張 樂,孟雪姣,陳延輝,姜 濤
(天津科技大學(xué) 化工與材料學(xué)院,天津 300457)
PX型配體/Cr(Ⅲ)/MAO體系催化乙烯齊聚/聚合
張 樂,孟雪姣,陳延輝,姜 濤
(天津科技大學(xué) 化工與材料學(xué)院,天津 300457)
合成了2-(二苯基膦基)乙基甲基硫醚(L1)、2-(二苯基膦基)乙基甲基醚(L2)、2-(二苯基膦基)-N,N -二甲基乙胺(L3)三種PX型配體,將配體與CrCl3(THF)3絡(luò)合,以甲基鋁氧 烷(MAO)為助催化劑組成PX/Cr(Ⅲ)/MAO催化體系,利用1H NMR,13C NMR,31P NMR,GC,GPC等方法對(duì)配體結(jié)構(gòu)和聚合產(chǎn)物進(jìn)行了表征,研究了催化體系催化乙烯齊聚的性能。實(shí)驗(yàn)結(jié)果表明,PX/Cr(Ⅲ)/MAO體系的催化活性隨反應(yīng)溫度的升高均呈先升高后降低的趨勢(shì),隨反應(yīng)壓力的升高而逐漸升高。L1/Cr(Ⅲ)/MAO體系的催化活性低于L2/Cr(Ⅲ)/MAO和L3/Cr(Ⅲ)/MAO體系。3種體系所得聚乙烯的相對(duì)分子質(zhì)量均較高且分布較寬。以甲苯為溶劑時(shí)催化活性較高,以環(huán)己烷為溶劑時(shí)產(chǎn)物中的聚乙烯含量較高。
乙烯齊聚/聚合;PX型配體;鉻系催化劑;甲基鋁氧烷
線型α-烯烴在工業(yè)上被廣泛應(yīng)用,其來源主要是乙烯齊聚[1-2]?,F(xiàn)有的乙烯齊聚催化劑以含配體的鉻系催化劑為主,配體結(jié)構(gòu)對(duì)催化體系的性能有很大影響[3-6]。McGuinness等[7]報(bào)道的RSCH2CH2NHCH2CH2SR(SNS)體系的1-己烯選擇性 達(dá)98%,反應(yīng)活性為8.36×106g/(mol·h);Zhang等[8]報(bào)道的Pz2CHCH2OR(Pz為1-吡唑基)體系的1-丁烯選擇性為92%,反應(yīng)活性為1.67× 106g/(mol·h)。
目前研究的熱門配體之一為[(2-OMePh)2· PN(Me)P(2-OMePh)2](PNP)型[9-11]。由英國石油公司開發(fā)的PNP雙齒配體/Cr(Ⅲ)配合物[12]在甲基鋁氧烷(MAO)作用下催化乙烯三聚,具有較高的活性。Bollmann等[13]對(duì)該體系進(jìn)行調(diào)整后獲得了乙烯選擇性四聚催化劑。2009年Klemps等[14]在PNP體系的N和P原子之間增加碳鏈橋連,設(shè)計(jì)合成了R2PCH2CH2NHCH2CH2PR2(PCNCP)型配體,由該配體組成的催化體系較PNP體系有更好的乙烯三聚/四聚選擇性。Thapa等[15]合成并表征了用于催化乙烯聚合的t-BuNPPh2型配體,該配體組成的催化體系的1-己烯選擇性高達(dá)99%。2012年,Shaikh等[16]設(shè)計(jì)了Ph2PN(R)(CH2)3N(R)PPh2型配體與鉻絡(luò)合用于乙烯齊聚,1-辛烯選擇性高達(dá)91%。以上研究結(jié)果表明,PNP型配體具有較好的催化性能。除N,P以外,S,O等雜原子也被大量用作各種配體的供電子體,并表現(xiàn)出不同的催化性能。2005年,Bluhm等[17]采用一系列對(duì)稱和非對(duì)稱的N,P,O,S配體與Cr(Ⅲ)絡(luò)合后獲得了不同性能的催化劑用于乙烯齊聚。其中,2-(Ph2P)· PhCHNCH2CH2SR(PNS)體系用于乙烯齊聚時(shí)1-己烯選擇性達(dá)到82%;2-(Ph2P)PhCHNCH2CH2OR(PNO)體系主要催化乙烯高聚,產(chǎn)物中聚乙烯(PE)含量達(dá)到97%;2-(Ph2P) PhCHNCH2CH2NR(PNN)體系用于乙烯聚合,產(chǎn)物也幾乎全為PE。本課題組曾報(bào)道了系列PNP配體(Ph2P)2NR(CH2)2用于催化乙烯齊聚,產(chǎn)物表現(xiàn)出較高的1-己烯選擇性[18]。
本工作在前期工作的基礎(chǔ)上,通過在N,P之間增加碳鏈、改變供電子體的種類,設(shè)計(jì)合成了Ph2PCH2CH2RCH3(PX)型配體2-(二苯基膦基)乙基甲基硫醚(L1)、2-(二苯基膦基)乙基甲基醚(L2)和2-(二苯基膦基)-N,N-二甲基乙胺(L3)。將配體與CrCl3(THF)3(THF為四氫呋喃)絡(luò)合,并以MAO為助催化劑組成PX/Cr(Ⅲ)/ MAO催化體系。利用1H NMR,13C NMR,31P NMR,GC,GPC等方法分析了配體的結(jié)構(gòu),研究了催化體系催化乙烯齊聚的性能。
