岑人軍,花奇凱,韋雪亮,張文珍
(1.廣西大學(xué)體育學(xué)院,廣西南寧 530004;2.廣西醫(yī)科大學(xué)第一附屬醫(yī)院,廣西南寧 530004;3.廣西醫(yī)科大學(xué)附屬口腔醫(yī)院,廣西南寧 530004)
?
不同負(fù)荷運(yùn)動(dòng)對(duì)小鼠骨骼肌細(xì)胞凋亡的影響
岑人軍1,花奇凱2,韋雪亮1,張文珍3
(1.廣西大學(xué)體育學(xué)院,廣西南寧 530004;2.廣西醫(yī)科大學(xué)第一附屬醫(yī)院,廣西南寧 530004;3.廣西醫(yī)科大學(xué)附屬口腔醫(yī)院,廣西南寧 530004)
探討不同負(fù)荷運(yùn)動(dòng)對(duì)小鼠骨骼肌細(xì)胞凋亡及mTOR、Akt蛋白表達(dá)的影響。30只小鼠分為3組,依次為對(duì)照組(C)、大強(qiáng)度運(yùn)動(dòng)組(H)、力竭組(G)。對(duì)照組不做運(yùn)動(dòng)訓(xùn)練。大強(qiáng)度運(yùn)動(dòng)組(H)給予25 m/min的運(yùn)動(dòng)訓(xùn)練。力竭組(G)給予10 m/min的運(yùn)動(dòng)訓(xùn)練至力竭。6周運(yùn)動(dòng)訓(xùn)練結(jié)束后,取腓腸肌,TUNEL檢測(cè)細(xì)胞凋亡情況。Western blot檢測(cè)組織中Bcl-2、Bax、mTOR、Akt蛋白水平。雙縮脲法檢測(cè)丙二醛(MDA)含量。黃嘌呤氧化酶法檢測(cè)SOD活性。結(jié)果表明,大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)細(xì)胞凋亡指數(shù)均高于對(duì)照組(C),大強(qiáng)度運(yùn)動(dòng)組(H)比力竭組(G)細(xì)胞凋亡指數(shù)高,大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)Bax蛋白水平均高于對(duì)照組(C);大強(qiáng)度運(yùn)動(dòng)組(H)Bax水平高于力竭組(G),大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)Bcl-2、mTOR、p-Akt蛋白水平均低于對(duì)照組(C),大強(qiáng)度運(yùn)動(dòng)組(H)Bcl-2、mTOR、p-Akt蛋白水平低于力竭組(G);大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)Akt蛋白水平與對(duì)照組(C)相比沒有明顯變化;大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G) MDA含量均高于對(duì)照組(C),大強(qiáng)度運(yùn)動(dòng)組(H)MDA含量高于力竭組(G);大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G) SOD活性均低于對(duì)照組(C),大強(qiáng)度運(yùn)動(dòng)組(H)SOD活性高于力竭組(G);大強(qiáng)度運(yùn)動(dòng)和力竭運(yùn)動(dòng)均會(huì)引起骨骼肌細(xì)胞的凋亡,且大強(qiáng)度運(yùn)動(dòng)比力竭運(yùn)動(dòng)更易引起骨骼肌細(xì)胞凋亡。
骨骼肌細(xì)胞;不同負(fù)荷運(yùn)動(dòng);凋亡;影響
運(yùn)動(dòng)訓(xùn)練與體育競(jìng)技密不可分。運(yùn)動(dòng)訓(xùn)練對(duì)機(jī)體組織器官的作用也越來越成為研究的熱點(diǎn)。運(yùn)動(dòng)疲勞引發(fā)機(jī)體氧化,損害機(jī)體的組織器官[1]。特別是超過機(jī)體承受的大強(qiáng)度超負(fù)荷的運(yùn)動(dòng)訓(xùn)練會(huì)引發(fā)骨骼肌細(xì)胞的凋亡[2]。力竭運(yùn)動(dòng)引起的肌肉酸痛、骨骼肌細(xì)胞凋亡是機(jī)體運(yùn)動(dòng)能力下降的重要標(biāo)志[3]。研究運(yùn)動(dòng)對(duì)骨骼肌細(xì)胞凋亡是目前研究的熱點(diǎn)。
