• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含C^N-螯合配體的環(huán)戊二烯基銥抗癌配合物

    2017-07-05 13:56:20路小敏田夢田珍珍田來進(jìn)李夢琪黃靜劉哲
    關(guān)鍵詞:環(huán)戊二烯黃靜抗癌

    路小敏 田夢 田珍珍 田來進(jìn) 李夢琪 黃靜 劉哲

    (曲阜師范大學(xué)化學(xué)與化工學(xué)院,抗癌藥物開發(fā)與診療應(yīng)用研究所,山東省生命有機(jī)分析重點(diǎn)實(shí)驗(yàn)室,山東省綠色天然產(chǎn)物及醫(yī)藥中間體開發(fā)重點(diǎn)實(shí)驗(yàn)室,曲阜273165)

    含C^N-螯合配體的環(huán)戊二烯基銥抗癌配合物

    路小敏 田夢 田珍珍 田來進(jìn) 李夢琪 黃靜 劉哲*

    (曲阜師范大學(xué)化學(xué)與化工學(xué)院,抗癌藥物開發(fā)與診療應(yīng)用研究所,山東省生命有機(jī)分析重點(diǎn)實(shí)驗(yàn)室,山東省綠色天然產(chǎn)物及醫(yī)藥中間體開發(fā)重點(diǎn)實(shí)驗(yàn)室,曲阜273165)

    合成、表征了8個(gè)半三明治結(jié)構(gòu)環(huán)戊二烯基金屬銥配合物[(η5-Cpx)Ir(C^N)Cl],其中Cpx分別為四甲基環(huán)戊二烯基(C5Me4H),五甲基環(huán)戊二烯基(Cp*),四甲基(苯基)環(huán)戊二烯基(Cpxph),四甲基(聯(lián)苯)環(huán)戊二烯基(Cpxbiph),C^N為苯亞甲基甲胺(BIMA),N-(4-甲氧基苯亞甲基)苯胺(MBIA)。測定了其中3個(gè)配合物的單晶結(jié)構(gòu)。所有配合物對(duì)Hela人宮頸癌細(xì)胞顯示出很強(qiáng)的細(xì)胞毒性,IC50值為1.7~32.9μmol·L-1。經(jīng)檢測Cpx銥配合物的抗癌活性順序?yàn)镃pxbiph>Cpxph>C5Me4H>Cp*。配合物[(η5-Cpxbiph)Ir(BIMA)Cl](A4)和[(η5-Cpxbiph)Ir(MBIA)Cl](B4)表現(xiàn)出了最高的抗癌活性,比臨床鉑類藥物順鉑活性高4倍以上。經(jīng)檢測,銥配合物A1~B4不與9-甲基腺嘌呤和9-乙基鳥嘌呤反應(yīng),與pBR322 DNA也沒有作用,但這些配合物能夠作為氫轉(zhuǎn)移催化劑,將輔酶NADH轉(zhuǎn)化為NAD+。機(jī)理研究表明配合物A4、B4處理Hela細(xì)胞時(shí)會(huì)引起明顯的細(xì)胞凋亡和細(xì)胞周期的變化,并大幅增加細(xì)胞內(nèi)活性氧(ROS)的水平。

    半三明治配合物;環(huán)戊二烯基配體;銥;抗癌藥物;ROS水平;細(xì)胞凋亡;細(xì)胞周期;還原態(tài)煙酰胺腺嘌呤二核苷酸

    Chemotherapy with Pt complexes is one of the main pillars in the treatmentof cancer today[1].Despite their tremendous success,these platinum compounds suffer from twomain disadvantages:they are inefficient againstplatinum-resistant tumors,and they have severe side effects such as nephron toxicity[2-3].The clinical success and drawbacks of Pt anticancer drugs have stimulated the exploration of othermetal-based anticancer compounds[4],in particular other platinum complexes[5]and some group 8metal complexes containing iron[6-8],ruthenium[9-12],rhodium[13-14],osmium[15],which showed promising anticancer activity both in vitro and in vivo.

    Half-sandwich cyclopentadienyl(Cpx)Ir complexes have been successfully applied in traditional domains encompassingorganic transformations[16-18],catalysis[19-23]. Very recently,potential biological applications of iridium compounds have attracted much attention[24-27]. A number of Cp*Ircomplexes of the type[(η5-Cp*) Ir(XY)Cl]0/+,where XY=N^N-bound 2,2-bipyridine(bpy) or N^O-bound ligands[28],have been reported to be inactive toward A2780 human ovarian cancer cells. However,the electronic and steric properties of the ligands can have amajor effect on the chemical and biological activities of transition metal complexes.We reported that the potency toward cancer cells increased with additional phenyl substitution on Cp*, and the anticancer activity can be improved significantly by replacement of one atom,changing neutral N^N-chelating ligand(bpy)with negatively charged C^N-chelating ligand 2-phenylpyridine(phpy), which leading to increased cellular uptake and nucleobasebinding[29-30].This finding has led us tomake detailed investigations on CpxIrcomplexes with C^N-bound ligands and to study the influence of phenyl-or biphenyl-substituted Cp*on their chemical and biological properties.

    Oxidative stress caused by the generation of reactive oxygen species(ROS)is an effectivemethod of killing cancer cells.ROS are produced in a wide range of physiological processes,in particular by mitochondria,and play valuable roles in cellular signaling.Such stress would have a smaller effect on redox control in normal cells.Organometallic iridiumcomplexes and coppercomplexes have been reported to be effective ROS inducer[31-33].

    In the work reported here,eight half-sandwich complexes of the type(η5-Cpx)Ir(C^N)Cl,where Cpxis tetramethylcyclopentadienyl(C5Me4H),Cp*,tetramethyl (phenyl)cyclopentadienyl(Cpxph)or tetramethyl (biphenyl)cyclopentadienyl(Cpxbiph),and the C,N-chelating ligands are N-benzylidenemethylamine(BIMA) and N-(4-methoxybenzylidene)aniline(MBIA)(Chart 1),were designed,synthesized and characterized,and their antiproliferative activity against cancer cells and mechanism of action was investigated.To the best of our knowledge,this appears to be the first report of C5Me4H iridium anticancer agents.The results suggest that this new class of organometallic Ircomplexes iswell suited for development as anticancer agents.

    1 Experimental

    1.1 M aterials

    IrCl3·3H2O,butyllithium solution(1.6 mol·L-1in hexane),1,2,3,4,5-pentamethylcyclopentadiene(95%), 2,3,4,5-tetramethyl-2-cyclopentenone(95%),phenylmagnesium bromide,4-bromobiphenyl,trimethyl(2,3, 4,5-tetramethyl-2,4-cyclopentadien-1-yl)silane(97%), N-benzylidenemethylamine(BIMA),N-(4-methoxybenzylidene)aniline(MBIA),9-ethylguanine and 9-methyladeninewere purchased from Sigma-Aldrich.CpxphH[34], CpxbiphH[28],dimer2[35],A2[36]and B2[37]were prepared according to literature methods.For the biological experiments,DMEM medium,fetal bovine serum, penicillin/streptomycin mixture,trypsin/EDTA,and phosphate-buffered saline(PBS)were purchased from Sangon Biotech.Testing compounds was dissolved in DMSO and diluted with the tissue culture medium before use.

    1.2 Instruments and methods

    1.2.1 X-ray crystallography

    All diffraction data were obtained on a Bruker Smart Apex CCD diffractometer equipped with graphite -monochromated Mo Kαradiation(λ=0.071 073 nm). Absorption corrections were applied using SADABS[38]program.The crystalsweremounted in oil and held at295Kwith theOxford Cryosystem Cobra.Thestructures were solved by directmethodsusing SHELXS(TREF)[39]with additional light atoms found by Fouriermethods. Complexes dimer1,A3 and B3 were refined against F2using SHELXL,and hydrogen atoms were added at calculated positions and refined riding on their parent atoms.Crystallographic data are shown in Table S1, and selected bond lengths and angles are listed in Table S2.

    Chart 1 Iridium cyclopentadienyl com plexes studied in thiswork

    CCDC:1528262,A3;1528263,B3;1538264, dimer1.

    1.2.2 Characterization

    1H NMR spectrawereacquired at298K on Bruker -500MHz spectrometers.1H NMR chemicalshiftswere internally referenced to CDCl3(δ7.26)for chloroformd1,CHD2OD(δ3.33)for methanol-d4.Electrospray ionization mass spectra(ESI-MS)were obtained on a Bruker Esquire 2000 ion trap spectrometer.For UVVis spectra,a TU-1901 UV-Vis recording spectrophotometer was used with 1 cm path-length quartz cuvettes(3mL).

    1.2.3 Reaction with NADH

    The reaction of complexes A1~B4(ca.0.8μmol ·L-1)with NADH(87μmol·L-1,pH=6.7)in 5%(V/V) CH3OH aqueous solution wasmonitored by UV-Vis at 298 K after 8 h.The reaction between complex A2 (0.25mmol·L-1)and NADH(3.5 times the amount of complex)in CHD2OD/D2O(1∶1,V/V)at 298 K was detected by1H NMR.TON was calculated from the difference in NADH concentration after 8 h divided by the concentration of iridium catalyst.The concentration of NADH was obtained using the extinction coefficientε339=6 220 L·mol-1·cm-1.

    1.2.4 Interactionswith nucleobases

    The reaction of complexes A1~B4(ca.1mmol· L-1)with nucleobases typically involved addition of a solution containing 1 times the amount of nucleobase in D2O to an equilibrium solution of complexes A1~B4 in 40%(V/V)CHD2OD/D2O.1H NMR spectra of these solutions were recorded at 298 K after varioustime intervals.

    1.2.5 Cleavage plasmid DNA

    Gel electrophoresis experiments were carried out with pBR 322 DNA,in 0.8%agarose solution,at 25 V·cm-1for 1.5 h using TAE buffer(40mol·L-1Tris,1 mmol·L-1EDTA(disodium salt),pH 8.3).The pBR 322 DNA was stained with 0.5 mg·mL-1GelRed.The cleavage reactions were quenched by the addition of bromophenol blue.The cleavage products were irradiated at room temperature with a UV lamp(590 nm).

    1.2.6 Cell culture

    Hela cervical carcinoma cells were obtained from Shanghai Institute of Biochemistry and Cell Biology (SIBCB)and were grown in Dubelco′s Modified Eagle Medium(DMEM).Allmedia were supplemented with 10%fetal bovine serum,and 1%penicillin-streptomycin solution.All cells were grown at 310 K in a humidified incubatorundera5%(V/V)CO2atmosphere.

    1.2.7 In vitro growth inhibition assay(MTT Assay)

    After plating 5000 Hela cells per well in 96-well plates,the cells were preincubated in drug-freemedia at 310 K for 24 h before adding different concentrations of the compounds to be tested.In order to prepare the stock solution of the drug,the solid complex was dissolved in DMSO.This stock was further diluted using cell culture medium until working concentrations were achieved.The drug exposure period was 24 h.Subsequently,15μL of 5 mg·mL-1MTT solution was added to form a purple formazan.Afterwards,100μL of dimethyl sulfoxide (DMSO)was transferred into each well to dissolve the purple formazan,and results were measured using a microplate reader(DNM-9606,Perlong Medical, Beijing,China)atan absorbance of 570 nm.Each well was triplicated and each experiment repeated at least three times.IC50values are quoted asmean±SEM.

    1.2.8 Cell cycle analysis

    Hela cells at 1.5×106per well were seeded in a six-well plate.Cells were preincubated in drug-free media at 310 K for 24 h,after which drugs were added at concentrations of 0.25IC50,0.5IC50,and IC50. After 24 h of drug exposure,supernatants were removed by suction and cells were washed with PBS. Finally,cells were harvested using trypsin-EDTA and fixed for 24 h using cold 70%(V/V)ethanol.DNA staining was achieved by resuspending the cell pellets in PBS containing propidium iodide(PI)and RNAse. Cell pellets were washed and resuspended in PBS before being analyzed in a flow cytometer(ACEA NovoCyte,Hangzhou,China)using excitation of DNA-bound PI at 488 nm,with emission at 585 nm.The cell cycle distribution is shown as the percentage of cells containing G0/G1,S and G2/M DNA as identified by propidium iodide staining.

    1.2.9 Induction of apoptosis

    Flow cytometry analysis of apoptotic populations of Hela cells caused by exposure to iridium complexes was carried out using the Annexin V-FITC Apoptosis Detection Kit(Beyotime Institute of Biotechnology, China)according to the supplier′s instructions.Briefly, Hela cells(7.5×105per well)were seeded in a sixwell plate.Cellswere preincubated in drug-freemedia at 310 K for 24 h,after which drugs were added at concentrations of IC50and 2IC50.After 24 h of drug exposure,cellswere collected,washed once with PBS, and resuspended in 195μL of Annexin V-FITC binding buffer which was then added to 5μL of Annexin V-FITC and 10μL of PI,and then incubated at room temperature in the dark for 15 min. Subsequently,the buffer placed in an ice bath in the dark.The samples were analyzed by a flow cytometer (ACEA NovoCyte,Hangzhou,China).

    1.2.10 ROS determination

    Flow cytometry analysis of ROS generation in Hela cells caused by exposure to iridium complexes was carried out using the Reactive Oxygen Species Assay Kit(Beyotime Institute of Biotechnology, Shanghai,China)according to the supplier′s instructions.Briefly,1.5×106Hela cells perwellwere seeded in a six-well plate.Cells were preincubated in drugfree media at 310 K for 24 h in a 5%(V/V)CO2humidified atmosphere,and then drugs were added at concentrations of 0.25IC50and 0.5IC50.After 24 h of drug exposure,cells were washed twice with PBS and then incubated with the DCFH-DA probe(10μmol· L-1)at 37℃for 30 min,and then washed tripleimmediately with PBS.The fluorescence intensity was analyzed by flow cytometry(ACEA NovoCyte, Hangzhou,China).At all times,samples were kept under dark conditions to avoid light-induced ROS production.

    1.3 Synthesis

    [(η5-Cpxph)IrCl2]2(dimer3).A solution ofCpxphH(1.0 g,5.0 mmol)and IrCl3·3H2O(0.5 g,1.4 mmol)was pretreated with ultrasonic dissolving in an N2atmosphere and reacted with sonication in PTFE inner tank at 120℃for 20min and 150℃for 20min.The reaction mixture was allowed to cool to ambient temperature and pressure and the red-orange precipitate was filtered off.The volume of the dark red filtrate was reduced to ca.15 mL on a rotary evaporator.Upon cooling to ambient temperature,an orange precipitate appeared which was collected by filtration.The productwas washed with methanol and diethyl ether and dried in air.Yield:0.45 g(58.5%).1H NMR(500 MHz,CDCl3)δ7.57(dd,J=6.5,3.0 Hz, 4H),7.41~7.32(m,6H),1.73(s,12H),1.63(s,12H). Anal.Calcd.for C30H34Ir2Cl4(%):C,39.13;H,3.72. Found(%):C,39.14;H,3.68.

    [(η5-Cpxbiph)IrCl2]2(dimer4).The synthesis was performed as for dimer3 using CpxbiphH(0.5 g,1.8 mmol)and IrCl3·3H2O(0.2 g,0.7 mmol).Yield:0.13 g(35.8%).1H NMR(500 MHz,CDCl3)δ7.65(d,J= 8.1 Hz,4H),7.62~7.48(m,8H),7.45(dd,J=15.1,7.6 Hz,4H),7.36(t,J=7.3 Hz,2H),1.75(s,12H),1.70(d, J=12.5 Hz,12H).Anal.Calcd.for C42H42Ir2Cl4(%):C, 47.01;H,3.95.Found(%):C,46.87;H,3.75.

    [(η5-C5Me4H)IrCl2]2(dimer1).The synthesis was performed as for dimer3 using trimethyl(2,3,4,5-tetramethyl-2,4-cyclopentadien-1-yl)silane(0.7 mL,3 mmol)and IrCl3·3H2O(0.33 g,1.0 mmol).Yield:0.17 g(18.4%).1H NMR(500 MHz,CDCl3)δ5.27(s,2H), 1.68(s,12H),1.63(s,12H).Anal.Calcd.forC18H26Ir2Cl4(%):C,28.13;H,3.41.Found:C,28.25;H,3.56.

    [(η5-C5Me4H)Ir(BIMA)Cl](A1).A solution of chloride complex dimer1(46.5 mg,0.06 mmol),N-benzylidenemethylamine(14.3 mg,0.12 mmol),and sodium acetate(49.2mg,0.6mmol),and benzaldehyde (trace)in 20 mL of CH2Cl2was stirred for 5 h at ambient temperature in N2atmosphere.The solution was filtered through celite.The filtrate was evaporated to dryness on a rotary evaporator and washed with diethyl ether and hexane.The product was recrystallized from CH3OH.Yield:19 mg(35.1%).1H NMR (500 MHz,CDCl3)δ8.25(s,1H),7.84(d,J=7.6 Hz, 1H),7.52(d,J=7.5 Hz,1H),7.13(s,1H),6.98(s,1H), 4.78(s,1H),4.01(s,3H),1.78(d,J=6.9 Hz,9H),1.72 (s,3H).MS(MeOH):m/z=508.1([(η5-C5Me4H)Ir(BIMA) Cl]+K+).Anal.Calcd.for C17H21IrNCl(%):C,43.72;H, 4.53;N,3.00.Found(%):C,43.78;H,4.44;N,2.88.

    [(η5-Cpxph)Ir(BIMA)Cl](A3).The synthesis was performed as for A1 using complex dimer3(46 mg, 0.05 mmol),N-benzylidenemethylamine(12 mg,0.1 mmol),and sodium acetate(41 mg,0.5 mmol),and benzaldehyde(trace).Yield:38 mg(70.0%).1H NMR (500 MHz,CDCl3)δ8.26(d,J=1.3 Hz,1H),7.62(d, J=7.5Hz,1H),7.53(dd,J=7.5,1.2Hz,1H),7.39~7.28 (m,5H),7.08(tt,J=13.0,6.5 Hz,1H),6.98(td,J=7.4, 1.0Hz,1H),3.73(d,J=1.3 Hz,3H),1.87(s,3H),1.80 (d,J=1.4Hz,6H),1.67(s,3H).MS(MeOH):m/z=583.8 ([(η5-Cpxph)Ir(BIMA)Cl]+K+).Anal.Calcd.for C23H25Ir NCl(%):C,50.86;H,4.64;N,2.58.Found(%):C,50.82; H,4.69;N,2.53.

    [(η5-Cpxbiph)Ir(BIMA)Cl](A4).The synthesis was performed as for A1 using complex dimer4(53 mg, 0.05 mmol),N-benzylidenemethylamine(12 mg,0.1 mmol),and sodium acetate(41 mg,0.5 mmol),and benzaldehyde(trace).Yield:24 mg(38.8%).1H NMR (500 MHz,CDCl3)δ8.28(d,J=1.2 Hz,1H),7.64(dd, J=9.1,7.7 Hz,3H),7.58(d,J=8.3 Hz,2H),7.54(d, J=7.5 Hz,1H),7.51~7.40(m,4H),7.36(t,J=7.4 Hz, 1H),7.10(td,J=7.5,1.3 Hz,1H),6.99(dd,J=7.4,6.5 Hz,1H),3.77(t,J=7.8 Hz,3H),1.88(s,J=10.2 Hz, 3H),1.84(s,3H),1.81(s,3H),1.72(s,3H).MS(MeOH): m/z=583.8([C23H25IrNCl]+K+).Anal.Calcd.for C29H29Ir NCl(%):C,56.25;H,4.72;N,2.26.Found(%):C, 56.29;H,4.77;N,2.20.

    [(η5-C5Me4H)Ir(MBIA)Cl](B1).The synthesis was performed as for A1 using complex dimer1(46.5 mg, 0.06mmol),N-(4-methoxybenzylidene)aniline(25.5mg, 0.12 mmol),and sodium acetate(49.2 mg,0.6 mmol), and benzaldehyde(trace).Yield:27mg(48.3%).1HNMR(500 MHz,CDCl3)δ8.23(s,1H),7.66~7.57(m, 3H),7.43(d,J=2.4 Hz,1H),7.37(t,J=7.8 Hz,3H), 7.28(d,J=7.4 Hz,1H),6.61(dd,J=8.4,2.4 Hz,1H), 3.91(s,3H),1.62(s,3H),1.56(s,3H),1.53(s,3H), 1.44(s,3H).MS(MeOH):m/z=598.8([(η5-C5Me4H)Ir (MBIA)Cl]+K+).Anal.Calcd.for C23H25IrNClO(%):C, 49.41;H,4.51;N,2.51.Found(%):C,49.47;H,4.46; N,2.56.

    [(η5-Cpxph)Ir(MBIA)Cl](B3).The synthesis was performed as for A1 using complex dimer3(46 mg, 0.05 mmol),N-(4-methoxybenzylidene)aniline(22 mg, 0.1mmol),and sodium acetate(41mg,0.5mmol),and benzaldehyde(trace).Yield:47 mg(74.0%).1H NMR (500 MHz,CDCl3)δ8.22(s,1H),7.58(d,J=8.3 Hz, 1H),7.50(d,J=7.3 Hz,2H),7.39~7.28(m,7H),7.23 (d,J=7.4 Hz,1H),7.06~7.02(m,1H),6.57(dd,J=8.4, 2.4Hz,1H),3.61(s,3H),1.70(s,3H),1.48(s,6H),1.35 (s,3H).MS(MeOH):m/z=675.7([(η5-Cpxph)Ir(MBIA) Cl]+K+).Anal.Calcd.for C29H29IrNClO(%):C,54.83; H,4.60;N,2.21.Found(%):C,54.75;H,4.50;N,2.26.

    [(η5-Cpxbiph)Ir(MBIA)Cl](B4).The synthesis was performed as for A1 using complex dimer4(53 mg, 0.05 mmol),N-(4-methoxybenzylidene)aniline(22 mg, 0.1 mmol),and sodium acetate(41 mg,0.5 mmol), and benzaldehyde(trace).Yield:23mg(32.3%).1H NMR(500 MHz,CDCl3)δ8.22(s,1H),7.64~7.54(m, 5H),7.52(dd,J=8.3,1.1 Hz,2H),7.49~7.39(m,4H), 7.39~7.31(m,3H),7.26~7.20(m,1H),7.05(dd,J= 11.3,7.1Hz,1H),6.57(dd,J=8.4,2.4Hz,1H),3.61(d, J=5.3 Hz,3H),1.76(d,J=6.8 Hz,3H),1.49(s,6H), 1.41(s,3H).MS(MeOH):m/z=675.7([C29H29IrNOCl]+ K+).Anal.Calcd.for C35H33IrNClO(%):C,59.10;H, 4.68;N,1.97.Found(%):C,59.18;H,4.64;N,1.92.

    2 Results and discussion

    2.1 Synthesis

    dimer1,dimer2,dimer3 and dimer4 were synthesized by using a Tank Eco Initiator microwave synthesizer.Compared to the heating reflux method, the yield was improved effectively[28].Eight Irhalfsandwich complexes(Chart 1)of the type[(η5-Cpx)Ir (C^N)Cl],where Cpxis C5Me4H,Cp*or its phenyl(Cpxph) or biphenyl(Cpxbiph)derivatives,and the C^N-chelating ligands are N-benzylidenemethylamine(BIMA)and N-(4-methoxybenzylidene)aniline(MBIA),were synthesized by reaction of the C^N-chelating ligands with the iridium precursors dimer1~dimer4 in dichloromethane in the presence of sodium acetate as a base. All of the synthesized complexes were fully characterized by1H NMR spectroscopy,mass spectrometry and elemental analysis.Introduction of phenyl substituents on the Cp*ring decreased the reaction yields significantly.At the beginning,an iridium silane dimer[(η5-C5Me4SiMe3)IrCl2]2was tried to synthesized by reaction of trimethyl(2,3,4,5-tetramethyl-2,4-cyclopentadien-1-yl)silane with IrCl3·3H2O by microwave heating.Unfortunately,thismethod led to loss of silanewith formation of dimer1.

    2.2 X-ray crystal structures

    The X-ray crystal structures of dimer1,A3 and B3 were determined.The structures and atomnumbering schemes are shown in Fig.1.Complexes A3 and B3 adopt the expected half-sandwich pseudooctahedral“three-legged piano-stool”geometry with the iridium bound to aη5-cyclopentadienyl ligand(Ir to ring centroid distances of 0.175 0,0.182 2 and 0.183 1 nm,respectively).The Ir-Clbond distancesare 0.238 36(19),0.239 21(10)and 0.240 30(9)nm for dimer1,A3 and B3,respectively.The Ir-C(chelating ligand)bond lengths in A3 and B3(0.203 7(4)and 0.203 3(4)nm,respectively)are significantly shorter than the Ir-N bond lengths(0.208 4(3)and 0.209 5(3) nm,respectively).

    Thebond distancesand angles in dimer1 compare well to those found for the corresponding Cp* analogue dimer2[40].The Ir-Cl(bridging)-Ir angle in dimer1 is 1.11°more acute and the Cl(bridging)-Ir-Cl (bridging)angle in dimer1 is 0.81°more obtuse, respectively,than those of the Cp*analogue.The Ir-Cl bound lengths in complex A3(0.239 21(10)nm)is slightly shorter than complex B3(0.240 30(9)nm) (Table S2).The Ir-Cl bond length in A3(0.239 21(10) nm)is similar to that in A2(0.239 50(6)nm)[41].The Ir-Cl bound length in complexes B3(0.240 30(9)nm) is similar to that in complex B2(0.240 38(5)nm)[37]. These results suggest that the introduction of phenylsubstituent on the Cp*ring does not give rise to significant change in structure.

    Fig.1 X-ray crystal structures and atom-numbering schemes for complexes dimer1,A3 and B3 with thermal ellipsoids drawn at50%probability

    2.3 Interaction w ith nucleobases

    Because DNA is a potential target site for transition metal anticancer complexes,the binding of 9-ethylguanine(9-EtG)and 9-mehyladenine(9-MeA) to complexes A1~B4 was studied.The addition of 1 times the amountof 9-MeA or 9-EtG to an equilibrium solution of A1~B4(1.0mmol·L-1)in 20%(V/V)MeOH-d4/D2O at 298 K resulted in no additional1H NMR peaks over a period of 24 h(Fig.S1),indicating no reaction with 9-MeA or 9-EtG was observed for A1~B4(Table S3).

    2.4 Cleavage plasm id DNA

    The DNA binding ability of complexes A1~B4 was studied through agarose gel electrophoresis[42]of supercoiled pBR 322 plasmid DNA[43]in Tris buffer.It is known that the binding of unwinding agents to the closed circular DNA can reduce its super helical density and hence decrease its rate of migration in agarose gel.However,for complexes A1~B4,no DNA cleavage was observed even at concentration of 100 μmol·L-1(Fig.S2).Thus DNA is not likely to be a target for this type of complexes[31].

    2.5 Antiproliferative activity

    The activity of complexes A1~B4 toward Hela human cervical cancer cells was investigated(Table 1).All of the eight complexes A1~B4 were active, displaying IC50values of 1.7~32.9μmol·L-1.C5Me4Hcomplexes A1,B1 and Cp*complexes A2,B2 showed good activity,displaying IC50values of 13.0~32.9μmol ·L-1.Complex A3 containing Cpxphshowed similar activity compare tocisplatin(IC50=7.5μmol·L-1).Cpxbiphcomplexes A4,B4 and B3 exhibited potent anticancer activity with IC50values of 1.7~3.5μmol·L-1,respectively,ca.two to four timesmore active than cisplatin against the Hela cell line.For all complexes,the trend of increasing of activity with increasing phenyl substitution was the same:Cpxbiph>Cpxph>C5Me4H>Cp*. The introduction of phenyl or biphenyl substituents onto the tetramethylcyclopentadienyl ring results in a significant increase in cytotoxicity compared to the parent Cp*complex.This result is consistentwith our previously report[28,44].Interestingly,however,loss of one methyl group on the Cp*almost doubled the antiproliferative activity.To the bestof our knowledge, this appears to be the first report of C5Me4H iridium anticancer agents.

    Table 1 Inhibition of grow th of Hela human cervical cancer cells by complexes A1~B4 and cisplatin

    2.6 Reaction w ith NADH

    Coenzyme NADH and NAD+plays a key role in numerous biocatalyzed processes.Previously,we have shown that NADH can donate a hydride to aqua Ircyclopentadienyl complexes and can produce ROS H2O2thus provide a pathway to an oxidantmechanism of action[33].We have investigated whether complexes A1~B4 react with NADH and thus provide a redox pathway.When NADH(3.5 times the amount of complex)was added to a 0.25 mmol·L-1solution of complex A2,a sharp singlet atδ-16.67 was observed in the1H NMR spectrum within ten minutes;this resonance corresponds to the Irhydrido complex A2 (Fig.2a).Simultaneously,NADH was converted into its oxidized form NAD+.These data suggest that complexA2 can accept a hydride from NADH.Similar results were obtained for the reaction of NADH with other complexes(Fig.S2).Strikingly,data from UV-Vis spectroscopy suggested that all the complexes can act as catalysts for hydride transfer from NADH(Fig.2b and Fig.S3).The turnover numbers(TON)in thiswork is defined as the amounts of NADH that a mole of catalyst can convert within 8 h.TONs of different complexes can be calculated by measuring the absorption difference at 339 nm(Fig.2c,Table S4). Themaximum TON reached 31 mol·molcat-1after 8 h for complex A2.

    Fig.2 (a)1H NMR spectra for the reaction between complex A2(0.25mm)and NADH(3.5 times the amountof complex)in CD3OD/D2O(1∶1,V/V)at298 K;(b)UV-Vis spectra for the reaction of NADH(87μmol·L-1)with complex A2 (0.8μmol·L-1)in MeOH/H2O(1.6∶98.4,V/V)at298 K for 8 h;(c)TONs of complexes A1~B4

    Previously,we have shown that organometallic iridiumcomplexes are particularly effective oxidant catalysts which have anticancer activity,offering a new strategy for the design ofmetal-based anticancer drugs[33,45-46].Other metal based compounds have also been reported to be effective biological catalysis[47]. For example,manganesemacrocyclescan act as superoxide dismutase mimics and decompose superoxide into O2and H2O2in cells[48].Iron porphyrin complexes can catalyse the reduction of azides toimines[49],and copper peptide complexes can catalyse the degradation of RNA in hepatitismodels[50].Cobalt complexes,which cleave peptide bonds,can decompose amyloids present in diseases such as Alzheimer′s or Parkinson′s[51].In particular,organometallic ruthenium compounds have shown success in the last few years.For example, Noyori-type catalytic transfer hydrogenation can be achieved in living cells,using Ruarene complexes with a chelated sulfonylethylamine ligand and formate as the hydride donor to convert coenzyme NAD+into NADH,and thereby modulate the NAD+/NADH redox couple[52].

    2.7 Cell cycle study

    We performed cell cycle arrest analysis for complexes A4 and B4 toward Hela cells by flow cytometry to determine whether the induced cell growth inhibition was the result of cell cycle arrest.In comparison to the control population,the cell cycle progression was analyzed at concentrations of 0.25IC50, 0.5IC50and IC50of complexes A4 and B4 for 24 h. There was an increase in the G1proportion of Hela cell lines(from 55.0%to 68.0%and from 55.0%to 65.0%,respectively)(Fig.3,Table S5),indicating that the cells cycleswere blocked in the G1phase.

    2.8 Apoptosis assay

    Fig.3 Cell cycle analysis of Hela cells after 24 h of exposure to complexes A4 and B4 at310 K;(a)Cell populations in each cell cycle phase for control(cells untreated)and complexes A4 and B4;(b)FL2 histogram for control(cells untreated) and complexes A4 and B4

    In order to investigate whether the reduction in cell viability observed by the MTT assay is based on apoptosis,Hela cells were treated with complexes A4 and B4 at equipotent concentrations of IC50and 2IC50for 24 h,then stained with Annexin V/propidiumiodide and analyzed by flow cytometry[53].This allowed determination of cell populations as viable(unstained, only self-fluorescence),early apoptosis(stained by Annexin V only,green fluorescence),late apoptosis (stained by Annexin V and PI,green and red fluorescence),and nonviable(stained by PIonly,red fluorescence).Upon exposure of the cells to complex A4 at a concentration of IC50after 24 h,only around 0.77%of Hela cells remained in early apoptotic phase and 4.95%of cells were in the late apoptotic phase (Fig.4 and Table S6).However,at 2IC50,a total of 26.16%(early apoptotic+late apoptotic)cells were undergoing apoptosis,whereas untreated cells remained 93.90%viable,indicating obvious inductionof apoptosis at2IC50.Similarly,apoptosiswas observed when Hela cells were exposed to the complex B4 at 2IC50concentration,leading to a total of 27.51%(early apoptotic+late apoptotic)cells undergoing apoptosis. This suggested that cell death was induced by A4 and B4mainly through apoptosis

    Fig.4 Apoptosis analysis of Hela cells after 24 h of exposure to complexes A4 and B4 at310 K determined by flow cytometry using Annexin V-FITC vs PIstaining at IC50and 2IC50:(a)HeLa cellswere control and treated with different concentrations of Ircomplexes A4 and B4 for 24 h;(B)Populations for cells treated by A4 and B4

    2.9 Induction of ROS in Hela cancer cells

    Oxidative stress caused by the generation of reactive oxygen species(ROS)is an effectivemethod of killing cancer cells[33].We suggested previously that theantiproliferativemechanism for the iridium pyridine complex is related to ROS generation.Here we determined the level of reactive oxygen species(ROS) in Hela cells induced by complexes A4 and B4 at concentrationsof0.25IC50and 0.5IC50by flow cytometry fluorescence analysis(Fig.5,Table S7).

    After 24 h of drug exposure,dramatic increases in ROS levels in cells treated with complexes A4 and B4 was observed.The majority of Hela cancer cells, more than 94%,were in a high ROS levels after exposure to both Ir complexes A4 and B4 even at concentration of 0.25IC50.The concentration dependence of ROS induction was not obvious.These increases in ROS levels may provide a basis for killing cancer cells.

    Fig.5 ROS induction in Hela cells treated with complexes A4 and B4 atequipotent concentrations of 0.25IC50and 0.5IC50: (a)FL2 histogram for negative control(cells untreated),positive control and complexes A4 and B4;(b)Populations for cells treated by A4 and B4

    3 Conclusions

    In thiswork,we have prepared eight new organometallic Ircyclopentadienyl complexes[(η5-Cpx)Ir (C^N)Cl]to explore the effect of cyclopentadienyl ligand and C^N-chelating ligand on their chemical and anticancer activity.The X-ray crystal structures of dimer1,A3 and B3 were determined.This appears to be the first reportofC5Me4H iridium anticanceragents.

    All complexes A1~B4 studied here display high potency toward the human Hela cancer cell, comparable to,and for some complexes even higherthan the clinical anticancer drug cisplatin.The anticancer activity can be tuned by varying the cyclopentadienyl ligand,and increased in the order of Cpxbiph>Cpxph>C5Me4H>Cp*.The most active complexes A4 and B4 containing biphenyl substituenton cyclopentadienyl ring,is over 4 timesmore potent than cisplatin against Hela cells.

    No distinct nucleobase binding for this type of complexes to 9-MeA and 9-EtG,and no unwinding to the pBR 322 DNA,suggesting that DNA could not be the main target for these complexes.However,all complexes are effective catalysis in transfer hydrogenation converting coenzyme NADH into NAD+. Organometallic iridium complexes are unique in their ability to achieve such redox modulation in living cells[32].In contrast to the DNA-targeting platinum drugs,these organometallic iridium complexes seem to offer the possibility of alternative redoxmechanism of action.Complexes A4 and B4 induce a dramatic increase in the level of ROS in Hela cancer cells after 24 h.Additionally,cell cycle arrest at G1phase and distinct apoptosis were induced when Hela cancer cells were treated with different IC50concentrations of complexes A4 and B4.Our work suggests that this type of iridium complex could be a promising candidate for further evaluation as chemotherapeutic agents for human cancers.

    Supporting information isavailable athttp://www.wjhxxb.cn

    [1]Jakupec M A,Galanski M,Arion V B,et al.Dalton Trans., 2008:183-194

    [2]Dyson P Jand Sava G.Dalton Trans.,2006:1929-1933

    [3]Wang X,Wang X,Guo Z.Acc.Chem.Res.,2015,48:2622-2631

    [4]Gasser G,Ott I,Metzler-Nolte N.J.Med.Chem.,2011,54(1): 3-25

    [5]Wilbuer A,Vlecken D H,Schmitz D J,et al.Angew.Chem. Int.Ed.,2010,49(22):3839-3842

    [6]Top S,Vessières A,Leclercq G,et al.Chem.Eur.J.,2003,9 (21):5223-5236

    [7]Hamels D,Dansette PM,Hillard E A,et al.Angew.Chem. Int.Ed.,2009,121(48):9124-9126

    [8]Tan Y L K,Pigeon P,Hillard E A,et al.Dalton Trans., 2009:10871-10881

    [9]Hartinger C G,Zorbas-Seifried S,Jakupec M A,et al.J. Inorg.Biochem.,2006,100(5/6):891-904

    [10]Pierroz V,Joshi T,Leonidova A,et al.J.Am.Chem.Soc., 2012,134(50):20376-20387

    [11]CHEN Xiang(陳相),CHAO Hui(巢暉),JI Ling-Nian(計(jì)亮年).Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31(9): 1667-1677

    [12]LIHong(李紅),CHAO Hui(巢暉),JING Xiong(蔣雄),et al. Acta Phys.-Chim.Sin.(物理化學(xué)學(xué)報(bào)),2001,17(8):728-732

    [13]Dorcier A,Ang W H,Bolao S,et al.Organometallics,2006, 25(17):4090-4096

    [14]Markham J,Liang J,Levina A,et al.Eur.J.Inorg.Chem., 2017:1812-1823

    [15]Zhou W,Wang X,Hu M,et al.Chem.Sci.,2014,5(7):2761-2770

    [16]Davies D L,Al-Duaij O,Fawcett J,et al.Organometallics, 2010,29(6):1413-1420

    [17]Schwab P,Grubbs RH,Ziller JW.J.Am.Chem.Soc.,1996, 118(1):100-110

    [18]CHEN Yu(陳禹),DU Ke-Jie(杜可杰),CHAO Hui(巢暉), et al.Prog.Chem.(化學(xué)進(jìn)展),2009,21(5):836-844

    [19]GUO Li-Hua(郭麗華),CHEN Chang-Le(陳昶樂).Sci. China:Chem.(中國科學(xué):化學(xué)),2015,58(11):1663-1673

    [20]Guo L,Dai S,Chen C.Polymers,2016,8(2):37(10 pages)

    [21]Xiong S Y,Guo L H,Zhang S M,et al.Chin.J.Chem., 2017,DOI:10.1002/cjoc.201600898

    [22]Liu Z,Lebrun V,Kitanosono T,et al.Angew.Chem.Int. Ed.,2016:11587-11590

    [23]Guo L,Jing X,Xiong S,et al.Polymers,2016,8(11):389(12 pages)

    [24]Li SP-Y,Yip A M-H,Liu H-W,et al.Biomaterials,2016, 103:305-313

    [25]Lo K K-W.Acc.Chem.Res.,2015,48(12):2985-2995

    [26]Zhao Q,Zhang C,Liu S,et al.Sci.Rep.,2015,5:16420(11 pages)

    [27]D?rr M,Meggers E.Curr.Opin.Chem.Biol.,2014,19:76-81

    [28]Liu Z,Habtemariam A,Pizarro A M,et al.J.Med.Chem., 2011,54(8):3011-3026

    [29]Liu Z,Habtemariam A,Pizarro A M,et al.Organometallics, 2011,30(17):4702-4710

    [30]Liu Z,Romero-Canelón I,Habtemariam A,et al.Organometallics,2014,33(19):5324-5333

    [31]Wang C,Liu J,Tian Z,et al.Dalton Trans.,2017,46:6870-6883

    [32]Galluzzi L,Maiuri M C,Vitale I,et al.Cell Death Differ.,2007,14(7):1237-1243

    [33]Liu Z,Romero-Canelón I,Qamar B,etal.Angew.Chem.Int. Ed.,2014,53(15):3941-3946

    [34]Bjrgvinsson M,Halldorsson S,Arnason I,et al.J.Org. Chem.,1997,544(2):207-215

    [35]Tnnemann J,Risse J,Grote Z,et al.Eur.J.Inorg.Chem., 2013:4558-4562

    [36]Davies D L,Al-Duaij O,Fawcett J,et al.Dalton Trans., 2003:4132-4138

    [37]Li L,Brennessel W W,Jones W D.Organometallics,2009, 28(12):3492-3500

    [38]Sheldrick G M.SADABS,University of G?ttingen,Germany, 1994.

    [39]Sheldrick G M.Acta Crystallogr.Sect.A,1990,A46:467-473

    [40]Churchill M R,Julis S A.Inorg.Chem.,1977,16(6):1488-1494

    [41]Li L,Brennessel W W,Jones W D.J.Am.Chem.Soc., 2008,130(37):12414-12419

    [42]Wang J,Wang X,Song Y,et al.Chem.Sci.,2013,4(6):2605 -2612

    [43]Xi P X,Xu Z H,Chen F J,et al.J.Inorg.Biochem.,2009, 103(2):210-218

    [44]Liu Z,Sadler P J.Acc.Chem.Res.,2014,47:1174-1185

    [45]Liu Z,Deeth R J,Butler JS,et al.Angew.Chem.Int.Ed., 2013,52:4194-4197

    [46]Betanzos-Lara S,Liu Z,Habtemariam A,etal.Angew.Chem. Int.Ed.,2012,51:3897-3900

    [47]Sasmal P K,Streu CN,Meggers E.Chem.Commun.,2013, 49(16):1581-1587

    [48]Filipovi M R,Koh A CW,Arbault S,et al.Angew.Chem. Int.Ed.,2010,49(25):4228-4232

    [49]Sasmal P K,Carregal-Romero S,Han A A,et al. ChemBioChem,2012,13(8):1116-1120

    [50]Bradford S,Cowan JA.Chem.Commun.,2012,48(25):3118-3120

    [51]Lee TY,Suh J.Chem.Soc.Rev.,2009,38(7):1949-1957

    [52]Soldevila-Barreda J J,Romero-Canelón I,Habtemariam A, et al.Nat.Commun.,2015,6:6582

    [53]WANG Jie(王潔),WANG Zeng-Li(王曾禮),ZHU Yuan-Jue (朱元玨),et al.Chin.J.Intern.Med.(中華內(nèi)科雜志),1998 (8):28-31

    Potent Cyclopentadienyl Iridium Anticancer Comp lexes Containing C^N-chelating Ligands

    LU Xiao-Min TIAN Meng TIAN Zhen-Zhen TIAN Lai-Jin LIMeng-Qi HUANG Jing LIU Zhe*
    (Institute of Anticancer Agents Development and Theranostic Application,Shandong Provincial Key Laboratory of Life-Organic Analysis,Shandong Provincial Key Laboratory of Pharmaceutical Intermediates and Analysis of NaturalMedicine,Department of Chemistry and Chemical Engineering,Qufu Normal University,Qufu,Shandong 273165,China)

    Half-sandwich cyclopentadienyl Ircomplexes of the type[(η5-Cpx)Ir(C^N)Cl],(Cpx=C5Me4H,Cp*, tetramethyl(phenyl)cyclopentadienyl(Cpxph),tetramethyl(biphenyl)cyclopentadienyl(Cpxbiph),C^N=N-benzylidenemethylamine(BIMA),N-(4-methoxybenzylidene)aniline(MBIA)),have been synthesized and characterized.X-ray crystal structures of three complexes have been determined.All complexes showed potent cytotoxicity,with IC50values ranging from 32.9 to 1.7μmol·L-1toward Hela human cervical cancer cells.Their potency is in the trend: Cpxbiph>Cpxph>C5Me4H>Cp*.Complexes[(η5-Cpxbiph)Ir(BIMA)Cl](A4)and[(η5-Cpxbiph)Ir(MBIA)Cl](B4)displayed the highest potency,more than 4 times more active than the clinical platinum drug cisplatin.No binding to nucleobases 9-ethylguanine(9-EtG),9-methyladenine(9-MeA)and pBR 322 DNA were detected.The ability of these iridium complexes to catalytic hydride transfer from the coenzyme NADH to NAD+is studied.Complexes A4 and B4 cause cell apoptosis and arrest cell cycles at G1phase when Hela cancer cells were treated with different IC50concentrations of complexes,and increase the reactive oxygen species(ROS)dramatically,which appears to contribute to the anticancer activity.CCDC:1528262,A3;1528263,B3;1538264,dimer1.

    half-sandwich complexes;cyclopentadienyl ligand;iridium;anticancer drug;ROS level;apoptosis;cellcyclearrest;NADH

    O614.82+5

    A

    1001-4861(2017)07-1119-13

    10.11862/CJIC.2017.155

    2017-04-29。收修改稿日期:2017-05-19。

    國家自然科學(xué)基金(No.21671118)和泰山學(xué)者工程資助項(xiàng)目。*

    。E-mail:liuzheqd@163.com

    猜你喜歡
    環(huán)戊二烯黃靜抗癌
    Fuzheng Kang' ai decoction (扶正抗癌方) inhibits cell proliferation,migration and invasion by modulating mir-21-5p/human phosphatase and tensin homology deleted on chromosome ten in lung cancer cells
    抗癌之窗快樂攝影
    抗癌之窗(2020年1期)2020-05-21 10:18:10
    家庭消毒, 你真的做對(duì)了嗎
    祝您健康(2020年5期)2020-05-14 13:27:48
    Recent advances in Ga-based solar-blind photodetectors?
    三十年跑成抗癌明星
    特別健康(2018年9期)2018-09-26 05:45:26
    黃靜作品
    抗癌新聞
    聚砜包覆雙環(huán)戊二烯微膠囊的制備
    中國塑料(2015年9期)2015-10-14 01:12:21
    甲基環(huán)戊二烯的合成研究
    基于2-苯基-1H-1,3,7,8-四-氮雜環(huán)戊二烯并[l]菲的Pb(Ⅱ)、Co(Ⅱ)配合物的晶體結(jié)構(gòu)與發(fā)光
    亚洲一区二区三区不卡视频| 中文字幕人妻丝袜一区二区| 免费搜索国产男女视频| 亚洲成国产人片在线观看| 免费在线观看日本一区| 亚洲国产欧美日韩在线播放| www.999成人在线观看| 电影成人av| 亚洲人成伊人成综合网2020| 国产亚洲精品综合一区在线观看 | 亚洲男人的天堂狠狠| 99国产精品99久久久久| 久久欧美精品欧美久久欧美| 久久香蕉国产精品| 三级毛片av免费| 久久青草综合色| 午夜两性在线视频| 一区二区日韩欧美中文字幕| 中国美女看黄片| 亚洲欧美精品综合久久99| 在线观看舔阴道视频| 日韩免费av在线播放| 日本精品一区二区三区蜜桃| 午夜福利在线观看吧| 人妻久久中文字幕网| 香蕉久久夜色| av中文乱码字幕在线| 欧美激情极品国产一区二区三区| 无人区码免费观看不卡| 最新在线观看一区二区三区| 国产成人精品久久二区二区免费| 国产精品综合久久久久久久免费 | svipshipincom国产片| 热re99久久国产66热| 12—13女人毛片做爰片一| 国产成年人精品一区二区| 免费看十八禁软件| 黄片播放在线免费| 成人av一区二区三区在线看| 99在线人妻在线中文字幕| 禁无遮挡网站| 精品一区二区三区av网在线观看| 国产视频一区二区在线看| 久久亚洲精品不卡| a在线观看视频网站| 亚洲精品国产一区二区精华液| 欧美绝顶高潮抽搐喷水| 在线观看一区二区三区| 1024视频免费在线观看| 在线播放国产精品三级| 精品一区二区三区视频在线观看免费| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区精品| 成人欧美大片| 午夜精品国产一区二区电影| 日韩视频一区二区在线观看| 三级毛片av免费| 丝袜美足系列| 亚洲专区中文字幕在线| av在线天堂中文字幕| 精品无人区乱码1区二区| 久久国产亚洲av麻豆专区| 老司机靠b影院| 99国产精品免费福利视频| 好男人在线观看高清免费视频 | 亚洲精品国产区一区二| 亚洲精品国产精品久久久不卡| 精品欧美国产一区二区三| 黑人欧美特级aaaaaa片| 精品国产亚洲在线| av有码第一页| 最新在线观看一区二区三区| 又黄又粗又硬又大视频| 一区二区日韩欧美中文字幕| 一区在线观看完整版| 中文字幕久久专区| 亚洲精品在线观看二区| 一夜夜www| www国产在线视频色| 国产免费男女视频| 丰满的人妻完整版| 国产亚洲av嫩草精品影院| 午夜免费鲁丝| 黄色 视频免费看| АⅤ资源中文在线天堂| 精品熟女少妇八av免费久了| 搡老熟女国产l中国老女人| av中文乱码字幕在线| 免费观看人在逋| 久久久国产成人精品二区| 搞女人的毛片| 亚洲,欧美精品.| 久久性视频一级片| 精品国产国语对白av| 亚洲美女黄片视频| 久久亚洲真实| 日韩大尺度精品在线看网址 | 国产单亲对白刺激| 亚洲成人免费电影在线观看| 国产亚洲欧美在线一区二区| 极品人妻少妇av视频| 美国免费a级毛片| 搡老岳熟女国产| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 又紧又爽又黄一区二区| 亚洲精品国产精品久久久不卡| 性少妇av在线| 亚洲五月色婷婷综合| 在线免费观看的www视频| 18禁裸乳无遮挡免费网站照片 | av电影中文网址| 97人妻精品一区二区三区麻豆 | 一区在线观看完整版| 波多野结衣巨乳人妻| 国产精品影院久久| 母亲3免费完整高清在线观看| svipshipincom国产片| 精品国产亚洲在线| 久久久久久久午夜电影| 老司机福利观看| 亚洲色图av天堂| 欧美激情 高清一区二区三区| 给我免费播放毛片高清在线观看| 窝窝影院91人妻| 欧美+亚洲+日韩+国产| 日本免费a在线| 亚洲一区高清亚洲精品| 精品国产亚洲在线| 欧美日韩乱码在线| www.精华液| 在线观看66精品国产| 亚洲,欧美精品.| 日本一区二区免费在线视频| 757午夜福利合集在线观看| 日本 av在线| 国产成人影院久久av| 夜夜躁狠狠躁天天躁| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯| 国产片内射在线| 精品一区二区三区视频在线观看免费| av有码第一页| 日本在线视频免费播放| 久久久久亚洲av毛片大全| 亚洲av熟女| 黄色丝袜av网址大全| 国产99白浆流出| 精品久久久久久久毛片微露脸| 精品无人区乱码1区二区| 国产精品永久免费网站| 一区二区三区高清视频在线| 免费高清视频大片| 欧美色视频一区免费| 久久久久久久久中文| 天天躁狠狠躁夜夜躁狠狠躁| 久久九九热精品免费| 国产成人免费无遮挡视频| 欧美日本亚洲视频在线播放| 麻豆av在线久日| 日日爽夜夜爽网站| 97人妻精品一区二区三区麻豆 | 97超级碰碰碰精品色视频在线观看| 一本综合久久免费| 亚洲av美国av| 成年女人毛片免费观看观看9| 国产精品一区二区精品视频观看| 色综合站精品国产| 久久影院123| 国产欧美日韩一区二区三区在线| 久久精品91无色码中文字幕| 国产成人免费无遮挡视频| 美女大奶头视频| 日本 欧美在线| 日日夜夜操网爽| 午夜免费成人在线视频| 国产成人精品无人区| 黄片播放在线免费| 一级a爱片免费观看的视频| av超薄肉色丝袜交足视频| 欧美最黄视频在线播放免费| 黄色女人牲交| 国产精品亚洲av一区麻豆| 亚洲欧美精品综合一区二区三区| or卡值多少钱| 久久伊人香网站| 老司机靠b影院| 美女高潮到喷水免费观看| 老司机午夜福利在线观看视频| 曰老女人黄片| 一个人免费在线观看的高清视频| 久久人妻av系列| 韩国精品一区二区三区| 国产色视频综合| 亚洲国产日韩欧美精品在线观看 | 亚洲人成电影观看| 亚洲午夜理论影院| 午夜福利,免费看| 亚洲人成伊人成综合网2020| 久热爱精品视频在线9| 国产一区二区在线av高清观看| 欧美成人免费av一区二区三区| 国产一级毛片七仙女欲春2 | www.熟女人妻精品国产| 最好的美女福利视频网| 青草久久国产| 欧美国产精品va在线观看不卡| 欧美老熟妇乱子伦牲交| 欧美中文日本在线观看视频| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o| 可以在线观看毛片的网站| 亚洲国产毛片av蜜桃av| 久9热在线精品视频| 欧美精品啪啪一区二区三区| 亚洲精品国产精品久久久不卡| 校园春色视频在线观看| 女人高潮潮喷娇喘18禁视频| 国产色视频综合| 日韩国内少妇激情av| 91精品三级在线观看| 成人国语在线视频| 亚洲专区中文字幕在线| 日韩大码丰满熟妇| 亚洲最大成人中文| 亚洲无线在线观看| 免费在线观看日本一区| 欧美老熟妇乱子伦牲交| 国产精品久久电影中文字幕| 日韩成人在线观看一区二区三区| 99香蕉大伊视频| 在线十欧美十亚洲十日本专区| 日本精品一区二区三区蜜桃| 午夜成年电影在线免费观看| 欧美+亚洲+日韩+国产| 一边摸一边抽搐一进一小说| 一边摸一边抽搐一进一出视频| 日韩欧美免费精品| 中文字幕久久专区| 亚洲,欧美精品.