1.1 試劑與儀器
2-氯 乙基甲基醚(純度98%)、2-氯乙基甲基硫醚(純度99%)、2-氯-N,N-二甲基乙胺鹽酸鹽(純度99%)、正丁基鋰(2.4 mol/L己烷溶液)、二苯基膦(純度99%):J&K公司;三苯基膦(純度99%)、CrCl3(THF)3(純度98%):美國Aldrich試劑公司;MAO:1.4 mol/L甲苯溶液,Albemarle公司;氮?dú)猓兌?9.99%)、乙烯(純度99.95%):天津賽美特特種氣體有限公司;甲苯、環(huán)己烷、四氫呋喃、正庚烷:分析純,天津江天化工有限公司,經(jīng)金屬鈉回流后使用。
DMX400型核磁共振分析儀:美國Bruke公司;7890A型氣相色譜分析儀、高溫凝膠滲透色譜儀:美國Agilent Technologies公司。
1.2 催化劑的制備
所有實(shí)驗(yàn)均在無水無氧條件下進(jìn)行。
1.2.1 配體的制備
配體L1,L2,L3的結(jié)構(gòu)見圖1。
圖1 配體的結(jié)構(gòu)Fig.1 Structure of ligands.
L1的制備:室溫下,將7.0 mL(40 mmol)二苯基膦溶于90 mL四氫呋喃,攪拌均勻后降溫至0 ℃,在此溫度下緩慢滴加26.0 mL(42 mmol)正丁基鋰己烷溶液,室溫下攪拌4 h后降溫至0 ℃,再緩慢滴加4.1 mL(41.20 mmol)2-氯乙基甲基硫醚,室溫下反應(yīng)12 h后減壓抽去溶劑,加入100 mL二氯甲烷,攪拌均勻后加入適量蒸餾水進(jìn)行洗滌,分離出有機(jī)層并干燥后,濃縮結(jié)晶得白色晶體L1,產(chǎn)物收率為81.35%。1H NMR(CDCl3,四甲基硅烷(TMS))表征結(jié)果(化學(xué)位移δ)為:7.32~7.45 (m,10H,—P(C5H5)2),2.53~2.60 (m,2H,—SCH2CH2P—),2.3~2.7(m,2H,—SCH2CH2P—),2.095 (s,3H,—SCH3)。13C NMR表征結(jié)果(CDCl3,TMS)δ為:137.97,137.84,132.81,132.62,128.78,128.59,128.52,76.73,77.37,77.05,30.79,30.58,28.39,28.25,15.55。31P NMR表征結(jié)果(CDCl3) δ為:-17.09。
L2的制備:使用上述方法合成配體L2。用8.0 mL(46 mmol)二苯基膦、20.0 mL(48 mmol)正丁基鋰己烷溶液和4.5 mL(47 mmol)2-氯乙基甲基醚為原料進(jìn)行反應(yīng),最終得到無色油狀物即為L2,產(chǎn)率74.35%。1H NMR表征結(jié)果(CDCl3,TMS)δ為:7.25~7.42(m,10H,—P(C5H5)2),3.46~3.53 (m,2H,—OCH2CH2P—),3.305 (s,3H,—OCH3),2.36~3.40 (m,2H,—OCH2CH2P—);13C NMR表征結(jié)果(CDCl3,TMS)δ為:138.44,138.31,132.84,132.65,128.70,128.56,128.50,77.51,77.20,76.88,69.99,69.76,58.54,28.91,28.79;31P NMR(CDCl3)表征結(jié)果δ為:-22.42。
L3的制備:將8.48 g(34.70 mmol)三苯基膦溶于110 mL四氫呋喃中,加入0.49 g(70.09 mmol)金屬鋰,待反應(yīng)完全后降溫至-78 ℃,緩慢加入5 g(34.70 mmol)2-氯-N,N-二甲基乙胺鹽酸鹽,室溫下反應(yīng)3 h,再加入30 mL蒸餾水終止反應(yīng),將有機(jī)層分離后濃縮、減壓蒸餾得到無色油狀物即為L3,產(chǎn)率為35.28%。1H NMR表征結(jié)果(CDCl3,TMS)δ為:7.30~7.49 (m,10H,—P(C6H6)2),2.38~2.44(m,2H,—NCH2CH2P—),2.25 (s,6H,—N(CH3)2),2.22~2.23 (m,2H,—NCH2CH2P—);13C NMR表征結(jié)果(CDCl3,TMS)δ為:134.82,134.72,134.12,133.96,132.89,132.70,130.84,130.72,129.04,128.68,128.54,128.53,77.59,77.38,77.07,56.37,56.15,45.25,45.02,26.68,26.56;31P NMR表征結(jié)果(CDCl3)δ為:-40.34。