有研究表明,運(yùn)動(dòng)能力下降與骨骼肌組織中的MDA水平和SOD活性有關(guān)[4]。本研究以小鼠為研究對(duì)象,分別經(jīng)過大強(qiáng)度運(yùn)動(dòng)和力竭運(yùn)動(dòng)訓(xùn)練后,檢測(cè)骨骼肌細(xì)胞的凋亡情況,以期為進(jìn)一步研究運(yùn)動(dòng)對(duì)骨骼肌細(xì)胞凋亡的作用機(jī)制提供理論基礎(chǔ)。
1.1 材料
1.1.1 實(shí)驗(yàn)動(dòng)物 30只9周齡雄性Balb/c小鼠購(gòu)自于廣西醫(yī)科大學(xué)動(dòng)物實(shí)驗(yàn)室,體重18 g~22 g。
1.1.2 主要試劑 Bcl-2單克隆抗體、Bax單克隆抗體、mTOR單克隆抗體、Akt單克隆抗體、p-Akt單克隆抗體均購(gòu)自于美國(guó)CTS;BCA蛋白濃度檢測(cè)試劑盒購(gòu)自于北京鼎國(guó)生物技術(shù)有限公司;SOD活性檢測(cè)試劑盒購(gòu)自于北京博邁斯科技發(fā)展有限公司;MDA含量檢測(cè)試劑盒購(gòu)自于北京森貝伽生物科技有限公司。
1.2 方法
1.2.1 試驗(yàn)分組及運(yùn)動(dòng)訓(xùn)練 30只小鼠分為3組,每組10只,依次為對(duì)照組(C)、大強(qiáng)度運(yùn)動(dòng)組(H)、力竭組(G)。大強(qiáng)度運(yùn)動(dòng)組和力竭組在實(shí)驗(yàn)前分別進(jìn)行7 d的適應(yīng)性訓(xùn)練,跑臺(tái)速度為10 m/min,每天運(yùn)動(dòng)1次,每次10 min。適應(yīng)性訓(xùn)練后間隔2 d后開始實(shí)驗(yàn)。對(duì)照組不進(jìn)行運(yùn)動(dòng)訓(xùn)練。大強(qiáng)度運(yùn)動(dòng)組小鼠在10℃坡度適應(yīng)性訓(xùn)練3 min后,在前4周,以25 m/min的速度負(fù)荷運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為30 min。從第5周至第6周,速度調(diào)整為30 m/min,運(yùn)動(dòng)時(shí)間為60 min。力竭組運(yùn)動(dòng)方式與大強(qiáng)度運(yùn)動(dòng)組相同,速度為10 m/min,坡度為10℃至力竭,每天1次,持續(xù)6周。實(shí)驗(yàn)動(dòng)物均在室溫為22℃~26℃的環(huán)境中飼養(yǎng),自由飲食。6周后,運(yùn)動(dòng)結(jié)束1 h,取腓腸肌,隨機(jī)分為兩部分,一部分制作切片,一部分做Western blot及MDA含量、SOD活性檢測(cè)。
1.2.2 小鼠骨骼肌細(xì)胞凋亡指數(shù)測(cè)定 分別取各組小鼠腓腸肌制作切片,經(jīng)HE染色后,采用TUNEL法檢測(cè)細(xì)胞凋亡情況。切片脫蠟水合后,加入蛋白酶K工作液,放置于室溫下反應(yīng)30 min后,用PBS洗滌兩次,放在封閉液中封閉10 min,滴加TdT酶反應(yīng)液,加蓋玻片,放在37℃孵育1 h,PBS洗滌后,加Streptavidin-HRP工作液,避光孵育30 min,PBS洗滌后,加入DAB顯示液,蘇木素復(fù)染后,顯微鏡下觀察細(xì)胞。凋亡的細(xì)胞被染為棕褐色或者棕色,未發(fā)生凋亡的細(xì)胞為綠色。計(jì)算細(xì)胞凋亡指數(shù)(AI)。AI=(凋亡細(xì)胞數(shù)/細(xì)胞總數(shù))×100%。
1.2.3 Western blot檢測(cè)組織中Bcl-2、Bax、mTOR、Akt蛋白水平 取腓腸肌組織,剪碎后,加入含有PMSF的裂解液,取2 ml裂解液加入到勻漿器中,放置于冰上研磨成粉末。取勻漿液轉(zhuