• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytic Hydrogen Production Based on Cobalt-Thiosemicarbazone Complex with the Xanthene Dye Moiety

    2017-07-05 14:55:49YANGLinLinJINGXuHEChengDUANChunYing
    無機化學學報 2017年6期
    關鍵詞:二苯基產(chǎn)氫光敏劑

    YANG Lin-LinJING XuHE ChengDUAN Chun-Ying

    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)

    Photocatalytic Hydrogen Production Based on Cobalt-Thiosemicarbazone Complex with the Xanthene Dye Moiety

    YANG Lin-LinJING XuHE Cheng*DUAN Chun-Ying

    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)

    Two cobalt complexes containing NSP(nitrogen-sulphur-phosphor)chelator prepared from thiosemicarbazone ligands with different terminal functional groups and triphenylphosphine moiety have been synthesized in high yield and characterized.Their photocatalytic activity for hydrogen evolution under visible light irradiation was investigated.The photocatalyst[Co(L2)(L2′)](BF4)2.5·H2O·0.5C2H5OH(2)(L2=2-(diphenylphosphino)benzylidene-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)benzothiohydrazide,L2′=2-(diphenylphosphinooxide)benzylidene-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)benzothiohydrazide) containing rhodamine groups exhibited activity in light driven hydrogen evolution with the TON and initial TOF reaching to 2 800 molH2·and 930 molH2··h-1,respectively,which is much higher than that of complex [Co(L1)(L1′)](BF4)·0.5H2O(1)(L1=2-(diphenylphosphino)benzylidene hydrazinecarbodithionate,L1′=2-(diphenylphosphinooxide)benzylidene hydrazinecarbodithionate)under similar conditions.The higher catalytic activity was attributed to the potential intermolecular π-π stack interactions between the catalyst 2 and photosensitizer fluorescein(Fl)benefiting the photoinduced electron transfer between the photosensitizer and the photocatalyst. CCDC:1523357;1,1523358,2.

    photoinduced electron transfer;cobalt;thiosemicarbazone;light driven H2production

    0 Introduction

    The global increase in CO2emissions due to uninhibited fossil fuel use has led to explore new renewable and clean energy resources.Photo-induced catalytic splitting of water to non-carbon-contain fuels, i.e.hydrogen,is a promising approach in converting solar energy into storable chemical energy[1-5].As a redox reaction,water splitting can be divided into two reactions:(i)water oxidation,to yield O2and(ii)water reduction,producing H2.In an artificial photosynthetic (AP)system,the reductive side of water splitting is the light-driven generation of hydrogen from aqueous protons.A variety of photocatalytic systems have been broadly investigated for solar hydrogen production[6-13]. MostofthephotocatalyticH2-productionsystems involve three important components:a light-absorbing photosensitizer(PS),a water-reducing catalyst(WRC), and a sacrificial reductant.While noble metal cocatalysts such as Pt and Pd were widely used for photocatalytic H2evolution,but the scarcity and high cost of precious metals pose serious limitations to wide use.Hence,the development of efficient catalysts for water reduction to H2made of inexpensive,earthabundant elements such as Fe,Co,Ni,and Cu has become a prime focus of research on light-driven hydrogen generation.

    In an effort to find stable earth-abundant WRCs, a few recent reviews on catalysts made of earthabundant elements for water splitting have been published[14-16].In particular,thiosemicarbazone ligands have been used as versatile molecules,arising from the possibility to act as N,S-donor systems[17-18].And the number of potential donor atoms can be increased by using carbonylic compounds that contain additional donorgroupsinsuitablepositionsforchelation. Moreover,they provide a conventional proton immigration path through the thiolate/thioamide resonance tautomer equilibrium[19-20],which have potential future for multi-electron transfer chemistry in H2reduction. And these cobalt thiosemicarbazone complexes have gainedmuchinterestandmightbepromising candidates for proton reduction,in the case that the redox potential of the complex was well modified[21-22]. In this article,we introduced a triphenylphosphine moietyastheadditionaldonortoenhancethe coordination ability and modify the redox potential of the metal centres(Scheme 1)[23-24].Recent advances have reported Ni-bis(diphosphine)complexes act as effectivereductioncatalystsforelectrochemical photocatalytical hydrogen production in homogeneous system[25-26].We expected that the presence of S and P donors would possibly facilitate the formation of reducing species and increase the catalytic efficiency for the H2evolution[27].Herein,we introduced the rhodamine-modifiedligandstoimprovethelight absorption efficiency and electron transfer ability between the catalyst 2 and photosensitizer Fl.The photocatalytic activity of catalyst 2 was higher than that of 1 under low catalyst concentration.The photoinduced electron transfer pathway mechanisms for the hydrogen evolution in these cobalt-thiosemicarbazone complexes were also proposed.

    Scheme 1Structures of thiosemicarbazone ligands L1 and L2

    1 Experimental

    1.1 Materials and physical measurements

    All chemicals were of reagent grade quality obtained from commercial sources and used without further purification.The elemental analyses of C,H and N were performed on a Vario ELⅢelemental analyzer.1H NMR spectra were measured on a Varian INOVA 400M spectrometer.ESI mass spectra were carried out on a HPLC-Q-Tof MS spectrometer.The fluorescent spectra were measured on a JASCO FP-6500.

    CyclicVoltammogrammeasurements:Electrochemical measurements of catalysts 1 and 2 were performed in CH3CN solutions with 0.1 mol·L-1TBAPF6workingonZAHNERENNIUMElectrochemical Workstation with ahomemadeAg/AgCl electrode as a reference electrode,a platinum silk with 0.5 mm diameter as a counter electrode,and glassy carbon electrode as a working electrode.The addition of NEt3HCl(0.1 mol·L-1in CH3CN)was carried out with syringe.

    Fluorescence quenching experiments:A solution (2.0 mL)of Fl at 10 μmol·L-1concentration in a EtOH/H2O solution(1∶1,V/V,pH=11.6)was prepared in a quartz cuvette fitted with a septum cap,and the solution was degassed under N2for 5 min.Aliquots of 20 μL of NEt3and the catalysts(2.5 μmol·L-1)were added,and the intensity of the fluorescence was monitored by steady state fluorescence exciting at 460 nmonaSpexFluoromax-Pfluorimeterwitha photomultiplier tube detector.

