• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytic Hydrogen Production Based on Cobalt-Thiosemicarbazone Complex with the Xanthene Dye Moiety

    2017-07-05 14:55:49YANGLinLinJINGXuHEChengDUANChunYing
    無機化學學報 2017年6期
    關鍵詞:二苯基產(chǎn)氫光敏劑

    YANG Lin-LinJING XuHE ChengDUAN Chun-Ying

    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)

    Photocatalytic Hydrogen Production Based on Cobalt-Thiosemicarbazone Complex with the Xanthene Dye Moiety

    YANG Lin-LinJING XuHE Cheng*DUAN Chun-Ying

    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)

    Two cobalt complexes containing NSP(nitrogen-sulphur-phosphor)chelator prepared from thiosemicarbazone ligands with different terminal functional groups and triphenylphosphine moiety have been synthesized in high yield and characterized.Their photocatalytic activity for hydrogen evolution under visible light irradiation was investigated.The photocatalyst[Co(L2)(L2′)](BF4)2.5·H2O·0.5C2H5OH(2)(L2=2-(diphenylphosphino)benzylidene-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)benzothiohydrazide,L2′=2-(diphenylphosphinooxide)benzylidene-2-(3,6-bis(ethylamino)-2,7-dimethyl-9H-xanthen-9-yl)benzothiohydrazide) containing rhodamine groups exhibited activity in light driven hydrogen evolution with the TON and initial TOF reaching to 2 800 molH2·and 930 molH2··h-1,respectively,which is much higher than that of complex [Co(L1)(L1′)](BF4)·0.5H2O(1)(L1=2-(diphenylphosphino)benzylidene hydrazinecarbodithionate,L1′=2-(diphenylphosphinooxide)benzylidene hydrazinecarbodithionate)under similar conditions.The higher catalytic activity was attributed to the potential intermolecular π-π stack interactions between the catalyst 2 and photosensitizer fluorescein(Fl)benefiting the photoinduced electron transfer between the photosensitizer and the photocatalyst. CCDC:1523357;1,1523358,2.

    photoinduced electron transfer;cobalt;thiosemicarbazone;light driven H2production

    0 Introduction

    The global increase in CO2emissions due to uninhibited fossil fuel use has led to explore new renewable and clean energy resources.Photo-induced catalytic splitting of water to non-carbon-contain fuels, i.e.hydrogen,is a promising approach in converting solar energy into storable chemical energy[1-5].As a redox reaction,water splitting can be divided into two reactions:(i)water oxidation,to yield O2and(ii)water reduction,producing H2.In an artificial photosynthetic (AP)system,the reductive side of water splitting is the light-driven generation of hydrogen from aqueous protons.A variety of photocatalytic systems have been broadly investigated for solar hydrogen production[6-13]. MostofthephotocatalyticH2-productionsystems involve three important components:a light-absorbing photosensitizer(PS),a water-reducing catalyst(WRC), and a sacrificial reductant.While noble metal cocatalysts such as Pt and Pd were widely used for photocatalytic H2evolution,but the scarcity and high cost of precious metals pose serious limitations to wide use.Hence,the development of efficient catalysts for water reduction to H2made of inexpensive,earthabundant elements such as Fe,Co,Ni,and Cu has become a prime focus of research on light-driven hydrogen generation.

    In an effort to find stable earth-abundant WRCs, a few recent reviews on catalysts made of earthabundant elements for water splitting have been published[14-16].In particular,thiosemicarbazone ligands have been used as versatile molecules,arising from the possibility to act as N,S-donor systems[17-18].And the number of potential donor atoms can be increased by using carbonylic compounds that contain additional donorgroupsinsuitablepositionsforchelation. Moreover,they provide a conventional proton immigration path through the thiolate/thioamide resonance tautomer equilibrium[19-20],which have potential future for multi-electron transfer chemistry in H2reduction. And these cobalt thiosemicarbazone complexes have gainedmuchinterestandmightbepromising candidates for proton reduction,in the case that the redox potential of the complex was well modified[21-22]. In this article,we introduced a triphenylphosphine moietyastheadditionaldonortoenhancethe coordination ability and modify the redox potential of the metal centres(Scheme 1)[23-24].Recent advances have reported Ni-bis(diphosphine)complexes act as effectivereductioncatalystsforelectrochemical photocatalytical hydrogen production in homogeneous system[25-26].We expected that the presence of S and P donors would possibly facilitate the formation of reducing species and increase the catalytic efficiency for the H2evolution[27].Herein,we introduced the rhodamine-modifiedligandstoimprovethelight absorption efficiency and electron transfer ability between the catalyst 2 and photosensitizer Fl.The photocatalytic activity of catalyst 2 was higher than that of 1 under low catalyst concentration.The photoinduced electron transfer pathway mechanisms for the hydrogen evolution in these cobalt-thiosemicarbazone complexes were also proposed.

    Scheme 1Structures of thiosemicarbazone ligands L1 and L2

    1 Experimental

    1.1 Materials and physical measurements

    All chemicals were of reagent grade quality obtained from commercial sources and used without further purification.The elemental analyses of C,H and N were performed on a Vario ELⅢelemental analyzer.1H NMR spectra were measured on a Varian INOVA 400M spectrometer.ESI mass spectra were carried out on a HPLC-Q-Tof MS spectrometer.The fluorescent spectra were measured on a JASCO FP-6500.

    CyclicVoltammogrammeasurements:Electrochemical measurements of catalysts 1 and 2 were performed in CH3CN solutions with 0.1 mol·L-1TBAPF6workingonZAHNERENNIUMElectrochemical Workstation with ahomemadeAg/AgCl electrode as a reference electrode,a platinum silk with 0.5 mm diameter as a counter electrode,and glassy carbon electrode as a working electrode.The addition of NEt3HCl(0.1 mol·L-1in CH3CN)was carried out with syringe.

    Fluorescence quenching experiments:A solution (2.0 mL)of Fl at 10 μmol·L-1concentration in a EtOH/H2O solution(1∶1,V/V,pH=11.6)was prepared in a quartz cuvette fitted with a septum cap,and the solution was degassed under N2for 5 min.Aliquots of 20 μL of NEt3and the catalysts(2.5 μmol·L-1)were added,and the intensity of the fluorescence was monitored by steady state fluorescence exciting at 460 nmonaSpexFluoromax-Pfluorimeterwitha photomultiplier tube detector.

