乱人偷精品视频| 精品无人区乱码1区二区| 国产国拍精品亚洲av在线观看| 免费看美女性在线毛片视频| 性插视频无遮挡在线免费观看| 亚洲最大成人av| 日韩强制内射视频| 不卡一级毛片| 秋霞在线观看毛片| 亚洲婷婷狠狠爱综合网| 日本一二三区视频观看| 麻豆成人午夜福利视频| 亚洲av一区综合| av视频在线观看入口| 亚洲精品国产av成人精品 | 亚洲成av人片在线播放无| av在线亚洲专区| 尤物成人国产欧美一区二区三区| 一本精品99久久精品77| or卡值多少钱| 又黄又爽又刺激的免费视频.| 97超级碰碰碰精品色视频在线观看| a级毛片免费高清观看在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲精品av在线| 久久久久国内视频| 嫩草影院精品99| 深爱激情五月婷婷| 床上黄色一级片| 少妇的逼好多水| 偷拍熟女少妇极品色| 中文字幕精品亚洲无线码一区| 国产欧美日韩精品一区二区| 亚洲中文字幕一区二区三区有码在线看| 国产私拍福利视频在线观看| 亚洲最大成人手机在线| 青春草视频在线免费观看| 亚洲,欧美,日韩| 熟妇人妻久久中文字幕3abv| 精品一区二区三区人妻视频| 在线免费观看的www视频| 一本久久中文字幕| 亚洲天堂国产精品一区在线| 熟妇人妻久久中文字幕3abv| 国产不卡一卡二| 少妇的逼好多水| 亚洲精品影视一区二区三区av| 97超级碰碰碰精品色视频在线观看| 人妻丰满熟妇av一区二区三区| 国产黄片美女视频| 少妇人妻一区二区三区视频| 成人漫画全彩无遮挡| 少妇人妻精品综合一区二区 | 免费看av在线观看网站| 亚洲av中文字字幕乱码综合| 日韩一本色道免费dvd| 97在线视频观看| 亚洲欧美清纯卡通| 深夜精品福利| 日韩欧美三级三区| 国产黄色视频一区二区在线观看 | 欧美丝袜亚洲另类| 啦啦啦韩国在线观看视频| 麻豆久久精品国产亚洲av| 久久久久久久久久黄片| 久久久色成人| 国产色婷婷99| 欧美又色又爽又黄视频| 免费大片18禁| 女的被弄到高潮叫床怎么办| 老熟妇乱子伦视频在线观看| 亚洲一级一片aⅴ在线观看| 亚洲精品一区av在线观看| 色综合站精品国产| 久久精品国产99精品国产亚洲性色| 久久精品国产亚洲av涩爱 | 中国美白少妇内射xxxbb| av在线观看视频网站免费| 偷拍熟女少妇极品色| 男人狂女人下面高潮的视频| h日本视频在线播放| 日本色播在线视频| 午夜爱爱视频在线播放| 国产在线男女| 亚洲av免费在线观看| 久久久久国内视频| 少妇熟女aⅴ在线视频| 黄片wwwwww| 久久久色成人| 国产伦在线观看视频一区| 一进一出好大好爽视频| 欧美色视频一区免费| 亚洲最大成人中文| 亚洲一级一片aⅴ在线观看| 国产亚洲欧美98| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 久久精品夜色国产| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美精品自产自拍| 亚洲成人中文字幕在线播放| 亚洲成人久久爱视频| 精品国内亚洲2022精品成人| 男女做爰动态图高潮gif福利片| 久久天躁狠狠躁夜夜2o2o| 午夜视频国产福利| 一级a爱片免费观看的视频| 日本欧美国产在线视频| 日韩亚洲欧美综合| 99国产精品一区二区蜜桃av| 日本一本二区三区精品| 中文字幕人妻熟人妻熟丝袜美| 免费av观看视频| 91av网一区二区| av卡一久久| 国产 一区 欧美 日韩| 免费在线观看影片大全网站| 亚洲av熟女| 中文在线观看免费www的网站| 欧美三级亚洲精品| 最近视频中文字幕2019在线8| 精品午夜福利视频在线观看一区| 精品福利观看| 日韩三级伦理在线观看| 精品日产1卡2卡| 大香蕉久久网| 国产成年人精品一区二区| 一级黄片播放器| 亚洲欧美日韩东京热| 欧美日韩在线观看h| 久久久久久大精品| 色尼玛亚洲综合影院| 国产在线男女| 菩萨蛮人人尽说江南好唐韦庄 | 九色成人免费人妻av| 可以在线观看的亚洲视频| 国产亚洲精品av在线| 日本五十路高清| 欧美在线一区亚洲| 欧美高清性xxxxhd video| 国产精品亚洲一级av第二区| 草草在线视频免费看| 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 