1.2.2 鉻絡(luò)合物甲苯溶液的制備
將CrCl3(THF)3甲苯溶液按摩爾比1∶1分別緩慢滴加到L1,L2,L3的甲苯溶液中,室溫下攪拌過夜,最終分別得到墨綠色的L1/Cr(Ⅲ)甲苯溶液、紫藍(lán)色的L2/Cr(Ⅲ)甲苯溶液、藍(lán)灰色的L3/Cr(Ⅲ)甲苯溶液。
1.3 乙烯齊聚/聚合反應(yīng)
乙烯齊聚/聚合反應(yīng)在150 mL的Lab Grest透明高壓玻璃反應(yīng)釜中進(jìn)行。玻璃反應(yīng)釜在105 ℃下烘干后抽真空,再降至室溫,隨后用高純氮?dú)夂鸵蚁└髦脫Q3次。通入乙烯氣體使體系壓力處于微正壓,在一定溫度下依次加入溶劑、MAO和鉻絡(luò)合物的甲苯溶液,通入乙烯至預(yù)定壓力進(jìn)行乙烯齊聚/聚合反應(yīng)。反應(yīng)30 min后,停止攪拌,冷卻至-10 ℃,卸壓。
1.4 產(chǎn)物分析
乙烯齊聚液相產(chǎn)物采用氣相色譜儀進(jìn)行定量分析。乙烯聚合固相產(chǎn)物經(jīng)10%(w)的鹽酸酸化乙醇溶液洗滌后過濾、60 ℃下烘干3 h、稱重,用高溫凝膠滲透色譜儀進(jìn)行分析。
2.1 反應(yīng)溫度對(duì)催化體系性能的影響
反應(yīng)溫度對(duì)PX/Cr(Ⅲ)/MAO體系的乙烯齊聚/聚合性能的影響見圖2。由圖2可看出,3個(gè)體系的催化活性隨反應(yīng)溫度的升高均呈先升高后降低的趨勢(shì),產(chǎn)物線型α-烯烴的碳數(shù)呈寬分布。這可能是因?yàn)楫?dāng)反應(yīng)溫度較低時(shí),隨反應(yīng)溫度的升高,體系內(nèi)的分子平均動(dòng)能增大,聚合反應(yīng)的鏈增長速率和鏈轉(zhuǎn)移速率加快,使催化活性表現(xiàn)出上升趨勢(shì)。當(dāng)反應(yīng)溫度進(jìn)一步升高時(shí),乙烯在甲苯中的溶解度逐漸減少,同時(shí)活性中心的穩(wěn)定性降低導(dǎo)致催化活性降低[19]。對(duì)于L3/Cr(Ⅲ)/MAO體系,當(dāng)反應(yīng)溫度為80 ℃時(shí),催化活性達(dá)到4.36× 105g/(mol·h)。PX/Cr(III)/MAO體系的催化活性較(Ph2P)2N(CH2)2R型配體[18]組成的催化體系有大幅提 高,但齊聚產(chǎn)物呈寬分布,有PE生成。
L1配體中引入的S原子空間位阻較大,且S原子作為給電子體的電子效應(yīng)使中心金屬Cr的電子云密度升高,不利于乙烯分子的插入,從而降低了催化活性[17]。相比之下,引入給電子能力較弱的O和N原子形成的配體L2和L3用于催化乙烯齊聚均獲得較好的催化活性。因此L1/Cr(Ⅲ)/ MAO體系的催化活性低于L2/Cr(Ⅲ)/MAO和L3/Cr(Ⅲ)/MAO體系。其中,L2/Cr(Ⅲ)/MAO體系在60 ℃下的催化活性高于L3/Cr(Ⅲ)/MAO體系,一方面是由于N的給電子性大于O;另一方面是配體中引入的N原子上含甲基,空間位阻較大,不利于乙烯分子的插入。
已報(bào)道的NP型催化劑(t-BuNPPh2)在4.0 MPa、50 ℃時(shí)具有較優(yōu)的催化活性(1.58×106g/(mol·h))和C6選擇性(99.9%)。而L2/Cr(Ⅲ)/ MAO,L3/Cr(Ⅲ)/MAO體系的產(chǎn)物為寬分布,這是由于配體的碳鏈骨架不同造成的。L2/Cr(Ⅲ)/ MAO,L3/Cr(Ⅲ)/MAO體系較t-BuNPPh2有更高的催化活性,一方面可能是由于N,P之間插入了碳鏈;另一方面,不同的供電子體對(duì)催化活性的提高可能產(chǎn)生影響。
圖2 反應(yīng)溫度對(duì)催化體系齊聚/聚合性能的影響Fig.2 Effects of reaction temperature on the performances of the catalysts in ethylene oligomerization/polymerization. Reaction conditions:0.8 MPa,30 min, toluene 20 mL,c(CrCl3(THF)3) = 4.16×10-4mol/L,methylaluminoxane(MAO) as cocatalyst,n(Al)∶n(Cr) = 300.
由圖2可看出,L1/Cr(Ⅲ)/MAO體系的乙烯齊聚產(chǎn)物中PE含量較高,而L2/Cr(Ⅲ)/MAO,L3/Cr(Ⅲ)/MAO體系在較低溫度下得到的產(chǎn)物中PE含量較高。所得PE的性能見表1。由表1可看出,3種體系所得PE的相對(duì)分子質(zhì)量均較高且分布較寬,說明PE是由多種活性中心得到的。
表1 PE的性能Table 1 Properties of the polyethylene products
2.2 反應(yīng)壓力對(duì)催化體系性能的影響
以甲苯為溶劑,考察了反應(yīng)壓力對(duì)PX/Cr(Ⅲ)/ MAO體系的乙烯齊聚/聚合性能的影響,結(jié)果見表2。由表2可看出,催化活性隨反應(yīng)壓力的升高而逐漸升高。這是因?yàn)殡S反應(yīng)壓力的增大,氣相乙烯分子向溶劑擴(kuò)散的速率加快,溶劑中的乙烯濃度升高,乙烯分子向催化中心進(jìn)攻參與配位插入的幾率增大,因此催化活性增大。當(dāng)乙烯壓力為3.0 MPa時(shí),L2/Cr(Ⅲ)/MAO體系的催化活性達(dá)到2.57× 106g/(mol·h),L3/Cr(Ⅲ)/MAO體系的催化活性達(dá)到1.99×106g/(mol·h),產(chǎn)物中有大量的PE,液相齊聚產(chǎn)物呈寬分布的特征。
2.3 反應(yīng)溶劑對(duì)催化體系性能的影響
考察了溶劑對(duì)L2/Cr(Ⅲ)/MAO和L3/Cr(Ⅲ)/ MAO體系催化性能的影響,結(jié)果見表3。由表3可看出,以環(huán)己烷為溶劑時(shí)的催化活性明顯低于以甲苯為溶劑時(shí)的催化活性。這是因?yàn)?,甲苯極性比環(huán)己烷強(qiáng),因此甲苯相比環(huán)己烷對(duì)絡(luò)合物有較好的溶解性,有助于提高催化活性[20]。以環(huán)己烷為溶劑時(shí)的產(chǎn)物相比以甲苯為溶劑時(shí)的產(chǎn)物,PE含量提高了至少30%,尤其L3/Cr(Ⅲ)/ MAO體系提高了近70%。這可能是由于甲苯影響了催化活性中心的結(jié)構(gòu),從而影響了產(chǎn)物的分布。
表2 反應(yīng)壓力對(duì)催化體系齊聚/聚合性能的影響Table 2 Effects of reaction pressure on the performances of the catalysts in ethylene oligomerization/polymerization
表3 溶劑對(duì)催化劑齊聚/聚合性能的影響Table 3 Effects of di fferent solvents on the performances of the catalysts in ethylene oligomerization/polymerization
1)合成了3種PX型配體2-(二苯基膦基)乙基甲基硫醚(L1)、2-(二苯基膦基)乙基甲基醚(L2)和2-(二苯基膦基)-N,N-二甲基乙胺(L3)。將配體分別與CrCl3(THF)3形成絡(luò)合物,再加入助催化劑MAO得到PX/Cr(Ⅲ)/MAO催化體系。
2)PX/Cr(Ⅲ)/MAO體系的催化活性隨反應(yīng)溫度的升高均呈先升高后降低的趨勢(shì)。L1/Cr(Ⅲ)/ MAO體系的催化活性低于L2/Cr(Ⅲ)/MAO和L3/ Cr(Ⅲ)/MAO體系。3種體系所得PE的相對(duì)分子質(zhì)量均較 高且分布較寬。
3)PX/Cr(Ⅲ)/MAO體系的催化活性隨反應(yīng)壓力的升高而逐漸升高,產(chǎn)物中有大量的PE,液相齊聚產(chǎn)物呈寬分布的特征。以甲苯為溶劑時(shí)催化活性較高,以環(huán)己烷為溶劑時(shí)產(chǎn)物中的PE含量較高。
[1] McGuinness D S. Olefin oligomerization via metallacycles:Dimerization,trimerization,tetramerization,and beyond[J]. Chem Rev,2011,111(3):2321-2341.
[2] Zhu Feng,Wang Li,Yu Haojie. Recent research progress in preparation of ethylene oligomers with chromium-based catalytic systems[J].Designed Monomers Polym,2011,14(1):1-23.
[3] Albahily K,Licciulli S,Gambarotta S,et al. Highly active ethylene oligo merization catalysts[J].Organometallics,2011,30(12):3346-3352.
[4] Kulangara V S,Haveman D,Vidjayacoumar B,et al. Effect of cocatalysts and solvent on selective ethylene oligomerization[J].Organometallics,2015,34(7): 1203-1210.
[5] Yang Yun,Gurnham J,Liu Boping,et al. Selective ethylene oligomerization with chrom ium complexes bearing pyridinephosphine ligands :Influence of ligand structure on catalytic behavior[J].Organometallics,2014,33(20):5749-5757.
[6] Agapie T. Selective ethylene oligomerization:Recent adva nces in chromium catalysis and mechanistic investigations[J].Coordin Chem Rev,2011,255(7/8):861-880.
[7] McGuinness D S,Wasserscheid P,Keim W,et al. First Cr(Ⅲ)-SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene[J].J Am Chem Soc,2003,125(18):5272-5273.
[8] Zhang Jun,Braunstein P,Hor T S A. Highly selective chromium(Ⅲ) ethylene trimerization catalysts with [NON]and[NSN]heteroscorpionate ligands[J].Organometallics,2008,27(17):4277-4279.
[9] McGuinness D S,Brown D B,Tooze R P,et al. Ethylene trimerization with Cr-PNP and Cr-SNS compl exes:Effect of ligand structure,metal oxidation state,and role of activator on catalysis[J].Organometallics,2006,25(15):3605-3610.
[10] Britovsek G J P,McGuinness D S,Wierenga T S,et al. Single- and double-coordination mechanism in ethylene tri- and tetramerization with Cr/PNP catalysts[J].ACS Catal,2015,5(7):4152-4166.
[11] Do L H,Labinger J A,Bercaw J E. Spectral studies of a Cr(PNP)-MAO system for selective ethylene trimerization c atalysis:Searching for the active species[J].ACS Catal,2013,3(11):2582-2585.
[12] Carter A,Cohen S A,Cooley N A,et al. High activity ethylene trimerisation catalysts based on diphosphine ligands[J]. Chem Commun,2002(8):858-859.
[13] Bollmann A,Blann K,Dixon J T,et al. Ethylene tetramerization:A new route to produce 1-octene in exceptionally high selectivities[J].J Am C hem Soc,2004,126(45):14712-14713.
[14] Klemps C,Payet E,Magna L,et al. PCNCP ligands in the chromium-catalyzed oligomerization of ethylene:Tri- versus tetramerization[J].Chem Eur J,2009,15(33):8259-8268.
[15] Thapa I,Gambarotta S,Korobkov I,et al. Isolation and characterization of a class Ⅱ mixed-valence chromium(Ⅰ)/(Ⅱ)self-activating ethylene trimerization catalyst[J].Organometallics,2012,31(1):486-494.
[16] Shaikh Y,Albahily K,Sutcliffe M,et al. A highly selective ethylene tetramerization catalyst[J].Angew Chem,Int Ed,2012,51(6):1366-1369.
[17] Bluhm M E,Walter O,Doering M. Chromium imine and amine complexes as homogeneous catalysts for the trimerization and polymerization of ethylene[J].J Organomet Chem,2005,690(3):713-721.
[18] 裴海香,時(shí)鵬飛,陳延輝,等. Cr(Ⅲ)絡(luò)合物/MAO對(duì)催化乙烯齊聚選擇性影響的研究[J].精細(xì)石油化工,2014,31(6):61-65 .
[19] Gao Xianglu,Wang Mei,Chen Yanhui,et al. Biphasic trimerization of ethylene with diphosphinoamine/chromium(Ⅲ)/methylaluminoxane immobilized in organochloroaluminate ionic liquid[J].React Kinet Mech Cat,2014,113(1):159-167.
[20] H?rzschel S,Kühn F E,W?ehl A,et al. Comparative study of new chromium-based catalysts for the selective tri- and tetramerization of ethylene[J].Catal Sci Technol,2015,5(3):1678-1682.
(編輯 鄧曉音)
Ethylene oligomerization/poly merization catalyzed by PX ligands/Cr(Ⅲ)/MAO
Zhang Le,Meng Xuejiao,Chen Yanhui,Jiang Tao
(College of Chemical Engineering and Material Science,Tianji n University of Science and Technology,Tianjin 300457,China)
Three PX ligands,namely [2-(diphenylphosphino)ethyl]methyl sulfide(L1),[2-(diphenylphos phino)ethyl]methyl ether(L2) and 2-(diphenylphosphino)-N,N-dimethyl ethamine(L3),were synthesized. PX/Cr(Ⅲ)/MAO catalyst systems were prepared through the complexation reaction between CrCl3(THF)3and the ligands with methylaluminoxane(MAO) as the cocatalyst. The performances of the catalytic systems for ethylene oligomerization/polymerization were investigated. The ligands and the products of the oligomerization/polymerization were characterized by means of1H NMR,13C NMR,31P NMR,GC and GPC. It was revealed that,with reaction temperature rise,the catalytic activities of the PX/Cr(Ⅲ)/MAO systems firstly increased and then decreased,and the catalytic activity increased with the increase of reaction pressure. The catalytic activity of the L1/Cr(Ⅲ)/MAO system was lower than those of the L2/Cr(Ⅲ)/MAO and L3/Cr(Ⅲ)/ MAO systems. The relative molecular masses of the polyethylene products obtained with the three systems were high and their distributions were wide. The catalytic activity with toluene as the solvent was higher than that with cyclohexane as the solvent,but the polyethylene content in the products was higher when the latter was used as the solvent.
ethylene oligomerization/polymerization;PX ligands;chromium-based catalyst;methylaluminoxane
1000-8144(2017)06-0695-06
TQ 426.94
A
10.3969/j.issn.1000-8144.2017.06.007
2016-11-12;[修改稿日期]2017-03-12。
張樂(1985—),男,河北省邯鄲市人,博士生,電話 022-60602936,電郵 josephgo@sina.com。聯(lián)系人:姜濤,電郵jiangtao@tust.edu.cn。
天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計(jì)劃重點(diǎn)資助項(xiàng)目(16JCZDJC31600)。