    Photocatalytic water splitting experiments:Varying amounts of the catalysts 1 and 2,Fl and NEt3in EtOH/H2O solution(1∶1,V/V)were added to obtain a total volume of 5.0 mL in a 20 mL flask.The flask was sealed with a septum and degassed by bubbling argon for 15 min.The pH value of this solution was adjusted to a specific pH value by adding HCl or NaOH and measured with a pH meter.After that,the samples were irradiated by a 500 W Xenon lamp with the 400 nm light filter,and the reaction temperature was maintained at 293 K by using a thermostat water bath.The generated photoproduct of H2was characterized by GC 7890T instrument analysis using a 5A molecular sieve column(0.6 m×3 mm),thermal conductivity detector,and argon used as carrier gas. The amount of hydrogen generated was determined by the external standard method.

    1.2 Synthesis of L1 and L2

    The ligand L1 was synthesized by using the reported methods[28].Anal.Calcd.for C21H19N2PS2(%): H,4.85;C,63.9;N,7.1;Found(%):H,5.10;C,63.3; N,7.2.1H NMR(CDCl3,400 MHz):10.2(s,1H),8.6 (d,1H),8.2(m,1H),7.1~7.5(m,13H),2.6(s,3H). API-MS m/z:393.07([M-H]+).

    The ligand L2 was synthesized according to procedures reported previously[29].Anal.Calcd.for C45H43N4SOP(%):H,6.03;C,75.2;N,7.8;Found(%): H,6.11;C,74.9;N,8.0.1H NMR(CDCl3,400 MHz): 9.37(s,1H),8.4(t,1H),8.11(d,1H),8.08(m,1H), 7.6~7.7(m,4H),7.4~7.6(m,10H),7.38(m,3H),7.3 (m,2H),6.5(s,2H),6.2(s,2H),3.1(m,2H),1.13(m, 3H);API-MS m/z:715.0([M-H]+).

    1.3 Synthesis of complex 1

    The ligand L1(0.6 mmol,0.236 g)and Co(BF4)2· 6H2O(0.3 mmol,0.1 g)was dissolved in 10 mL ethanol.The solution was refluxed for 2 h,and then slowly evaporated at room temperature.The red block crystals were obtained in several days.Yield:~55%. ESI-MS m/z:845.23 for the+1 charge cation.Anal. Calcd.for CoC42H37N4OP2S4BF4·0.5H2O(%):H,3.99;C, 52.6;N,5.84;Found(%):H,4.02;C,52.1;N,5.89. IR(KBr,cm-1):3 424(br),3 056(m),1 630(s),1 586 (s),1 480(m),1 460(m),1 436(m),1 313(s),1 127 (m),1 063(m),1 012(m),875(s),754(m),727(m), 696(m),562(m),526(m),498(m).

    1.4 Synthesis of complex 2

    Co(BF4)2·6H2O(0.05 mmol,0.017 g)and the ligand L2(0.05 mmol,0.035 g)was dissolved in 15 mL of dichloromethane/ethanol(1∶1,V/V).The solution was stirred at boiling temperature for 2 h to obtain a clear black red solution and allowed to stand at room temperature.Theredblockcrystalssuitablefor single-crystal X-ray diffraction were obtained.Yield:~40%.ESI-MS m/z:(2L2+Co)3+,497.16;(2L2+Co+BF4)2+, 789.76.Anal.Calcd.for CoC91H85.5N8O3P2S2B2.50F10·H2O ·0.5C2H5OH(%):H,5.15;C,61.7;N,6.33;Found(%): H,5.20;C,61.1;N,6.37.IR(KBr,cm-1):3 243(br), 2 973(s),1 647(m),1 606(m),1 560(m),1 527(m), 1 499(m),1 446(s),1 366(s),1 306(m),1 243(m), 1 186(m),1 124(m),1 083(m),944(s),882(s),748 (s),693(m),611(m),522(s).

    1.5 X-ray crystallography

    The data were collected on a Bruker Smart APEXⅡX-diffractometer equipped with graphite monochromatedMo Kα radiation(λ=0.071 073 nm) using the SMART and SAINT[30]programs at 296 K for complexes 1 and 2.Final unit cell parameters were based on all observed reflections from integration of all frame data.The structures were solved in thespace group by direct method and refined by the fullmatrix least-squares using SHELXTL-97 fitting on F2[31]. For complexes 1 and 2,all non-hydrogen atoms were refinedanisotropically.Exceptthesolventwater molecules,the hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters.The BF4-groups in complex 2 were disordered; therefore,large thermal displacement parameters were foundfortheseatomsandrefinedwithpartialoccupancy. One of the benzene rings was disordered into two parts with the S.O.F.(sites occupied factor)of each part being fixed as 0.5.One ethylamine moiety and ethyl groups in complex 2 were disordered into two parts with the S.O.F.of each part being fixed as 0.5. The crystal data and details of the structure refinement of complexes 1 and 2 are summarized in Table 1.

    CCDC:1523357;1,1523358,2.

    Table 1Crystal data and structure refinements for complexes 1 and 2

    2 Results and discussion

    2.1 Crystal structural description

    Single-crystalstructurerepresentationforthe complexes 1 and 2 are shown in Fig.1.In the crystal of complex 1,each central cobalt environment can be described as a distorted octahedron,comprising two N, S atoms from thiosemicarbazone groups,one P atoms from the triphenylphosphine group and the O atom originated from oxidized P atom.One of the P atoms in the ligand L1 was oxidized under the synthesis process.The two ligands bind to a cobalt(Ⅱ)in a mer configurationasfoundintherelatedcobalt thiosemicarbazone complexes[32-33].The C-S,C-N and N-N bond distances are agreed well with the normal range of single and double bonds,resulting in the extensiveelectrondonationenvironmentoverthe entire molecular skeleton[34-35].Similar to the complex 1,in the crystal of complex 2,the metal center was octahedrally coordinated by two N,S atoms and a P or O chelator atom that originated from the different ligands L2 and L2′.And the distance between two xanthene rings of rhodamine ligands in adjacent complex was 0.36 nm.The presence of intermolecular strongπ-πstackinginteractionsbetweenthe rhodaminegroupsimpliedthepossibilityontheformation of π-π interaction between complex 2 and the xanthene rings within the photosensitizer Fl.As a result,the photogenerated electron would be easily immigratedbetweenthephotosensitizerandthe photocatalyst during the photoreduction processes, which was beneficial to achieve the high activity in the photocatalytic system[36].