不卡一级毛片| 国产一区二区在线观看日韩| 日韩高清综合在线| 国内精品久久久久精免费| 国产精品乱码一区二三区的特点| 久久精品久久久久久噜噜老黄 | 变态另类丝袜制服| 一区二区三区高清视频在线| 国产精品精品国产色婷婷| 久久精品国产99精品国产亚洲性色| 亚洲欧美日韩卡通动漫| 99精品在免费线老司机午夜| 看十八女毛片水多多多| 午夜日韩欧美国产| 少妇人妻一区二区三区视频| 国内精品宾馆在线| 精品一区二区三区av网在线观看| 日本色播在线视频| 最近在线观看免费完整版| 久久久久久久久久成人| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 又爽又黄a免费视频| 成人av一区二区三区在线看| 亚洲性夜色夜夜综合| 成人鲁丝片一二三区免费| 国产在线精品亚洲第一网站| 亚洲av中文av极速乱| 毛片女人毛片| 日日摸夜夜添夜夜添av毛片| 国产蜜桃级精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 免费观看精品视频网站| 亚洲自拍偷在线| 最近手机中文字幕大全| 国产伦在线观看视频一区| 亚洲一级一片aⅴ在线观看| av视频在线观看入口| 啦啦啦韩国在线观看视频| 综合色丁香网| 免费一级毛片在线播放高清视频| 日日撸夜夜添| 欧美xxxx性猛交bbbb| 婷婷亚洲欧美| 国内精品一区二区在线观看| 五月玫瑰六月丁香| 亚洲成人久久爱视频| 秋霞在线观看毛片| 久久久a久久爽久久v久久| 日韩av不卡免费在线播放| 女人十人毛片免费观看3o分钟| 久久午夜福利片| 亚洲精品国产av成人精品 | 天堂动漫精品| 国产精品一二三区在线看| 欧美高清成人免费视频www| 草草在线视频免费看| 搡老妇女老女人老熟妇| 天堂网av新在线| 在线天堂最新版资源| 麻豆国产97在线/欧美| 性插视频无遮挡在线免费观看| 午夜久久久久精精品| 久久精品人妻少妇| 日韩高清综合在线| 两性午夜刺激爽爽歪歪视频在线观看| 嫩草影院新地址| 欧美绝顶高潮抽搐喷水| 欧美日韩乱码在线| 日韩国内少妇激情av| 久久久久久大精品| 精品午夜福利视频在线观看一区| 日韩中字成人| 国产人妻一区二区三区在| 国产精品不卡视频一区二区| 久久中文看片网| 免费看日本二区| 久久久久国产网址| 精品久久国产蜜桃| 丝袜美腿在线中文| 欧美国产日韩亚洲一区| 国产高清视频在线播放一区| 亚洲高清免费不卡视频| 直男gayav资源| 国产亚洲精品av在线| 成人三级黄色视频| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 国产精品av视频在线免费观看| 日韩 亚洲 欧美在线| 看黄色毛片网站| 菩萨蛮人人尽说江南好唐韦庄 | 三级毛片av免费| 日韩精品中文字幕看吧| 国产精品亚洲美女久久久| 搡老岳熟女国产| 在线观看午夜福利视频| 在线播放无遮挡| 久久亚洲精品不卡| 高清毛片免费看| 久久久久久久久中文| 一区福利在线观看| 非洲黑人性xxxx精品又粗又长| 国语自产精品视频在线第100页| 丰满乱子伦码专区| 国产精品久久电影中文字幕| 欧美日韩在线观看h| 免费观看的影片在线观看| 搞女人的毛片| av视频在线观看入口| 国产欧美日韩精品一区二区| 狂野欧美激情性xxxx在线观看| 久久草成人影院| 亚洲激情五月婷婷啪啪| 欧美xxxx黑人xx丫x性爽| 老熟妇乱子伦视频在线观看| 在线观看av片永久免费下载| 欧美色欧美亚洲另类二区| 国内精品一区二区在线观看| 黄色视频,在线免费观看| 国产精品不卡视频一区二区| 网址你懂的国产日韩在线| 亚洲最大成人av| 一区二区三区四区激情视频 | 老司机影院成人| 看黄色毛片网站| 国产精品精品国产色婷婷| 国产精品久久久久久久久免| 12—13女人毛片做爰片一| 熟女人妻精品中文字幕| 欧美人与善性xxx| a级毛片免费高清观看在线播放| 国产v大片淫在线免费观看| 国产高清视频在线播放一区| 久久午夜福利片| 久久鲁丝午夜福利片| 亚洲精品粉嫩美女一区| 十八禁国产超污无遮挡网站| avwww免费| 干丝袜人妻中文字幕| av中文乱码字幕在线| 亚洲熟妇中文字幕五十中出| 99热这里只有是精品50| eeuss影院久久| 1024手机看黄色片| 麻豆久久精品国产亚洲av| 熟女人妻精品中文字幕| 国产男靠女视频免费网站| 人妻少妇偷人精品九色| 波多野结衣高清无吗| a级毛色黄片| 人妻夜夜爽99麻豆av| 亚洲av免费在线观看| 亚洲av电影不卡..