| www国产在线视频色| 欧美亚洲日本最大视频资源| 电影成人av| 麻豆一二三区av精品| 久久狼人影院| 桃色一区二区三区在线观看| 午夜视频精品福利| 亚洲人成电影观看| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉国产精品| 欧美大码av| 亚洲国产毛片av蜜桃av| 性少妇av在线| 老熟妇仑乱视频hdxx| 国产精品av久久久久免费| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 日韩有码中文字幕| 国产午夜福利久久久久久| 男女下面插进去视频免费观看| 99国产精品99久久久久| 国产一区二区三区综合在线观看| 欧美中文综合在线视频| 美女大奶头视频| 免费在线观看黄色视频的| 女同久久另类99精品国产91| 一夜夜www| 久久国产亚洲av麻豆专区| av视频免费观看在线观看| 国产麻豆69| 黄网站色视频无遮挡免费观看| 日本免费a在线| 一级毛片精品| 亚洲成av片中文字幕在线观看| 精品久久久久久成人av| 97碰自拍视频| 99精品久久久久人妻精品| 777久久人妻少妇嫩草av网站| 亚洲九九香蕉| 看黄色毛片网站| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| 91成人精品电影| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 色播亚洲综合网| 在线观看舔阴道视频| 99在线人妻在线中文字幕| 黄色丝袜av网址大全| 国产成人系列免费观看| av片东京热男人的天堂| 精品一区二区三区av网在线观看| 99re在线观看精品视频| 成人国语在线视频| 亚洲精品在线观看二区| 亚洲av成人一区二区三| 亚洲av第一区精品v没综合| 国产成人av激情在线播放| 欧美黑人精品巨大| 欧美日韩亚洲国产一区二区在线观看| 日本欧美视频一区| 女人精品久久久久毛片| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片| 午夜两性在线视频| 麻豆av在线久日| 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 窝窝影院91人妻| 美女高潮喷水抽搐中文字幕| 国产aⅴ精品一区二区三区波| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| av欧美777| 亚洲免费av在线视频| 久久久久久人人人人人| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久人妻精品电影| 国产伦一二天堂av在线观看| 成在线人永久免费视频| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 国内精品久久久久精免费| av视频免费观看在线观看| 精品久久蜜臀av无| 亚洲国产精品999在线| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区视频了| 十八禁人妻一区二区| 一二三四在线观看免费中文在| 国产成人精品久久二区二区91| 精品久久久精品久久久| 日韩视频一区二区在线观看| 咕卡用的链子| 制服丝袜大香蕉在线| 精品高清国产在线一区| 女性生殖器流出的白浆| 亚洲av片天天在线观看| 俄罗斯特黄特色一大片| 国产熟女xx| 色综合站精品国产| 9191精品国产免费久久| 久久中文字幕一级| 亚洲一区二区三区不卡视频| 久久人妻福利社区极品人妻图片| 亚洲一区二区三区不卡视频| 日本免费a在线| 好看av亚洲va欧美ⅴa在| 国产精品日韩av在线免费观看 | 19禁男女啪啪无遮挡网站| 9色porny在线观看| 一二三四社区在线视频社区8| 91老司机精品| 91精品三级在线观看| 国产成人av激情在线播放| 亚洲男人天堂网一区| 国产日韩一区二区三区精品不卡| 18禁国产床啪视频网站| 精品久久久久久久久久免费视频| 亚洲久久久国产精品| 级片在线观看| 精品国产美女av久久久久小说| 熟女少妇亚洲综合色aaa.| 亚洲伊人色综图| 国产成人av教育| 亚洲全国av大片| 麻豆国产av国片精品| 亚洲成人久久性| 成人手机av| 妹子高潮喷水视频| 在线观看日韩欧美| 久久久久亚洲av毛片大全| bbb黄色大片| 久久久久久人人人人人| 很黄的视频免费| 好男人电影高清在线观看| 男人操女人黄网站| 一区二区三区高清视频在线| 精品国产一区二区久久| av中文乱码字幕在线| 精品无人区乱码1区二区| 亚洲精品在线观看二区| 国产单亲对白刺激| 美女免费视频网站| 午夜久久久在线观看| 久久狼人影院| 中文字幕最新亚洲高清| 亚洲成av片中文字幕在线观看| 两个人看的免费小视频| 91精品三级在线观看| 啦啦啦韩国在线观看视频| 人人妻人人爽人人添夜夜欢视频| 欧美一级a爱片免费观看看 | 99热只有精品国产| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久久免费视频了| 天堂√8在线中文| 久久青草综合色| 久久久久久国产a免费观看| 成人欧美大片| 叶爱在线成人免费视频播放| 日韩国内少妇激情av| 亚洲一码二码三码区别大吗| 麻豆成人av在线观看| 在线观看午夜福利视频| 欧美日韩黄片免| 中文字幕人妻熟女乱码| 日韩欧美国产一区二区入口| 大码成人一级视频| 欧美午夜高清在线| 精品第一国产精品| 老汉色av国产亚洲站长工具| 一区二区三区国产精品乱码| 国产伦人伦偷精品视频| 国产精品免费视频内射| 好男人在线观看高清免费视频 | 国产一区二区在线av高清观看| 成人精品一区二区免费| 亚洲性夜色夜夜综合| 亚洲一区二区三区不卡视频| 男女下面插进去视频免费观看| 国产精品免费视频内射| 国产成人影院久久av| 久久婷婷成人综合色麻豆| 日韩有码中文字幕| 国产三级在线视频| 亚洲欧美精品综合久久99| 一区二区日韩欧美中文字幕| 丝袜美足系列| 免费女性裸体啪啪无遮挡网站| 成人永久免费在线观看视频| av超薄肉色丝袜交足视频| 亚洲成人免费电影在线观看| 国产欧美日韩综合在线一区二区| 欧美av亚洲av综合av国产av| 老司机午夜福利在线观看视频| 国产高清激情床上av| 最新美女视频免费是黄的| 亚洲熟妇熟女久久| 精品卡一卡二卡四卡免费| 亚洲精品国产精品久久久不卡| 国产成人免费无遮挡视频| 久久久水蜜桃国产精品网| 一级毛片高清免费大全| 日本免费a在线| 亚洲一区中文字幕在线| 两性夫妻黄色片| 欧美+亚洲+日韩+国产| 狂野欧美激情性xxxx| 日韩精品免费视频一区二区三区| 人人澡人人妻人| 国产精品九九99| 9191精品国产免费久久| 免费搜索国产男女视频| 精品一区二区三区视频在线观看免费| 黄色片一级片一级黄色片| 亚洲av片天天在线观看| 亚洲av电影在线进入| 搡老熟女国产l中国老女人| 亚洲七黄色美女视频| 亚洲色图av天堂| 男人的好看免费观看在线视频 | 咕卡用的链子| 中亚洲国语对白在线视频| 老汉色∧v一级毛片| 日本vs欧美在线观看视频| 男人舔女人下体高潮全视频| 精品一区二区三区av网在线观看| 黄色视频,在线免费观看| 欧美 亚洲 国产 日韩一| 久久久久久久久久久久大奶| 悠悠久久av| 精品无人区乱码1区二区| 欧美在线黄色| 久久人妻av系列| 成人亚洲精品一区在线观看| 老熟妇乱子伦视频在线观看| 99在线视频只有这里精品首页| 人人妻人人澡欧美一区二区 | 国产欧美日韩精品亚洲av| 韩国av一区二区三区四区| 免费搜索国产男女视频| 亚洲成人久久性| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三| 日日夜夜操网爽| 久久人妻熟女aⅴ| 亚洲专区国产一区二区| bbb黄色大片| 亚洲国产看品久久| 人人澡人人妻人| 久久中文字幕人妻熟女| 一边摸一边做爽爽视频免费| 国内精品久久久久久久电影| 一区福利在线观看| 中文字幕av电影在线播放| 亚洲精品中文字幕一二三四区| 亚洲中文字幕日韩| 久久这里只有精品19| 久久亚洲精品不卡| 黄色毛片三级朝国网站| 精品免费久久久久久久清纯| 妹子高潮喷水视频| 久久精品国产99精品国产亚洲性色 | 免费人成视频x8x8入口观看| 国产99白浆流出| 久久久久久亚洲精品国产蜜桃av| 日韩欧美一区二区三区在线观看| 一级毛片精品| 两个人视频免费观看高清| 亚洲三区欧美一区| 久久久久久亚洲精品国产蜜桃av| 黄片小视频在线播放| 韩国av一区二区三区四区| 1024视频免费在线观看| 日韩欧美国产一区二区入口| 国产av一区在线观看免费| 视频区欧美日本亚洲| 久久久久国产精品人妻aⅴ院| 91国产中文字幕| 午夜福利18| xxx96com| 免费女性裸体啪啪无遮挡网站| 亚洲国产高清在线一区二区三 | 级片在线观看| 成在线人永久免费视频| 国产亚洲精品久久久久久毛片| 国产成人av教育| 国产av一区二区精品久久| 日日夜夜操网爽| 欧美在线一区亚洲| 少妇粗大呻吟视频| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区综合在线观看| 成人国产综合亚洲| 国产精品美女特级片免费视频播放器 | 在线观看日韩欧美| 亚洲片人在线观看| 看黄色毛片网站| 免费看十八禁软件| 人人妻人人澡欧美一区二区 | 嫩草影院精品99| 777久久人妻少妇嫩草av网站| 18禁黄网站禁片午夜丰满| 精品人妻在线不人妻| 色综合婷婷激情| 又大又爽又粗| 色在线成人网| 高潮久久久久久久久久久不卡| 免费女性裸体啪啪无遮挡网站| 色哟哟哟哟哟哟| 精品久久蜜臀av无| 19禁男女啪啪无遮挡网站| 精品福利观看| 日韩一卡2卡3卡4卡2021年| 在线永久观看黄色视频| 国产亚洲精品一区二区www| 久久性视频一级片| 巨乳人妻的诱惑在线观看| 精品国内亚洲2022精品成人| 最近最新中文字幕大全免费视频| 日本免费一区二区三区高清不卡 | av有码第一页| 侵犯人妻中文字幕一二三四区| 精品一区二区三区四区五区乱码| 欧美老熟妇乱子伦牲交| 不卡av一区二区三区| 在线观看日韩欧美| 国产蜜桃级精品一区二区三区| 亚洲国产日韩欧美精品在线观看 | 啦啦啦韩国在线观看视频| 亚洲黑人精品在线| 18禁观看日本| 国产精品一区二区在线不卡| 久久中文字幕人妻熟女| 999精品在线视频| www.精华液| 黄色视频,在线免费观看| 亚洲中文字幕一区二区三区有码在线看 | 一区二区三区激情视频| 夜夜夜夜夜久久久久| www.999成人在线观看| 熟妇人妻久久中文字幕3abv| 久久精品成人免费网站| 乱人伦中国视频| 久久久久久久久免费视频了| 国产成人精品久久二区二区91| www.自偷自拍.com| xxx96com| 国产成人精品无人区| 国产精品久久久久久亚洲av鲁大| 日韩欧美国产在线观看| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 性欧美人与动物交配| 国产午夜精品久久久久久| 亚洲五月色婷婷综合| 精品久久蜜臀av无| 视频区欧美日本亚洲| 激情视频va一区二区三区| 欧美另类亚洲清纯唯美| 黄色视频,在线免费观看| 黄色 视频免费看| 亚洲第一电影网av| 久久人妻熟女aⅴ| 天天躁夜夜躁狠狠躁躁| 久久人妻av系列| 男女下面插进去视频免费观看| 午夜免费成人在线视频| 中文字幕久久专区| 视频在线观看一区二区三区| 无遮挡黄片免费观看| 亚洲 欧美一区二区三区|