    Fig.1 Single-crystal structure representations of 1(a)and 2(b)showing the coordination geometry of the metal ion

    2.2 Cyclic voltammetry of the complexes

    The cyclic voltammetry shows that the redox potential of Co(Ⅱ)/Co(Ⅰ)occurs at-1.0 V and-0.87 V for 1 and 2,respectively.And the complex 2 exhibits one inreversible Co(Ⅱ)/Co(Ⅰ)redox process at-0.6 V. To investigate the role of the Co complex as a WRC catalyst,cyclic voltammetry was performed in the presence of increasing amounts of NEt3HCl.Addition of NEt3H+with increasing amounts triggers the appearance of a new irreversible cathodic wave near the Co(Ⅱ)/Co(Ⅰ)response[37-38].Increasing the concentrationof NEt3H+raises the height of the new wave and shifts it to more negative potentials,indicating that complexes 1 and 2 are able to reduce the proton with a catalysis process.This observation indicates direct protonation of the reduced Co(Ⅰ)center and also shows that the protonation process is fast in the overall catalytic rate.

    Fig.2Cyclic Voltammogram of 1(a)and 2(b)(1 mmol·L-1)in CH3CN with 0.1 mol·L-1TBAPF6upon addition of NEt3HCl with different concentrations

    2.3 Complexes 1 and 2 as efficient quencher for the photosensitizer Fl

    Complexes 1 and 2 also serves as an efficient quencher for the photosensitizer Fl.To verify this hypothesisfurther,theStern-Volmerquenching constant Kqin this system was calculated as 1.9×104L·mol-1upon the addition of 1 into Fl solution in EtOH/H2O(1∶1,V/V).The quenching behavior can be considered as a photoinduced electron transfer process from excited state of Fl*to 1,providing possibilities for Fl to activate complex 1 producing H2in solution. Although the Kqfor the catalyst 1 was higher than that reported for NEt3(0.44 L·mol-1),the concentration of NEt3(1.08 mol·L-1,15%)in the actual photocatalytic reactions is much higher than the catalyst 1(10 μmol·L-1).A photoinduced electron transfer from the NEt3to the excited state of Fl(reduction quenching) dominated the homogeneous photolysis of the reaction mixture instead of direct quenching by 1.As the Stern-Volmer quenching constant of 2(9.85×104L· mol-1)is higher than that of complex 1(Fig.3).It indicates that the modified rhodamine group was in favor of the electronic transport between the catalyst 2 and photosensitizer Fl.When the concentration of NEt3was fixed at 0.5 mol·L-1(7%,V/V)and catalyst 2 was fixed at 10 μmol·L-1under the photocatalytic condition,the direct luminescence quenching of Fl by the catalyst 2 should be largely dominated by the oxidative quenching.The initial photochemical step was the formation of Fl+caused by 2[39-40].Because both the photosensitizer Fl and the rhodamine-based catalyst contain highly conjugated xanthene moieties, Fl molecules might have strong π-π stacking interact with the catalyst 2,which is beneficial to transfer electrons from the photoexcited Fl*to 2[41].This process led to a more efficient separation of the photogeneratedelectrons,thussuppressingthe combinationofelectronsthatwouldresultin undesired radiative transition.Therefore,the photoinduced electron transfer pathway obtained by the catalyst2couldpotentiallybebenefitforthe construction of efficient photocatalytic systems.

    2.4 Complex 1 as a WRC

    Protonreductioncatalyticactivityof1was evaluated by coupling it with Fl as a photosensitizer (PS)upon irradiation with visible light(λ>400 nm)in an EtOH/H2O(1∶1,V/V)solvent mixture containing NEt3at room temperature[42-44].The optimum pH value of the reaction mixture was maintained at 11.5, decreasing or increasing pH values resulted in both a lower initial rate and shorter system lifetime for hydrogen evolution(Fig.4a).The efficiency of thevisible light induced hydrogen evolution depends on the concentration of sacrificial reagent NEt3.The optimal concentration is 15%,with a decrease of activity at lower or higher concentration.Furthermore, the addition of two of the three components of the homogeneous systems could not give any further H2evolution which indicated that both the 1 and Fl were decomposed during the photolysis.

    Fig.3Family of the emission spectra of fluorescein solution(10 μmol·L-1)in EtOH/H2O(1∶1,V/V)solution upon addition of catalyst 1(a)and 2(b)with various concentration

    Fig.4Initial rates of H2production in systems containing 1,Fl and 15%(V/V)of NEt3with different pH values(a)and containing 1,Fl at pH 11.5 with different concentrations of NEt3(b);Photocatalytic hydrogen evolution of systems containing Fl,15%(V/V)NEt3with different concentrations of 1(c)and containing 1,15%(V/V)NEt3with different concentrations of Fl(d)

    In the system with Fl and NEt3at fixed concentrations,the initial rate of H2generation exhibits a first-order dependence on catalyst 1.At 10.0 μmol·L-1catalysts 1 and 2 mmol·L-1Fl,this system exhibits a TON of 2 267 molH2·after 10 hours and an initial TOF of 220 molH2··h-1.At higher catalyst concentrations,even though a larger amount of H2is evolved,the TON does not scale linearly with catalyst concentration due to the limited lifetime of the system. To determine the limit of this system,an additional experiment was carried out at different Fl concentrations shown in Fig.4d.At higher Fl concentration as 4 mmol·L-1,there is no continuous increased H2generation detected in 10 h.The TOF reaches a maximum at 2.0 mmol·L-1Fl,which indicates that the system is limited by the concentration of the catalyst.The system has a longer life time at higher Fl,thus suggesting that Fl decomposes during photolysis.This phenomenon also demonstrates that the reductive quenching path way dominates in the system of catalyst 1.

    2.5 Complex 2 as a WRC

    Through investigating the influence of different pH values and concentration of NEt3,we found thehighest efficiency of H2production could be achieved at pH 11.6 and NEt37%.For initial experiments,the Fl concentration in the reaction vials was kept at 2 mmol·L-1,while a 5 μmol·L-1catalyst concentration was chosen.The initial TOF calculated was 346.5 molH2··h-1in 5 h with the TON of about 1 732 molH2·To further probe the photocatalytic process, concentrations of both the Fl and the catalyst 2 were varied.Details of the effect of reactant concentration on H2evolution are depicted in Fig.5.In terms of catalyst turnovers,it was observed that the photocatalytic system performs better at high Fl concentration and low catalyst concentration.These results pointed toward high degradation degree of the catalyst 2,which was more notable at higher concentrations. As shown in Table 2,in the same reaction condition, catalyst 2 has a higher TON and TOF than catalyst 1 in the concentration of 5 μmol·L-1for catalyst. However,in the higher catalyst concentration of 20 μmol·L-1,the catalyst 1 showed the better photocatalytic activity than catalyst 2.It was attribute to the self-stacking interaction of rhodamine group in high concentration which reduced the electronic transfer ability between the catalyst 2 and Fl.And in the same catalyst concentration,catalyst 2 exhibited higher TON and TOF than catalyst 1 in different Fl concentration in 5 h.These results demonstrated that the fast electronic transfer in catalyst 2 was benifit for the photocatalytic system in low catalyst concentration. When the concentration of the catalyst was lowered from 5 μmol·L-1to 1 μmol·L-1,keeping the Fl at the optimalconcentration,thehydrogenevolution continued within 3 hours.Although the quantity of hydrogen production decrease,it ledtoalargeincrease in turnovers yielding up to 2 800 molH2·and the highest TOF 930

    Fig.5Photocatalytic hydrogen evolution of systems containing Fl,NEt3with different concentrations of 2(a)and containing 2, NEt3with different concentrations of Fl(b)

    Table 2Data of hydrogen production test in 5 h for complexes 1 and 2

    The light induced H2evolution varied on the concentration of Fl,and the increasing of Fl amount caused the increasing of TON.These results suggest both the 2 and Fl were decomposed during the photolysis,but the decompose rate of Fl was much higher than that of the catalyst 2.The photocatalytic activity of catalyst 2 was decreased after 5 h,while catalyst 1 showed better activity in 10 h.The life time of the hydrogen evolution system was shorten,which could be due to the cooperation effect between rhodamine groups and Fl.This fast energy transfer process resulted the quick decompose of Fl and catalyst 2.Relative to catalyst 1,catalyst 2 has a higher hydrogen production rate in the beginning of the reaction process which also demonstrated the fast electron transfer in rhodamine-modified systems.A tentative mechanism proposed for the high activity of catalyst 2 for the production of H2has been deduced. Photogenerated electrons in Fl firstly transfer to the rhodamine groups in 2 under illumination with visible lightthroughthepossibleintermolecularπ-π interactions,and then the ligands transfer electrons to the Co center,where H2evolution reactions occur.At last,the electron donor NEt3restore the excited Fl+to the ground state to complete the catalytic cycle.

    3 Conclusions

    In summary,we reported a simple but effective method to gain cobalt-thiosemicarbazone complexes 1 and2astheefficientwaterreductivecatalyst. Structures of these complexes were determined by single crystal X-ray analysis.Electrochemical analysis demonstrated their WRC activity in presence of a protonsourceofNEt3HCl.Thewaterreduction properties of the catalyst were evaluated using Fl as PS with NEt3as the sacrificial donor.Introducing the rhodamine group which could cooperate with the photosensitizer makes the catalyst 2 more efficient with the TON and initial TOF reaching to 2 800 molH2·and 930 molH2··h-1.The higher photocatalytic activity in lower catalyst concentration and short time indicates the fast electron transfer ability between the catalyst 2 and photosensitizer Fl.The photocatalytic process is dominated by the oxidative quenching with the formation of Fl+caused by 2 which is benefit for the hydrogen evolution.All these workdeclarethebrightfutureofthethiosemicarbazone complex in hydrogen evolution.

    [1]Cook T R,Dogutan D K,Reece S Y,et al.Chem.Rev., 2010,110:6474-6502

    [2]Bard A J,Fox M A.Acc.Chem.Res.,1995,28:141-145

    [3]Chen X,Liu L,Yu P Y,et al.Science,2011,331:746-750

    [4]Wang F,Wang W G,Wang X J,et al.Angew.Chem.,Int. Ed.,2011,50:3193-3197

    [5]Yuhas A D,Smeigh A L,Douvalis A P,et al.J.Am.Chem. Soc.,2012,134:10353-10356

    [6]Kluwer A M,Kapre R,Hartl F,et al.PNAS,2009,106:10460 -10465

    [7]Zhang P,Wang M,Li C,et al.Chem.Commun.,2010,46: 8806-8808

    [8]McNamara W R,Han Z,Alperin P J,et al.J.Am.Chem. Soc.,2011,133:15368-15371

    [9]McCormick T M,Calitree B D,Orchard A,et al.J.Am. Chem.Soc.,2010,132:15480-15483

    [10]McLaughlin M P,McCormick T M,Eisenberg R,et al.Chem. Commun.,2011,47:7989-7991

    [11]Han Z,McNamara W R,Eum M S,et al.Angew.Chem.Int. Ed.,2012,51:1667-1670

    [12]Zhang W,Hong J,Zheng J,et al.J.Am.Chem.Soc.,2011, 133:20680-20683

    [13]WEN Fu-Yu(溫福宇),YANG Jin-Hui(楊金輝),ZONG Xu (宗旭),et al.Prog.Chem.(化學進展),2009,21(11):2285-2302

    [14]Artero V,Chavarot-Kerlidou M,Fontecave M.Angew Chem, Int Ed.,2011,50:7238-7266

    [15]Lin Y,Yuan G,Sheehan S,et al.Energy Environ.Sci.,2011, 4:4862-4869

    [16]Lobana T S,Sharma R,Bawa G,et al.Coord.Chem.Rev., 2009,253:977-1055

    [17]Beraldo H,Gambino D.Mini Rev.Med.Chem.,2004,4:31-39

    [18]Milunovic M N M,Enyedy E A,Nagy N V,et al.Inorg. Chem.,2012,51:9309-9321

    [19]Peng H,Liu G F,Liu L,et al.Tetrahedron,2005,61:5926-5932

    [20]AliM A,Bernhardt P V,Brax M A H,et al.Inorg.Chem., 2013,52:1650-1657

    [21]Chang T M,Tomat E.Dalton Trans.,2013,42:7846-7849

    [22]Credico A,de Biani F F,Gonsalvi L,et al.Chem.Eur.J., 2009,15:11985-11998

    [23]Zhang L Y,Xu L J,Zhang X,et al.Inorg.Chem.,2013,52: 5167-5175

    [24]Han Z J,Shen L X,Brennessel W W,et al.J.Am.Chem. Soc.,2013,135:14659-14669

    [25]Goff A L,Artero V,Jousselme B,et al.Science,2009,326: 1384-1387

    [26]Kilgore U J,Roberts J A S,Pool D H,et al.J.Am.Chem. Soc.,2011,133:5861-5872

    [27]Du P,Eisenberg R.Energy Environ.Sci.,2012,5:6012-6021

    [28]Jing X,Wu P,Liu X,et al.New J.Chem.,2015,39:1051-1059

    [29]Huang W,Song C,He C,et al.Inorg.Chem.,2009,48:5061 -5072

    [30]SMART,SAINT and XPREP,Bruker Analytical Instruments Inc.,Madison,WI,1995.