在线观看| 日产精品乱码卡一卡2卡三| 麻豆精品久久久久久蜜桃| av在线蜜桃| 亚洲自拍偷在线| 简卡轻食公司| 你懂的网址亚洲精品在线观看 | 成人午夜高清在线视频| 九九在线视频观看精品| 成人av在线播放网站| 国产精品福利在线免费观看| 非洲黑人性xxxx精品又粗又长| 日韩欧美精品v在线| 非洲黑人性xxxx精品又粗又长| 99视频精品全部免费 在线| 亚洲欧美日韩高清专用| 少妇熟女aⅴ在线视频| 99九九线精品视频在线观看视频| av专区在线播放| 18禁黄网站禁片免费观看直播| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐gif免费好疼| 免费搜索国产男女视频| 国产精品一区二区三区四区免费观看 | 精品熟女少妇av免费看| 美女 人体艺术 gogo| 色5月婷婷丁香| 精品久久国产蜜桃| 日韩一区二区视频免费看| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 久久这里只有精品中国| 成年av动漫网址| 亚洲精品色激情综合| 国产大屁股一区二区在线视频| 久久精品影院6| 国产片特级美女逼逼视频| 久久欧美精品欧美久久欧美| 少妇被粗大猛烈的视频| 亚洲第一电影网av| av中文乱码字幕在线| 一个人观看的视频www高清免费观看| 国产精品亚洲一级av第二区| 可以在线观看的亚洲视频| 国产综合懂色| a级毛片a级免费在线| 国产精品电影一区二区三区| 变态另类丝袜制服| 欧美极品一区二区三区四区| 搡老岳熟女国产| 国产又黄又爽又无遮挡在线| 一进一出抽搐gif免费好疼| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 日本黄色片子视频| 寂寞人妻少妇视频99o| 欧美zozozo另类| 小蜜桃在线观看免费完整版高清| 亚洲欧美成人综合另类久久久 | 你懂的网址亚洲精品在线观看 | 男女那种视频在线观看| 黄片wwwwww| 精品久久久噜噜| 久久精品夜夜夜夜夜久久蜜豆| 精品日产1卡2卡| 亚洲自偷自拍三级| 波多野结衣高清作品| 久久久a久久爽久久v久久| 人人妻人人澡欧美一区二区| 亚州av有码| 亚洲av美国av| 九色成人免费人妻av| 午夜免费激情av| 国产伦在线观看视频一区| 男女下面进入的视频免费午夜| 卡戴珊不雅视频在线播放| 91精品国产九色| 亚洲国产日韩欧美精品在线观看| 中文亚洲av片在线观看爽| 伊人久久精品亚洲午夜| 亚洲av.av天堂| 99热这里只有是精品在线观看| 99国产极品粉嫩在线观看| 国产精品久久久久久精品电影| 禁无遮挡网站| av在线天堂中文字幕| 桃色一区二区三区在线观看| 人人妻人人澡人人爽人人夜夜 | 一级毛片久久久久久久久女| 女的被弄到高潮叫床怎么办| 永久网站在线| 成人午夜高清在线视频| 又黄又爽又刺激的免费视频.| 久久热精品热| 亚洲乱码一区二区免费版| 午夜福利在线观看吧| 蜜桃亚洲精品一区二区三区| 综合色丁香网| av女优亚洲男人天堂| 日韩,欧美,国产一区二区三区 | 美女被艹到高潮喷水动态| 国产精品嫩草影院av在线观看| 国产亚洲欧美98| 亚洲电影在线观看av| 俄罗斯特黄特色一大片| 在现免费观看毛片| 十八禁国产超污无遮挡网站| 日产精品乱码卡一卡2卡三| 亚洲av美国av| 国产精品伦人一区二区| 国产爱豆传媒在线观看| 一个人观看的视频www高清免费观看| 日韩一区二区视频免费看| 精品乱码久久久久久99久播| 久久久久免费精品人妻一区二区| 亚洲美女黄片视频| 国产男靠女视频免费网站| 免费高清视频大片| 免费搜索国产男女视频| 69av精品久久久久久| 成人永久免费在线观看视频| 我的老师免费观看完整版| 亚洲18禁久久av| 亚洲性夜色夜夜综合| 女的被弄到高潮叫床怎么办| 91在线观看av| 日产精品乱码卡一卡2卡三| 亚洲国产精品国产精品| 你懂的网址亚洲精品在线观看 | 黄色日韩在线| 国产成年人精品一区二区| 麻豆成人午夜福利视频| 日韩精品青青久久久久久| 亚洲最大成人av| 亚洲欧美日韩卡通动漫| 成人精品一区二区免费| .国产精品久久| 亚洲性夜色夜夜综合|