    Photocatalytic water splitting experiments:Varying amounts of the catalysts 1 and 2,Fl and NEt3in EtOH/H2O solution(1∶1,V/V)were added to obtain a total volume of 5.0 mL in a 20 mL flask.The flask was sealed with a septum and degassed by bubbling argon for 15 min.The pH value of this solution was adjusted to a specific pH value by adding HCl or NaOH and measured with a pH meter.After that,the samples were irradiated by a 500 W Xenon lamp with the 400 nm light filter,and the reaction temperature was maintained at 293 K by using a thermostat water bath.The generated photoproduct of H2was characterized by GC 7890T instrument analysis using a 5A molecular sieve column(0.6 m×3 mm),thermal conductivity detector,and argon used as carrier gas. The amount of hydrogen generated was determined by the external standard method.

    1.2 Synthesis of L1 and L2

    The ligand L1 was synthesized by using the reported methods[28].Anal.Calcd.for C21H19N2PS2(%): H,4.85;C,63.9;N,7.1;Found(%):H,5.10;C,63.3; N,7.2.1H NMR(CDCl3,400 MHz):10.2(s,1H),8.6 (d,1H),8.2(m,1H),7.1~7.5(m,13H),2.6(s,3H). API-MS m/z:393.07([M-H]+).

    The ligand L2 was synthesized according to procedures reported previously[29].Anal.Calcd.for C45H43N4SOP(%):H,6.03;C,75.2;N,7.8;Found(%): H,6.11;C,74.9;N,8.0.1H NMR(CDCl3,400 MHz): 9.37(s,1H),8.4(t,1H),8.11(d,1H),8.08(m,1H), 7.6~7.7(m,4H),7.4~7.6(m,10H),7.38(m,3H),7.3 (m,2H),6.5(s,2H),6.2(s,2H),3.1(m,2H),1.13(m, 3H);API-MS m/z:715.0([M-H]+).

    1.3 Synthesis of complex 1

    The ligand L1(0.6 mmol,0.236 g)and Co(BF4)2· 6H2O(0.3 mmol,0.1 g)was dissolved in 10 mL ethanol.The solution was refluxed for 2 h,and then slowly evaporated at room temperature.The red block crystals were obtained in several days.Yield:~55%. ESI-MS m/z:845.23 for the+1 charge cation.Anal. Calcd.for CoC42H37N4OP2S4BF4·0.5H2O(%):H,3.99;C, 52.6;N,5.84;Found(%):H,4.02;C,52.1;N,5.89. IR(KBr,cm-1):3 424(br),3 056(m),1 630(s),1 586 (s),1 480(m),1 460(m),1 436(m),1 313(s),1 127 (m),1 063(m),1 012(m),875(s),754(m),727(m), 696(m),562(m),526(m),498(m).

    1.4 Synthesis of complex 2

    Co(BF4)2·6H2O(0.05 mmol,0.017 g)and the ligand L2(0.05 mmol,0.035 g)was dissolved in 15 mL of dichloromethane/ethanol(1∶1,V/V).The solution was stirred at boiling temperature for 2 h to obtain a clear black red solution and allowed to stand at room temperature.Theredblockcrystalssuitablefor single-crystal X-ray diffraction were obtained.Yield:~40%.ESI-MS m/z:(2L2+Co)3+,497.16;(2L2+Co+BF4)2+, 789.76.Anal.Calcd.for CoC91H85.5N8O3P2S2B2.50F10·H2O ·0.5C2H5OH(%):H,5.15;C,61.7;N,6.33;Found(%): H,5.20;C,61.1;N,6.37.IR(KBr,cm-1):3 243(br), 2 973(s),1 647(m),1 606(m),1 560(m),1 527(m), 1 499(m),1 446(s),1 366(s),1 306(m),1 243(m), 1 186(m),1 124(m),1 083(m),944(s),882(s),748 (s),693(m),611(m),522(s).

    1.5 X-ray crystallography

    The data were collected on a Bruker Smart APEXⅡX-diffractometer equipped with graphite monochromatedMo Kα radiation(λ=0.071 073 nm) using the SMART and SAINT[30]programs at 296 K for complexes 1 and 2.Final unit cell parameters were based on all observed reflections from integration of all frame data.The structures were solved in thespace group by direct method and refined by the fullmatrix least-squares using SHELXTL-97 fitting on F2[31]. For complexes 1 and 2,all non-hydrogen atoms were refinedanisotropically.Exceptthesolventwater molecules,the hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters.The BF4-groups in complex 2 were disordered; therefore,large thermal displacement parameters were foundfortheseatomsandrefinedwithpartialoccupancy. One of the benzene rings was disordered into two parts with the S.O.F.(sites occupied factor)of each part being fixed as 0.5.One ethylamine moiety and ethyl groups in complex 2 were disordered into two parts with the S.O.F.of each part being fixed as 0.5. The crystal data and details of the structure refinement of complexes 1 and 2 are summarized in Table 1.

    CCDC:1523357;1,1523358,2.

    Table 1Crystal data and structure refinements for complexes 1 and 2

    2 Results and discussion

    2.1 Crystal structural description

    Single-crystalstructurerepresentationforthe complexes 1 and 2 are shown in Fig.1.In the crystal of complex 1,each central cobalt environment can be described as a distorted octahedron,comprising two N, S atoms from thiosemicarbazone groups,one P atoms from the triphenylphosphine group and the O atom originated from oxidized P atom.One of the P atoms in the ligand L1 was oxidized under the synthesis process.The two ligands bind to a cobalt(Ⅱ)in a mer configurationasfoundintherelatedcobalt thiosemicarbazone complexes[32-33].The C-S,C-N and N-N bond distances are agreed well with the normal range of single and double bonds,resulting in the extensiveelectrondonationenvironmentoverthe entire molecular skeleton[34-35].Similar to the complex 1,in the crystal of complex 2,the metal center was octahedrally coordinated by two N,S atoms and a P or O chelator atom that originated from the different ligands L2 and L2′.And the distance between two xanthene rings of rhodamine ligands in adjacent complex was 0.36 nm.The presence of intermolecular strongπ-πstackinginteractionsbetweenthe rhodaminegroupsimpliedthepossibilityontheformation of π-π interaction between complex 2 and the xanthene rings within the photosensitizer Fl.As a result,the photogenerated electron would be easily immigratedbetweenthephotosensitizerandthe photocatalyst during the photoreduction processes, which was beneficial to achieve the high activity in the photocatalytic system[36].

    Fig.1 Single-crystal structure representations of 1(a)and 2(b)showing the coordination geometry of the metal ion

    2.2 Cyclic voltammetry of the complexes

    The cyclic voltammetry shows that the redox potential of Co(Ⅱ)/Co(Ⅰ)occurs at-1.0 V and-0.87 V for 1 and 2,respectively.And the complex 2 exhibits one inreversible Co(Ⅱ)/Co(Ⅰ)redox process at-0.6 V. To investigate the role of the Co complex as a WRC catalyst,cyclic voltammetry was performed in the presence of increasing amounts of NEt3HCl.Addition of NEt3H+with increasing amounts triggers the appearance of a new irreversible cathodic wave near the Co(Ⅱ)/Co(Ⅰ)response[37-38].Increasing the concentrationof NEt3H+raises the height of the new wave and shifts it to more negative potentials,indicating that complexes 1 and 2 are able to reduce the proton with a catalysis process.This observation indicates direct protonation of the reduced Co(Ⅰ)center and also shows that the protonation process is fast in the overall catalytic rate.

    Fig.2Cyclic Voltammogram of 1(a)and 2(b)(1 mmol·L-1)in CH3CN with 0.1 mol·L-1TBAPF6upon addition of NEt3HCl with different concentrations

    2.3 Complexes 1 and 2 as efficient quencher for the photosensitizer Fl

    Complexes 1 and 2 also serves as an efficient quencher for the photosensitizer Fl.To verify this hypothesisfurther,theStern-Volmerquenching constant Kqin this system was calculated as 1.9×104L·mol-1upon the addition of 1 into Fl solution in EtOH/H2O(1∶1,V/V).The quenching behavior can be considered as a photoinduced electron transfer process from excited state of Fl*to 1,providing possibilities for Fl to activate complex 1 producing H2in solution. Although the Kqfor the catalyst 1 was higher than that reported for NEt3(0.44 L·mol-1),the concentration of NEt3(1.08 mol·L-1,15%)in the actual photocatalytic reactions is much higher than the catalyst 1(10 μmol·L-1).A photoinduced electron transfer from the NEt3to the excited state of Fl(reduction quenching) dominated the homogeneous photolysis of the reaction mixture instead of direct quenching by 1.As the Stern-Volmer quenching constant of 2(9.85×104L· mol-1)is higher than that of complex 1(Fig.3).It indicates that the modified rhodamine group was in favor of the electronic transport between the catalyst 2 and photosensitizer Fl.When the concentration of NEt3was fixed at 0.5 mol·L-1(7%,V/V)and catalyst 2 was fixed at 10 μmol·L-1under the photocatalytic condition,the direct luminescence quenching of Fl by the catalyst 2 should be largely dominated by the oxidative quenching.The initial photochemical step was the formation of Fl+caused by 2[39-40].Because both the photosensitizer Fl and the rhodamine-based catalyst contain highly conjugated xanthene moieties, Fl molecules might have strong π-π stacking interact with the catalyst 2,which is beneficial to transfer electrons from the photoexcited Fl*to 2[41].This process led to a more efficient separation of the photogeneratedelectrons,thussuppressingthe combinationofelectronsthatwouldresultin undesired radiative transition.Therefore,the photoinduced electron transfer pathway obtained by the catalyst2couldpotentiallybebenefitforthe construction of efficient photocatalytic systems.

    2.4 Complex 1 as a WRC

    Protonreductioncatalyticactivityof1was evaluated by coupling it with Fl as a photosensitizer (PS)upon irradiation with visible light(λ>400 nm)in an EtOH/H2O(1∶1,V/V)solvent mixture containing NEt3at room temperature[42-44].The optimum pH value of the reaction mixture was maintained at 11.5, decreasing or increasing pH values resulted in both a lower initial rate and shorter system lifetime for hydrogen evolution(Fig.4a).The efficiency of thevisible light induced hydrogen evolution depends on the concentration of sacrificial reagent NEt3.The optimal concentration is 15%,with a decrease of activity at lower or higher concentration.Furthermore, the addition of two of the three components of the homogeneous systems could not give any further H2evolution which indicated that both the 1 and Fl were decomposed during the photolysis.

    Fig.3Family of the emission spectra of fluorescein solution(10 μmol·L-1)in EtOH/H2O(1∶1,V/V)solution upon addition of catalyst 1(a)and 2(b)with various concentration

    Fig.4Initial rates of H2production in systems containing 1,Fl and 15%(V/V)of NEt3with different pH values(a)and containing 1,Fl at pH 11.5 with different concentrations of NEt3(b);Photocatalytic hydrogen evolution of systems containing Fl,15%(V/V)NEt3with different concentrations of 1(c)and containing 1,15%(V/V)NEt3with different concentrations of Fl(d)

    In the system with Fl and NEt3at fixed concentrations,the initial rate of H2generation exhibits a first-order dependence on catalyst 1.At 10.0 μmol·L-1catalysts 1 and 2 mmol·L-1Fl,this system exhibits a TON of 2 267 molH2·after 10 hours and an initial TOF of 220 molH2··h-1.At higher catalyst concentrations,even though a larger amount of H2is evolved,the TON does not scale linearly with catalyst concentration due to the limited lifetime of the system. To determine the limit of this system,an additional experiment was carried out at different Fl concentrations shown in Fig.4d.At higher Fl concentration as 4 mmol·L-1,there is no continuous increased H2generation detected in 10 h.The TOF reaches a maximum at 2.0 mmol·L-1Fl,which indicates that the system is limited by the concentration of the catalyst.The system has a longer life time at higher Fl,thus suggesting that Fl decomposes during photolysis.This phenomenon also demonstrates that the reductive quenching path way dominates in the system of catalyst 1.

    2.5 Complex 2 as a WRC

    Through investigating the influence of different pH values and concentration of NEt3,we found thehighest efficiency of H2production could be achieved at pH 11.6 and NEt37%.For initial experiments,the Fl concentration in the reaction vials was kept at 2 mmol·L-1,while a 5 μmol·L-1catalyst concentration was chosen.The initial TOF calculated was 346.5 molH2··h-1in 5 h with the TON of about 1 732 molH2·To further probe the photocatalytic process, concentrations of both the Fl and the catalyst 2 were varied.Details of the effect of reactant concentration on H2evolution are depicted in Fig.5.In terms of catalyst turnovers,it was observed that the photocatalytic system performs better at high Fl concentration and low catalyst concentration.These results pointed toward high degradation degree of the catalyst 2,which was more notable at higher concentrations. As shown in Table 2,in the same reaction condition, catalyst 2 has a higher TON and TOF than catalyst 1 in the concentration of 5 μmol·L-1for catalyst. However,in the higher catalyst concentration of 20 μmol·L-1,the catalyst 1 showed the better photocatalytic activity than catalyst 2.It was attribute to the self-stacking interaction of rhodamine group in high concentration which reduced the electronic transfer ability between the catalyst 2 and Fl.And in the same catalyst concentration,catalyst 2 exhibited higher TON and TOF than catalyst 1 in different Fl concentration in 5 h.These results demonstrated that the fast electronic transfer in catalyst 2 was benifit for the photocatalytic system in low catalyst concentration. When the concentration of the catalyst was lowered from 5 μmol·L-1to 1 μmol·L-1,keeping the Fl at the optimalconcentration,thehydrogenevolution continued within 3 hours.Although the quantity of hydrogen production decrease,it ledtoalargeincrease in turnovers yielding up to 2 800 molH2·and the highest TOF 930

    Fig.5Photocatalytic hydrogen evolution of systems containing Fl,NEt3with different concentrations of 2(a)and containing 2, NEt3with different concentrations of Fl(b)

    Table 2Data of hydrogen production test in 5 h for complexes 1 and 2

    The light induced H2evolution varied on the concentration of Fl,and the increasing of Fl amount caused the increasing of TON.These results suggest both the 2 and Fl were decomposed during the photolysis,but the decompose rate of Fl was much higher than that of the catalyst 2.The photocatalytic activity of catalyst 2 was decreased after 5 h,while catalyst 1 showed better activity in 10 h.The life time of the hydrogen evolution system was shorten,which could be due to the cooperation effect between rhodamine groups and Fl.This fast energy transfer process resulted the quick decompose of Fl and catalyst 2.Relative to catalyst 1,catalyst 2 has a higher hydrogen production rate in the beginning of the reaction process which also demonstrated the fast electron transfer in rhodamine-modified systems.A tentative mechanism proposed for the high activity of catalyst 2 for the production of H2has been deduced. Photogenerated electrons in Fl firstly transfer to the rhodamine groups in 2 under illumination with visible lightthroughthepossibleintermolecularπ-π interactions,and then the ligands transfer electrons to the Co center,where H2evolution reactions occur.At last,the electron donor NEt3restore the excited Fl+to the ground state to complete the catalytic cycle.

    3 Conclusions

    In summary,we reported a simple but effective method to gain cobalt-thiosemicarbazone complexes 1 and2astheefficientwaterreductivecatalyst. Structures of these complexes were determined by single crystal X-ray analysis.Electrochemical analysis demonstrated their WRC activity in presence of a protonsourceofNEt3HCl.Thewaterreduction properties of the catalyst were evaluated using Fl as PS with NEt3as the sacrificial donor.Introducing the rhodamine group which could cooperate with the photosensitizer makes the catalyst 2 more efficient with the TON and initial TOF reaching to 2 800 molH2·and 930 molH2··h-1.The higher photocatalytic activity in lower catalyst concentration and short time indicates the fast electron transfer ability between the catalyst 2 and photosensitizer Fl.The photocatalytic process is dominated by the oxidative quenching with the formation of Fl+caused by 2 which is benefit for the hydrogen evolution.All these workdeclarethebrightfutureofthethiosemicarbazone complex in hydrogen evolution.

    [1]Cook T R,Dogutan D K,Reece S Y,et al.Chem.Rev., 2010,110:6474-6502

    [2]Bard A J,Fox M A.Acc.Chem.Res.,1995,28:141-145

    [3]Chen X,Liu L,Yu P Y,et al.Science,2011,331:746-750

    [4]Wang F,Wang W G,Wang X J,et al.Angew.Chem.,Int. Ed.,2011,50:3193-3197

    [5]Yuhas A D,Smeigh A L,Douvalis A P,et al.J.Am.Chem. Soc.,2012,134:10353-10356

    [6]Kluwer A M,Kapre R,Hartl F,et al.PNAS,2009,106:10460 -10465

    [7]Zhang P,Wang M,Li C,et al.Chem.Commun.,2010,46: 8806-8808

    [8]McNamara W R,Han Z,Alperin P J,et al.J.Am.Chem. Soc.,2011,133:15368-15371

    [9]McCormick T M,Calitree B D,Orchard A,et al.J.Am. Chem.Soc.,2010,132:15480-15483

    [10]McLaughlin M P,McCormick T M,Eisenberg R,et al.Chem. Commun.,2011,47:7989-7991

    [11]Han Z,McNamara W R,Eum M S,et al.Angew.Chem.Int. Ed.,2012,51:1667-1670

    [12]Zhang W,Hong J,Zheng J,et al.J.Am.Chem.Soc.,2011, 133:20680-20683

    [13]WEN Fu-Yu(溫福宇),YANG Jin-Hui(楊金輝),ZONG Xu (宗旭),et al.Prog.Chem.(化學進展),2009,21(11):2285-2302

    [14]Artero V,Chavarot-Kerlidou M,Fontecave M.Angew Chem, Int Ed.,2011,50:7238-7266

    [15]Lin Y,Yuan G,Sheehan S,et al.Energy Environ.Sci.,2011, 4:4862-4869

    [16]Lobana T S,Sharma R,Bawa G,et al.Coord.Chem.Rev., 2009,253:977-1055

    [17]Beraldo H,Gambino D.Mini Rev.Med.Chem.,2004,4:31-39

    [18]Milunovic M N M,Enyedy E A,Nagy N V,et al.Inorg. Chem.,2012,51:9309-9321

    [19]Peng H,Liu G F,Liu L,et al.Tetrahedron,2005,61:5926-5932

    [20]AliM A,Bernhardt P V,Brax M A H,et al.Inorg.Chem., 2013,52:1650-1657

    [21]Chang T M,Tomat E.Dalton Trans.,2013,42:7846-7849

    [22]Credico A,de Biani F F,Gonsalvi L,et al.Chem.Eur.J., 2009,15:11985-11998

    [23]Zhang L Y,Xu L J,Zhang X,et al.Inorg.Chem.,2013,52: 5167-5175

    [24]Han Z J,Shen L X,Brennessel W W,et al.J.Am.Chem. Soc.,2013,135:14659-14669

    [25]Goff A L,Artero V,Jousselme B,et al.Science,2009,326: 1384-1387

    [26]Kilgore U J,Roberts J A S,Pool D H,et al.J.Am.Chem. Soc.,2011,133:5861-5872

    [27]Du P,Eisenberg R.Energy Environ.Sci.,2012,5:6012-6021

    [28]Jing X,Wu P,Liu X,et al.New J.Chem.,2015,39:1051-1059

    [29]Huang W,Song C,He C,et al.Inorg.Chem.,2009,48:5061 -5072

    [30]SMART,SAINT and XPREP,Bruker Analytical Instruments Inc.,Madison,WI,1995.

    [31]Sheldrick G M.SHELXS-97,Program for X-ray Crystal Structure Solution and Refinement,University of G?ttingen, Germany,1997.

    [32]Duan C Y,Liu Z H,You X Z,et al.Chem.Commun.,1997: 381-382

    [33]Li M X,Chen C L,Zhang D,et al.Eur.J.Med.Chem., 2010,45:3169-3177

    [34]Katti K V,Singh P R,Barnes C L.J.Chem.Soc.,Dalton Trans.,1993:2153-2159

    [35]ZhaoY G,Guo D,Liu Y,et al.Chem.Commun.,2008:5725-5727

    [36]Stewart M P,Ho M H,Wiese S,et al.J.Am.Chem.Soc., 2013,135:6033-6046

    [37]Razavet M,Artero V,Fontecave M.Inorg.Chem.,2005,44: 4786-4795

    [38]Kasunadasa H I,Chang C J,Long J R.Nature,2010,464: 1329-1333

    [39]Zhang P,Wang M,Dong J,et al.J.Phys.Chem.C,2010, 114:15868-15874

    [40]Li L,Duan L L,Wen F Y,et al.Chem.Commun.,2012,48: 988-990

    [41]Dong X Y,Zhang M,Pei R B,et al.Angew.Chem.Int.Ed., 2016,55:2073-2077

    [42]Lazarides T,McCormick T,Du P W,et al.J.Am.Chem. Soc.,2009,131:9192-9194

    [43]HAN A-Li(韓阿麗),DU Ping-Wu(杜平武).Chinese J.Inorg. Chem.(無機化學學報),2013,29(8):1703-1709

    [44]Zhang P,Wang M,Na Y,et al.Dalton Trans.,2010,39:1204 -1206

    氧雜蒽染料修飾鈷-硫脲配合物的光解水放氫性能

    楊林 林景旭 何成*段春迎
    (大連理工大學精細化工重點實驗室,大連116024)

    將具有不同端基的硫脲基團與三苯基磷組分結合,利用所得到的配體合成了2個具有NSP(氮硫磷)鰲合位點的鈷-硫脲化合物,并研究了其光解水產(chǎn)氫性能。配合物[Co(L2)(L2′)](BF4)2.5·H2O·0.5C2H5OH(2)(L2=(2-二苯基膦-苯烯基)-氨基硫脲腙-羅丹明6G,L2′=(2-二苯基膦氧-苯烯基)-氨基硫脲腙-羅丹明6G)通過引入羅丹明熒光團與光敏劑分子協(xié)同作用,其產(chǎn)氫TON值可以達到2 800 molH2·molcat-1,其初始TOF值可達到930 molH2·molcat-1·h-1。相同條件下,相比于配合物[Co(L1)(L1′)](BF4)·0.5H2O(1) (L1=(2-二苯基膦-苯烯基)-氨基硫脲腙-硫甲基,L1′=(2-二苯基膦氧-苯烯基)-氨基硫脲腙-硫甲基),提高了體系的催化活性,可能是由于熒光素分子與配合物2之間的分子間π-π堆積作用有利于光敏劑和光催化劑之間的光致電子轉移。

    光致電子轉移;鈷;硫脲;光催化產(chǎn)氫

    O614.81+2

    A

    1001-4861(2017)06-0913-10

    2016-12-21。收修改稿日期:2017-04-25。

    10.11862/CJIC.2017.126

    國家自然科學基金(No.21531001)資助項目。

    *通信聯(lián)系人。E-mail:hecheng@dlut.edu.cn

    猜你喜歡
    二苯基產(chǎn)氫光敏劑
    ZnCoP/CdLa2S4肖特基異質結的構建促進光催化產(chǎn)氫
    二苯基二甲氧基硅烷中多氯聯(lián)苯的脫除研究
    山東化工(2019年7期)2019-04-27 07:39:28
    具有生物靶向和特異性激活光敏劑的現(xiàn)狀和發(fā)展趨勢
    山東化工(2019年2期)2019-02-16 12:38:10
    兩親性光敏劑五聚賴氨酸酞菁鋅的抗菌機理
    丁二酮肟重量法測定雙二苯基膦二茂鐵二氯化鈀中鈀的含量的研究
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    二苯基甲烷二異氰酸酯擴鏈改性聚碳酸亞丙酯
    中國塑料(2017年2期)2017-05-17 06:13:27
    有機廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    四苯基卟啉鈀(Ⅱ)/9,10-二苯基蒽弱光上轉換體系的介質效應
    新型水溶性卟啉類光敏劑A1光動力治療黑色素瘤的實驗研究
    性少妇av在线| 飞空精品影院首页| 日韩精品免费视频一区二区三区| 亚洲第一青青草原| 日韩大码丰满熟妇| 欧美国产精品一级二级三级| 在线 av 中文字幕| 亚洲少妇的诱惑av| videosex国产| 免费不卡黄色视频| 天天躁日日躁夜夜躁夜夜| 美女视频免费永久观看网站| 日本五十路高清| 一级黄片播放器| 免费看十八禁软件| 国产一区二区三区综合在线观看| 精品亚洲成国产av| 亚洲欧美日韩另类电影网站| 国产精品久久久久成人av| 丰满少妇做爰视频| 午夜免费鲁丝| 99热网站在线观看| 日本色播在线视频| 亚洲激情五月婷婷啪啪| 日韩,欧美,国产一区二区三区| 亚洲成人免费av在线播放| 色婷婷久久久亚洲欧美| 久久人人爽人人片av| 91成人精品电影| 最近中文字幕2019免费版| 日本av免费视频播放| 成人18禁高潮啪啪吃奶动态图| 我要看黄色一级片免费的| 国产爽快片一区二区三区| 高清视频免费观看一区二区| 欧美人与性动交α欧美精品济南到| 高清av免费在线| 91精品国产国语对白视频| 亚洲国产欧美日韩在线播放| 性高湖久久久久久久久免费观看| 亚洲欧洲国产日韩| 在线观看免费高清a一片| 一边摸一边做爽爽视频免费| 午夜福利乱码中文字幕| 婷婷色麻豆天堂久久| 国产在视频线精品| 五月天丁香电影| 精品人妻1区二区| 国产精品.久久久| 久久99精品国语久久久| 国产片内射在线| 亚洲精品第二区| 国产真人三级小视频在线观看| 久久国产精品大桥未久av| 视频区图区小说| 91精品国产国语对白视频| 成人国产一区最新在线观看 | 制服人妻中文乱码| 亚洲三区欧美一区| 欧美日本中文国产一区发布| 国产成人一区二区三区免费视频网站 | 真人做人爱边吃奶动态| 亚洲av综合色区一区| 欧美黄色片欧美黄色片| 永久免费av网站大全| 亚洲黑人精品在线| 男女高潮啪啪啪动态图| 欧美乱码精品一区二区三区| 91成人精品电影| 免费女性裸体啪啪无遮挡网站| 99精品久久久久人妻精品| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 你懂的网址亚洲精品在线观看| 日本wwww免费看| 免费一级毛片在线播放高清视频 | 曰老女人黄片| 日韩欧美一区视频在线观看| 亚洲美女黄色视频免费看| 人人澡人人妻人| 在线观看www视频免费| 亚洲成av片中文字幕在线观看| 1024视频免费在线观看| 亚洲 欧美一区二区三区| 久久久久久久大尺度免费视频| 亚洲av美国av| 午夜老司机福利片| 好男人视频免费观看在线| 欧美精品啪啪一区二区三区 | 成年人午夜在线观看视频| netflix在线观看网站| 王馨瑶露胸无遮挡在线观看| 91九色精品人成在线观看| 免费一级毛片在线播放高清视频 | videos熟女内射| 在线观看一区二区三区激情| 国产不卡av网站在线观看| 亚洲人成77777在线视频| 国产成人精品久久久久久| 最近最新中文字幕大全免费视频 | 丰满饥渴人妻一区二区三| 国产女主播在线喷水免费视频网站| 久久中文字幕一级| 多毛熟女@视频| 一边摸一边做爽爽视频免费| 19禁男女啪啪无遮挡网站| 日韩制服骚丝袜av| 老司机影院成人| 亚洲欧美色中文字幕在线| 大话2 男鬼变身卡| 制服人妻中文乱码| 成人国产一区最新在线观看 | 黄色毛片三级朝国网站| 婷婷色av中文字幕| avwww免费| 天天添夜夜摸| 久久久国产一区二区| √禁漫天堂资源中文www| 日韩一区二区三区影片| 国产成人一区二区在线| 成人国产av品久久久| 亚洲免费av在线视频| 在现免费观看毛片| 国产一卡二卡三卡精品| 久久精品久久久久久噜噜老黄| 久久人人爽av亚洲精品天堂| 国产日韩欧美亚洲二区| 久久99一区二区三区| 夫妻午夜视频| 少妇粗大呻吟视频| 日本a在线网址| 99热网站在线观看| 九色亚洲精品在线播放| 国产在线视频一区二区| 一本色道久久久久久精品综合| 精品高清国产在线一区| 久久亚洲精品不卡| 欧美人与性动交α欧美精品济南到| xxxhd国产人妻xxx| 国产日韩欧美亚洲二区| 天天躁夜夜躁狠狠久久av| 欧美另类一区| 性色av一级| 99re6热这里在线精品视频| 日韩人妻精品一区2区三区| 色综合欧美亚洲国产小说| 日韩 亚洲 欧美在线| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 精品一区二区三区av网在线观看 | 男女国产视频网站| 亚洲精品在线美女| 亚洲av电影在线进入| 国产一区亚洲一区在线观看| 国产精品一区二区精品视频观看| 久久久久国产一级毛片高清牌| 日韩免费高清中文字幕av| 在线观看免费视频网站a站| 欧美成狂野欧美在线观看| 亚洲成人手机| 国产免费又黄又爽又色| 五月开心婷婷网| 制服诱惑二区| 久久精品国产亚洲av涩爱| 少妇粗大呻吟视频| 国产在线观看jvid| 国产成人精品在线电影| 国产极品粉嫩免费观看在线| 久久青草综合色| 超碰成人久久| 亚洲国产成人一精品久久久| 黑人巨大精品欧美一区二区蜜桃| 青春草视频在线免费观看| 精品人妻一区二区三区麻豆| 欧美97在线视频| 国产成人一区二区在线| 性色av乱码一区二区三区2| 成人手机av| 亚洲综合色网址| 亚洲av片天天在线观看| 超碰97精品在线观看| 亚洲av在线观看美女高潮| 国产主播在线观看一区二区 | 国产成人av教育| 欧美少妇被猛烈插入视频| 亚洲av综合色区一区| 久久人妻福利社区极品人妻图片 | 亚洲国产精品999| 国产欧美日韩综合在线一区二区| 免费在线观看视频国产中文字幕亚洲 | kizo精华| 精品久久久久久电影网| 久久久久国产精品人妻一区二区| 国产精品久久久人人做人人爽| 成年人黄色毛片网站| 亚洲国产最新在线播放| 国产精品麻豆人妻色哟哟久久| 久久国产精品大桥未久av| 亚洲国产中文字幕在线视频| 欧美 亚洲 国产 日韩一| 一级黄片播放器| 久久国产亚洲av麻豆专区| 亚洲精品国产区一区二| 人妻 亚洲 视频| a级毛片在线看网站| 亚洲情色 制服丝袜| 成年av动漫网址| 午夜免费观看性视频| 国产91精品成人一区二区三区 | 亚洲av成人精品一二三区| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦视频在线资源免费观看| 日韩一区二区三区影片| 巨乳人妻的诱惑在线观看| 国产免费现黄频在线看| 日本午夜av视频| 免费av中文字幕在线| a 毛片基地| videos熟女内射| 亚洲中文av在线| 18在线观看网站| 9色porny在线观看| 黑人巨大精品欧美一区二区蜜桃| 大型av网站在线播放| 亚洲,一卡二卡三卡| 美女午夜性视频免费| 后天国语完整版免费观看| 欧美 亚洲 国产 日韩一| 捣出白浆h1v1| 久久ye,这里只有精品| 亚洲伊人色综图| 国产精品国产三级专区第一集| 99国产精品99久久久久| 中文字幕人妻丝袜一区二区| 国产视频首页在线观看| 精品亚洲成a人片在线观看| 亚洲av欧美aⅴ国产| 大片免费播放器 马上看| 一个人免费看片子| 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| 日本黄色日本黄色录像| 制服人妻中文乱码| 精品国产一区二区三区四区第35| 观看av在线不卡| 国产精品一区二区精品视频观看| 精品国产一区二区三区久久久樱花| 国产亚洲午夜精品一区二区久久| 国产成人欧美| a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 一个人免费看片子| 少妇人妻 视频| 亚洲三区欧美一区| 亚洲激情五月婷婷啪啪| av不卡在线播放| 日韩,欧美,国产一区二区三区| 国产成人欧美在线观看 | 婷婷色综合大香蕉| 国产精品熟女久久久久浪| 久久久国产欧美日韩av| 热99国产精品久久久久久7| 亚洲欧美日韩另类电影网站| 久久天堂一区二区三区四区| 欧美成狂野欧美在线观看| 国产成人免费无遮挡视频| 欧美 日韩 精品 国产| 欧美 日韩 精品 国产| 午夜免费男女啪啪视频观看| 夫妻性生交免费视频一级片| 51午夜福利影视在线观看| 成人三级做爰电影| 在现免费观看毛片| av欧美777| 中国美女看黄片| 久久热在线av| 黄色 视频免费看| 岛国毛片在线播放| 免费高清在线观看视频在线观看| 9色porny在线观看| 蜜桃国产av成人99| 岛国毛片在线播放| 欧美人与性动交α欧美精品济南到| 男女高潮啪啪啪动态图| 国产又爽黄色视频| 日韩一卡2卡3卡4卡2021年| 韩国高清视频一区二区三区| 久久精品国产亚洲av高清一级| 日日爽夜夜爽网站| 一二三四社区在线视频社区8| 又粗又硬又长又爽又黄的视频| 亚洲专区中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 五月天丁香电影| 国产亚洲欧美在线一区二区| 精品一区二区三区av网在线观看 | 看免费av毛片| 另类亚洲欧美激情| 国产精品 欧美亚洲| 丝袜喷水一区| 老司机午夜十八禁免费视频| 亚洲精品国产av蜜桃| 亚洲精品自拍成人| av电影中文网址| 大香蕉久久网| 丰满人妻熟妇乱又伦精品不卡| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 老汉色∧v一级毛片| 亚洲精品自拍成人| 老司机影院成人| 国产亚洲欧美在线一区二区| 久久国产亚洲av麻豆专区| 欧美黑人欧美精品刺激| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| 制服人妻中文乱码| 亚洲,欧美精品.| 夫妻午夜视频| 成年动漫av网址| 爱豆传媒免费全集在线观看| 亚洲精品一区蜜桃| 国产成人一区二区三区免费视频网站 | 人妻 亚洲 视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩一区二区三区在线| 午夜av观看不卡| 又紧又爽又黄一区二区| 男女边摸边吃奶| 国产精品久久久久成人av| 久久国产精品大桥未久av| 91精品国产国语对白视频| 国产一区二区三区综合在线观看| 青青草视频在线视频观看| 久热这里只有精品99| 2018国产大陆天天弄谢| 欧美精品高潮呻吟av久久| 国产97色在线日韩免费| 无遮挡黄片免费观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩黄片免| 青草久久国产| 亚洲精品国产区一区二| 久久精品亚洲av国产电影网| 一边摸一边做爽爽视频免费| 91国产中文字幕| 久久人人爽人人片av| 男女下面插进去视频免费观看| 大片免费播放器 马上看| 一二三四社区在线视频社区8| 亚洲欧洲精品一区二区精品久久久| 老熟女久久久| 亚洲av男天堂| av天堂在线播放| 精品一区二区三区四区五区乱码 | 嫁个100分男人电影在线观看 | 精品国产乱码久久久久久小说| 激情视频va一区二区三区| 国产成人影院久久av| 热99国产精品久久久久久7| 狠狠婷婷综合久久久久久88av| 精品卡一卡二卡四卡免费| 90打野战视频偷拍视频| av电影中文网址| 精品国产乱码久久久久久男人| 精品少妇内射三级| 国产男女超爽视频在线观看| 精品国产国语对白av| 天天添夜夜摸| 99国产精品一区二区三区| 久久人妻熟女aⅴ| 2021少妇久久久久久久久久久| 国产成人精品在线电影| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区av网在线观看 | 蜜桃国产av成人99| 久久精品久久久久久噜噜老黄| 亚洲国产欧美日韩在线播放| 国产成人一区二区三区免费视频网站 | 亚洲男人天堂网一区| 亚洲国产精品一区三区| 午夜福利,免费看| 久久久久久久久免费视频了| www.av在线官网国产| 中文字幕最新亚洲高清| 一二三四社区在线视频社区8| 国产一区二区 视频在线| 午夜福利,免费看| 午夜免费鲁丝| 久久精品人人爽人人爽视色| 亚洲欧美清纯卡通| 亚洲七黄色美女视频| 亚洲一区中文字幕在线| 亚洲一区二区三区欧美精品| 久久精品久久久久久久性| 最新的欧美精品一区二区| 国产精品一二三区在线看| 日韩大码丰满熟妇| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 麻豆国产av国片精品| 亚洲熟女毛片儿| 一级毛片黄色毛片免费观看视频| 91国产中文字幕| 日韩一卡2卡3卡4卡2021年| 97精品久久久久久久久久精品| 欧美黑人欧美精品刺激| 久久这里只有精品19| 欧美 亚洲 国产 日韩一| 日本黄色日本黄色录像| av又黄又爽大尺度在线免费看| 超碰成人久久| 精品人妻在线不人妻| 99精品久久久久人妻精品| av不卡在线播放| 日韩,欧美,国产一区二区三区| 日韩制服骚丝袜av| 老司机影院成人| 亚洲,欧美精品.| 首页视频小说图片口味搜索 | 看免费成人av毛片| 狂野欧美激情性xxxx| 超碰97精品在线观看| 高清黄色对白视频在线免费看| 一本久久精品| 人体艺术视频欧美日本| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 麻豆乱淫一区二区| 成人黄色视频免费在线看| 999精品在线视频| 亚洲欧美成人综合另类久久久| 欧美 日韩 精品 国产| 日本午夜av视频| 亚洲精品国产av蜜桃| 午夜老司机福利片| 欧美97在线视频| 午夜久久久在线观看| 国产91精品成人一区二区三区 | 大片电影免费在线观看免费| 久久亚洲国产成人精品v| 欧美日韩视频高清一区二区三区二| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 99国产综合亚洲精品| 不卡av一区二区三区| 男女免费视频国产| 日韩一区二区三区影片| 免费人妻精品一区二区三区视频| 成人国产av品久久久| av国产久精品久网站免费入址| 色94色欧美一区二区| 婷婷色综合www| 性高湖久久久久久久久免费观看| 99国产精品99久久久久| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 亚洲成人免费电影在线观看 | 精品亚洲成a人片在线观看| 色综合欧美亚洲国产小说| 日韩电影二区| 操美女的视频在线观看| 亚洲伊人色综图| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 中国国产av一级| 男女床上黄色一级片免费看| 高清不卡的av网站| 黄色视频不卡| 亚洲精品久久午夜乱码| 色94色欧美一区二区| 精品久久久精品久久久| 亚洲av日韩精品久久久久久密 | 久久精品aⅴ一区二区三区四区| 亚洲精品国产色婷婷电影| 久久久精品免费免费高清| 伦理电影免费视频| 日韩熟女老妇一区二区性免费视频| 一级毛片我不卡| 亚洲一码二码三码区别大吗| 热re99久久精品国产66热6| 国产麻豆69| 国产xxxxx性猛交| 制服人妻中文乱码| 午夜福利在线免费观看网站| 夜夜骑夜夜射夜夜干| 麻豆av在线久日| 晚上一个人看的免费电影| 午夜av观看不卡| videos熟女内射| 国产男女内射视频| 欧美日本中文国产一区发布| 99国产精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 日韩制服丝袜自拍偷拍| 免费久久久久久久精品成人欧美视频| 国产不卡av网站在线观看| 91精品伊人久久大香线蕉| 黄频高清免费视频| 一区二区三区激情视频| 国产成人91sexporn| 欧美在线黄色| 久久青草综合色| 狠狠婷婷综合久久久久久88av| 国产精品99久久99久久久不卡| 免费人妻精品一区二区三区视频| 男人舔女人的私密视频| 日本猛色少妇xxxxx猛交久久| 91麻豆精品激情在线观看国产 | 亚洲精品中文字幕在线视频| 18禁裸乳无遮挡动漫免费视频| 久热这里只有精品99| 精品一区二区三区av网在线观看 | 久久久久久久国产电影| 日韩一卡2卡3卡4卡2021年| 日韩欧美一区视频在线观看| av国产精品久久久久影院| 51午夜福利影视在线观看| 日韩 亚洲 欧美在线| 亚洲人成电影免费在线| av欧美777| 日日爽夜夜爽网站| 男的添女的下面高潮视频| 亚洲成人免费电影在线观看 | 久久狼人影院| 日本av手机在线免费观看| 成在线人永久免费视频| 欧美成人午夜精品| bbb黄色大片| 国产免费又黄又爽又色| 黄片播放在线免费| 欧美日韩亚洲综合一区二区三区_| 国产精品99久久99久久久不卡| 男人操女人黄网站| 国产一区有黄有色的免费视频| 国产片内射在线| 久久国产精品大桥未久av| 一级黄色大片毛片| 精品国产一区二区久久| 免费看不卡的av| 久久久久久久久免费视频了| 免费观看人在逋| 免费看av在线观看网站| 成年女人毛片免费观看观看9 | 亚洲成国产人片在线观看| 亚洲av美国av| 久久精品亚洲熟妇少妇任你| 日本午夜av视频| 国产精品久久久av美女十八| 天堂8中文在线网| 欧美xxⅹ黑人| 啦啦啦啦在线视频资源| e午夜精品久久久久久久| 黄片小视频在线播放| 亚洲欧美清纯卡通| 成人黄色视频免费在线看| 日韩 欧美 亚洲 中文字幕| 亚洲精品av麻豆狂野| 永久免费av网站大全| 老司机靠b影院| 美女扒开内裤让男人捅视频| 色94色欧美一区二区| 国产视频一区二区在线看| 桃花免费在线播放| 深夜精品福利| 中文乱码字字幕精品一区二区三区| 午夜av观看不卡| 日韩 欧美 亚洲 中文字幕| 久久国产亚洲av麻豆专区| 日韩av在线免费看完整版不卡| 久久久久久免费高清国产稀缺| 七月丁香在线播放| 国产一卡二卡三卡精品| av不卡在线播放| 欧美日韩福利视频一区二区| 欧美变态另类bdsm刘玥| 大片免费播放器 马上看| 久久天躁狠狠躁夜夜2o2o | 欧美黄色淫秽网站| 亚洲成av片中文字幕在线观看| 我要看黄色一级片免费的| 婷婷色综合大香蕉| 国产av一区二区精品久久| 欧美日韩国产mv在线观看视频| 又大又爽又粗| 在线观看一区二区三区激情| 啦啦啦视频在线资源免费观看| 天天操日日干夜夜撸| 亚洲精品一区蜜桃| 久久ye,这里只有精品| 性色av乱码一区二区三区2| 中文字幕制服av| 熟女少妇亚洲综合色aaa.| 亚洲av日韩精品久久久久久密 | 男女之事视频高清在线观看 | 亚洲精品久久久久久婷婷小说| 国产在线一区二区三区精| 日韩av免费高清视频| 黄色视频不卡| 亚洲欧美日韩另类电影网站| 日本vs欧美在线观看视频| 欧美黄色片欧美黄色片| av不卡在线播放| 18禁黄网站禁片午夜丰满| 一区二区日韩欧美中文字幕| xxxhd国产人妻xxx| 中文字幕人妻丝袜制服| 亚洲成人免费电影在线观看 | 亚洲视频免费观看视频| 久久精品亚洲熟妇少妇任你| 国产成人一区二区三区免费视频网站 | 母亲3免费完整高清在线观看|