    [31]Sheldrick G M.SHELXS-97,Program for X-ray Crystal Structure Solution and Refinement,University of G?ttingen, Germany,1997.

    [32]Duan C Y,Liu Z H,You X Z,et al.Chem.Commun.,1997: 381-382

    [33]Li M X,Chen C L,Zhang D,et al.Eur.J.Med.Chem., 2010,45:3169-3177

    [34]Katti K V,Singh P R,Barnes C L.J.Chem.Soc.,Dalton Trans.,1993:2153-2159

    [35]ZhaoY G,Guo D,Liu Y,et al.Chem.Commun.,2008:5725-5727

    [36]Stewart M P,Ho M H,Wiese S,et al.J.Am.Chem.Soc., 2013,135:6033-6046

    [37]Razavet M,Artero V,Fontecave M.Inorg.Chem.,2005,44: 4786-4795

    [38]Kasunadasa H I,Chang C J,Long J R.Nature,2010,464: 1329-1333

    [39]Zhang P,Wang M,Dong J,et al.J.Phys.Chem.C,2010, 114:15868-15874

    [40]Li L,Duan L L,Wen F Y,et al.Chem.Commun.,2012,48: 988-990

    [41]Dong X Y,Zhang M,Pei R B,et al.Angew.Chem.Int.Ed., 2016,55:2073-2077

    [42]Lazarides T,McCormick T,Du P W,et al.J.Am.Chem. Soc.,2009,131:9192-9194

    [43]HAN A-Li(韓阿麗),DU Ping-Wu(杜平武).Chinese J.Inorg. Chem.(無機化學學報),2013,29(8):1703-1709

    [44]Zhang P,Wang M,Na Y,et al.Dalton Trans.,2010,39:1204 -1206

    氧雜蒽染料修飾鈷-硫脲配合物的光解水放氫性能

    楊林 林景旭 何成*段春迎
    (大連理工大學精細化工重點實驗室,大連116024)

    將具有不同端基的硫脲基團與三苯基磷組分結合,利用所得到的配體合成了2個具有NSP(氮硫磷)鰲合位點的鈷-硫脲化合物,并研究了其光解水產(chǎn)氫性能。配合物[Co(L2)(L2′)](BF4)2.5·H2O·0.5C2H5OH(2)(L2=(2-二苯基膦-苯烯基)-氨基硫脲腙-羅丹明6G,L2′=(2-二苯基膦氧-苯烯基)-氨基硫脲腙-羅丹明6G)通過引入羅丹明熒光團與光敏劑分子協(xié)同作用,其產(chǎn)氫TON值可以達到2 800 molH2·molcat-1,其初始TOF值可達到930 molH2·molcat-1·h-1。相同條件下,相比于配合物[Co(L1)(L1′)](BF4)·0.5H2O(1) (L1=(2-二苯基膦-苯烯基)-氨基硫脲腙-硫甲基,L1′=(2-二苯基膦氧-苯烯基)-氨基硫脲腙-硫甲基),提高了體系的催化活性,可能是由于熒光素分子與配合物2之間的分子間π-π堆積作用有利于光敏劑和光催化劑之間的光致電子轉移。

    光致電子轉移;鈷;硫脲;光催化產(chǎn)氫

    O614.81+2

    A

    1001-4861(2017)06-0913-10

    2016-12-21。收修改稿日期:2017-04-25。

    10.11862/CJIC.2017.126

    國家自然科學基金(No.21531001)資助項目。

    *通信聯(lián)系人。E-mail:hecheng@dlut.edu.cn

    猜你喜歡
    二苯基產(chǎn)氫光敏劑
    ZnCoP/CdLa2S4肖特基異質結的構建促進光催化產(chǎn)氫
    二苯基二甲氧基硅烷中多氯聯(lián)苯的脫除研究
    山東化工(2019年7期)2019-04-27 07:39:28
    具有生物靶向和特異性激活光敏劑的現(xiàn)狀和發(fā)展趨勢
    山東化工(2019年2期)2019-02-16 12:38:10
    兩親性光敏劑五聚賴氨酸酞菁鋅的抗菌機理
    丁二酮肟重量法測定雙二苯基膦二茂鐵二氯化鈀中鈀的含量的研究
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    二苯基甲烷二異氰酸酯擴鏈改性聚碳酸亞丙酯
    中國塑料(2017年2期)2017-05-17 06:13:27
    有機廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    四苯基卟啉鈀(Ⅱ)/9,10-二苯基蒽弱光上轉換體系的介質效應
    新型水溶性卟啉類光敏劑A1光動力治療黑色素瘤的實驗研究
    日韩中文字幕欧美一区二区| 久久人妻av系列| 欧美不卡视频在线免费观看| 国产精品av久久久久免费| 日韩欧美在线乱码| 叶爱在线成人免费视频播放| 精品国产乱子伦一区二区三区| 欧美性猛交黑人性爽| 波多野结衣巨乳人妻| 婷婷精品国产亚洲av在线| 夜夜夜夜夜久久久久| 午夜福利高清视频| 特大巨黑吊av在线直播| 岛国视频午夜一区免费看| 一区二区三区国产精品乱码| 亚洲精品久久国产高清桃花| 成人av一区二区三区在线看| 欧美3d第一页| 69av精品久久久久久| 中文字幕人妻丝袜一区二区| 亚洲专区中文字幕在线| 黄色日韩在线| 久久久久久久久免费视频了| 国产亚洲欧美98| 久久久精品欧美日韩精品| 国产真人三级小视频在线观看| 国产69精品久久久久777片 | 久久久久国产一级毛片高清牌| 一本久久中文字幕| 久久婷婷人人爽人人干人人爱| 白带黄色成豆腐渣| 天堂av国产一区二区熟女人妻| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品中文字幕一二三四区| 国产高潮美女av| 精品电影一区二区在线| 国产精品久久久av美女十八| 国产精品一及| 久久亚洲精品不卡| 日韩三级视频一区二区三区| 亚洲国产欧洲综合997久久,| 男人舔女人下体高潮全视频| 国产精品一区二区精品视频观看| 18美女黄网站色大片免费观看| а√天堂www在线а√下载| 亚洲中文字幕一区二区三区有码在线看 | 香蕉丝袜av| 久久久水蜜桃国产精品网| avwww免费| 午夜免费成人在线视频| 三级男女做爰猛烈吃奶摸视频| 99国产精品99久久久久| 好看av亚洲va欧美ⅴa在| 国产成人一区二区三区免费视频网站| 亚洲精华国产精华精| 噜噜噜噜噜久久久久久91| 18禁国产床啪视频网站| 999久久久精品免费观看国产| 国产精品99久久久久久久久| 亚洲中文日韩欧美视频| xxxwww97欧美| 成年女人毛片免费观看观看9| 男人和女人高潮做爰伦理| 日日干狠狠操夜夜爽| 天天躁日日操中文字幕| 69av精品久久久久久| 少妇丰满av| 此物有八面人人有两片| 岛国在线观看网站| 看黄色毛片网站| 97超级碰碰碰精品色视频在线观看| 午夜久久久久精精品| 亚洲性夜色夜夜综合| 亚洲国产精品999在线| 国产精品影院久久| 国产高清视频在线播放一区| 麻豆成人av在线观看| 国语自产精品视频在线第100页| 国产精品国产高清国产av| 亚洲国产日韩欧美精品在线观看 | 国产精品久久视频播放| 男女视频在线观看网站免费| www.999成人在线观看| 啦啦啦免费观看视频1| 亚洲avbb在线观看| aaaaa片日本免费| 国产精品美女特级片免费视频播放器 | 国产精品久久视频播放| 一夜夜www| 免费高清视频大片| 免费av毛片视频| 巨乳人妻的诱惑在线观看| 无遮挡黄片免费观看| 亚洲精品在线观看二区| 嫩草影视91久久| 精品电影一区二区在线| 久久久久久九九精品二区国产| 黑人巨大精品欧美一区二区mp4| 国产亚洲av高清不卡| 欧美精品啪啪一区二区三区| 91在线观看av| 亚洲中文日韩欧美视频| 亚洲av中文字字幕乱码综合| 国产激情久久老熟女| 两人在一起打扑克的视频| 日韩有码中文字幕| 三级毛片av免费| 99久久精品国产亚洲精品| 51午夜福利影视在线观看| 亚洲美女视频黄频| 亚洲成人精品中文字幕电影| 欧美日韩瑟瑟在线播放| 一级毛片高清免费大全| 看片在线看免费视频| 好看av亚洲va欧美ⅴa在| 国产麻豆成人av免费视频| 久久中文字幕一级| 色吧在线观看| 久久精品亚洲精品国产色婷小说| 午夜精品在线福利| 18美女黄网站色大片免费观看| 51午夜福利影视在线观看| 19禁男女啪啪无遮挡网站| 99精品欧美一区二区三区四区| 日韩欧美一区二区三区在线观看| 国产高清激情床上av| 亚洲 国产 在线| 免费在线观看亚洲国产| 国产精品日韩av在线免费观看| 一区福利在线观看| 国产亚洲精品一区二区www| 性欧美人与动物交配| 亚洲av日韩精品久久久久久密| 亚洲精品一区av在线观看| 搞女人的毛片| 一卡2卡三卡四卡精品乱码亚洲| 在线看三级毛片| 欧美一区二区国产精品久久精品| 18禁观看日本| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩国产亚洲二区| 看免费av毛片| 女人被狂操c到高潮| 欧美成狂野欧美在线观看| 18禁国产床啪视频网站| 午夜免费成人在线视频| 国产aⅴ精品一区二区三区波| 国产97色在线日韩免费| aaaaa片日本免费| 久久这里只有精品19| 午夜激情福利司机影院| 欧美3d第一页| 午夜福利视频1000在线观看| 国产三级黄色录像| 午夜福利高清视频| 老熟妇乱子伦视频在线观看| 最新美女视频免费是黄的| 久久久国产成人免费| 国产成人av教育| 1024手机看黄色片| 久久久色成人| 国产真实乱freesex| 久99久视频精品免费| 精品无人区乱码1区二区| 午夜福利在线观看吧| 男女之事视频高清在线观看| 波多野结衣高清作品| 久久人人精品亚洲av| 欧美一区二区精品小视频在线| 精品国产乱子伦一区二区三区| 久久久国产成人免费| 精品无人区乱码1区二区| 在线免费观看不下载黄p国产 | 亚洲九九香蕉| 国产成人精品久久二区二区91| 丰满的人妻完整版| 老汉色∧v一级毛片| 校园春色视频在线观看| 亚洲国产色片| 亚洲国产精品成人综合色| 免费高清视频大片| 亚洲18禁久久av| 老汉色av国产亚洲站长工具| 十八禁网站免费在线| 99在线人妻在线中文字幕| 国产一区二区在线av高清观看| 香蕉丝袜av| 亚洲性夜色夜夜综合| 久久天堂一区二区三区四区| 日本 av在线| 少妇丰满av| 亚洲精品一区av在线观看| 国产精品一区二区精品视频观看| 久久精品亚洲精品国产色婷小说| 99国产精品一区二区三区| 国内精品一区二区在线观看| 午夜日韩欧美国产| 少妇的逼水好多| 亚洲成人久久性| 男女床上黄色一级片免费看| 日本 欧美在线| 久久久色成人| 久久久久国产一级毛片高清牌| 久久午夜综合久久蜜桃| 国产在线精品亚洲第一网站| 久久国产精品人妻蜜桃| 国产av一区在线观看免费| 成人三级做爰电影| tocl精华| 嫩草影院精品99| 性色av乱码一区二区三区2| 久久中文字幕人妻熟女| 听说在线观看完整版免费高清| 香蕉丝袜av| 免费搜索国产男女视频| 久久久久国内视频| 男插女下体视频免费在线播放| 午夜亚洲福利在线播放| 日本成人三级电影网站| 人人妻人人看人人澡| 首页视频小说图片口味搜索| 日本一二三区视频观看| 亚洲欧美日韩高清专用| 国产美女午夜福利| 两人在一起打扑克的视频| 国产精品 欧美亚洲| 一级毛片高清免费大全| 国产精品国产高清国产av| 欧美日韩瑟瑟在线播放| 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 巨乳人妻的诱惑在线观看| 最新中文字幕久久久久 | 午夜福利在线在线| 一级a爱片免费观看的视频| 国产蜜桃级精品一区二区三区| 中文字幕熟女人妻在线| 中亚洲国语对白在线视频| 久9热在线精品视频| bbb黄色大片| 精品久久蜜臀av无| av黄色大香蕉| 亚洲精品乱码久久久v下载方式 | 免费人成视频x8x8入口观看| 丝袜人妻中文字幕| 99精品久久久久人妻精品| 欧美黄色淫秽网站| 观看免费一级毛片| 99久久99久久久精品蜜桃| 中文亚洲av片在线观看爽| 美女免费视频网站| 久久精品夜夜夜夜夜久久蜜豆| 草草在线视频免费看| 亚洲精品粉嫩美女一区| 亚洲狠狠婷婷综合久久图片| 亚洲av电影在线进入| 性色av乱码一区二区三区2| 香蕉国产在线看| 桃色一区二区三区在线观看| 亚洲在线自拍视频| 亚洲 欧美一区二区三区| 窝窝影院91人妻| 人人妻人人看人人澡| 亚洲国产精品合色在线| 久久精品91蜜桃| 日韩人妻高清精品专区| 午夜福利18| 国产一区二区在线观看日韩 | 国产激情欧美一区二区| 国产1区2区3区精品| 日韩国内少妇激情av| 国产极品精品免费视频能看的| 亚洲成人精品中文字幕电影| 男女下面进入的视频免费午夜| 久久天堂一区二区三区四区| 视频区欧美日本亚洲| 欧美激情在线99| 麻豆av在线久日| 久99久视频精品免费| 成人三级做爰电影| 怎么达到女性高潮| 国产精品乱码一区二三区的特点| 婷婷精品国产亚洲av| 人妻夜夜爽99麻豆av| 一a级毛片在线观看| 成人特级av手机在线观看| 99久久无色码亚洲精品果冻| 国产成人一区二区三区免费视频网站| 黑人欧美特级aaaaaa片| 亚洲国产精品合色在线| 91字幕亚洲| 久久精品影院6| 99riav亚洲国产免费| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品综合一区在线观看| 午夜福利在线在线| 哪里可以看免费的av片| 丝袜人妻中文字幕| 在线观看美女被高潮喷水网站 | 1024手机看黄色片| 国产精华一区二区三区| 午夜久久久久精精品| 国产黄片美女视频| 精品国产三级普通话版| 九九热线精品视视频播放| 久久午夜亚洲精品久久| 婷婷丁香在线五月| 高潮久久久久久久久久久不卡| 中文资源天堂在线| 999精品在线视频| 亚洲av美国av| 久9热在线精品视频| 一级毛片高清免费大全| 亚洲自拍偷在线| 制服丝袜大香蕉在线| 国内精品久久久久久久电影| 99久久精品一区二区三区| 国产精品98久久久久久宅男小说| 亚洲熟女毛片儿| 日韩精品青青久久久久久| 美女免费视频网站| АⅤ资源中文在线天堂| 久久香蕉国产精品| 久久久久久国产a免费观看| 天天添夜夜摸| 欧美成狂野欧美在线观看| 亚洲第一欧美日韩一区二区三区| 国产成人av激情在线播放| 91在线观看av| av在线蜜桃| 精品国产三级普通话版| 久久久久久久午夜电影| 国模一区二区三区四区视频 | 91九色精品人成在线观看| 99在线人妻在线中文字幕| 18禁国产床啪视频网站| 一个人免费在线观看的高清视频| 嫁个100分男人电影在线观看| 国产97色在线日韩免费| 啦啦啦观看免费观看视频高清| 激情在线观看视频在线高清| 亚洲 国产 在线| 亚洲精品色激情综合| а√天堂www在线а√下载| 久久午夜亚洲精品久久| 亚洲精品456在线播放app | 精品一区二区三区四区五区乱码| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产综合久久久| 午夜福利在线观看免费完整高清在 | 特大巨黑吊av在线直播| 日日夜夜操网爽| 亚洲av五月六月丁香网| 亚洲精品在线美女| 黄色女人牲交| 日本免费a在线| 国产日本99.免费观看| 久久久精品大字幕| 黄色日韩在线| 午夜福利18| 久久久久久久午夜电影| 在线观看日韩欧美| 一级毛片女人18水好多| 又黄又爽又免费观看的视频| 国产av在哪里看| 视频区欧美日本亚洲| 成年人黄色毛片网站| 亚洲精品乱码久久久v下载方式 | 在线国产一区二区在线| av中文乱码字幕在线| 国产精品九九99| bbb黄色大片| 欧美高清成人免费视频www| 少妇熟女aⅴ在线视频| 亚洲美女黄片视频| 免费电影在线观看免费观看| 国产黄色小视频在线观看| 成人无遮挡网站| 少妇的丰满在线观看| 激情在线观看视频在线高清| 亚洲成人精品中文字幕电影| 日日干狠狠操夜夜爽| 美女扒开内裤让男人捅视频| 国内精品一区二区在线观看| 国产伦精品一区二区三区视频9 | 国产野战对白在线观看| cao死你这个sao货| 国产久久久一区二区三区| 日本黄色视频三级网站网址| 久久中文看片网| 精品熟女少妇八av免费久了| 99久久99久久久精品蜜桃| 亚洲美女黄片视频| 欧美zozozo另类| 午夜成年电影在线免费观看| 国产亚洲精品久久久久久毛片| 88av欧美| 国产麻豆成人av免费视频| 香蕉久久夜色| 国产一区二区在线观看日韩 | 久久欧美精品欧美久久欧美| 久久久精品欧美日韩精品| 老司机福利观看| 免费av不卡在线播放| 日本 av在线| 99riav亚洲国产免费| 国产激情欧美一区二区| 村上凉子中文字幕在线| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 午夜福利在线观看免费完整高清在 | 欧美日本视频| 999久久久国产精品视频| 69av精品久久久久久| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 久久久久久国产a免费观看| 久久精品国产99精品国产亚洲性色| 亚洲精品一卡2卡三卡4卡5卡| 天堂动漫精品| 国内精品久久久久久久电影| 一本综合久久免费| 久久这里只有精品中国| 国产亚洲av嫩草精品影院| 国产亚洲精品综合一区在线观看| 欧美日本亚洲视频在线播放| 最近最新免费中文字幕在线| 国产69精品久久久久777片 | 他把我摸到了高潮在线观看| 日韩有码中文字幕| 亚洲成av人片在线播放无| avwww免费| 国产淫片久久久久久久久 | 久久午夜综合久久蜜桃| 久久久久国产精品人妻aⅴ院| 男人舔女人下体高潮全视频| 一个人免费在线观看电影 | 免费无遮挡裸体视频| 欧美又色又爽又黄视频| 国产精品自产拍在线观看55亚洲| 亚洲男人的天堂狠狠| 又紧又爽又黄一区二区| 国产91精品成人一区二区三区| 久久九九热精品免费| 久久久国产成人精品二区| 啦啦啦观看免费观看视频高清| 两人在一起打扑克的视频| 成年免费大片在线观看| 国产亚洲精品av在线| 人人妻人人澡欧美一区二区| 俄罗斯特黄特色一大片| 亚洲第一欧美日韩一区二区三区| 婷婷亚洲欧美| 色综合亚洲欧美另类图片| 给我免费播放毛片高清在线观看| 99国产精品99久久久久| 少妇人妻一区二区三区视频| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 日韩人妻高清精品专区| 舔av片在线| 午夜福利成人在线免费观看| 小说图片视频综合网站| 成年女人永久免费观看视频| 性欧美人与动物交配| 免费在线观看视频国产中文字幕亚洲| 国产一区在线观看成人免费| 国产精华一区二区三区| 国产欧美日韩精品一区二区| 亚洲精品一区av在线观看| 国产成人精品无人区| 一本精品99久久精品77| 两个人的视频大全免费| 国产精品av久久久久免费| svipshipincom国产片| 我的老师免费观看完整版| 中文字幕熟女人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 我的老师免费观看完整版| 一夜夜www| 国产在线精品亚洲第一网站| 久久久久亚洲av毛片大全| 国产成人精品无人区| 真实男女啪啪啪动态图| 又粗又爽又猛毛片免费看| 日日干狠狠操夜夜爽| 国产人伦9x9x在线观看| 一区二区三区高清视频在线| 亚洲av熟女| 男女那种视频在线观看| 2021天堂中文幕一二区在线观| 免费人成视频x8x8入口观看| 男女那种视频在线观看| 日韩欧美国产一区二区入口| 久久亚洲真实| 99久久精品一区二区三区| 18禁黄网站禁片免费观看直播| 俺也久久电影网| 可以在线观看毛片的网站| 美女免费视频网站| 给我免费播放毛片高清在线观看| 黑人操中国人逼视频| 91麻豆精品激情在线观看国产| 桃色一区二区三区在线观看| 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 国产av一区在线观看免费| 国产三级在线视频| 国产淫片久久久久久久久 | 国产午夜精品论理片| 国产高清视频在线观看网站| 精品久久久久久成人av| 久久久国产欧美日韩av| 黄色片一级片一级黄色片| 国产午夜福利久久久久久| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 亚洲专区中文字幕在线| 国模一区二区三区四区视频 | 国产一区在线观看成人免费| 狂野欧美白嫩少妇大欣赏| 国产视频一区二区在线看| а√天堂www在线а√下载| 真人做人爱边吃奶动态| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 嫩草影视91久久| 国产淫片久久久久久久久 | 日韩精品青青久久久久久| 午夜免费激情av| 国产毛片a区久久久久| 制服丝袜大香蕉在线| 美女被艹到高潮喷水动态| 一a级毛片在线观看| 日本黄色片子视频| 亚洲 国产 在线| 久久久色成人| 国产精品亚洲一级av第二区| 欧美日韩乱码在线| 亚洲午夜理论影院| 免费电影在线观看免费观看| 日韩有码中文字幕| 亚洲人成网站在线播放欧美日韩| 一个人观看的视频www高清免费观看 | 天堂影院成人在线观看| avwww免费| 欧美成人免费av一区二区三区| 最好的美女福利视频网| 亚洲人与动物交配视频| 免费在线观看影片大全网站| 桃红色精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 久久精品亚洲精品国产色婷小说| 国产精品九九99| 99热精品在线国产| 99精品欧美一区二区三区四区| 国产人伦9x9x在线观看| 黄色女人牲交| 国产成人啪精品午夜网站| 国产真人三级小视频在线观看| 首页视频小说图片口味搜索| 2021天堂中文幕一二区在线观| 久久久久性生活片| av中文乱码字幕在线| 国内精品久久久久久久电影| 成人av一区二区三区在线看| 亚洲成人久久爱视频| 午夜视频精品福利| 操出白浆在线播放| 国产精品影院久久| 很黄的视频免费| 欧美日本亚洲视频在线播放| 欧美黄色淫秽网站| 男女午夜视频在线观看| 国产成人一区二区三区免费视频网站| 亚洲成人久久性| 一区二区三区国产精品乱码| av欧美777| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 美女午夜性视频免费| 色综合欧美亚洲国产小说| 丁香欧美五月| 别揉我奶头~嗯~啊~动态视频| 国产亚洲av高清不卡| 免费人成视频x8x8入口观看| 手机成人av网站| 日本 欧美在线| 国产毛片a区久久久久| 91久久精品国产一区二区成人 | 一本久久中文字幕| 亚洲中文字幕日韩| av女优亚洲男人天堂 | 国产成人影院久久av| 亚洲中文字幕一区二区三区有码在线看 | 久久草成人影院| 美女免费视频网站| 亚洲国产精品久久男人天堂| 美女高潮喷水抽搐中文字幕| 国产高清videossex| 午夜免费观看网址| 一本精品99久久精品77| 精品乱码久久久久久99久播| 久久国产精品人妻蜜桃| www.999成人在线观看| 欧美最黄视频在线播放免费| 国产av不卡久久| 一区二区三区国产精品乱码| 亚洲性夜色夜夜综合| 超碰成人久久| 久久亚洲真实| 日韩中文字幕欧美一区二区| 毛片女人毛片|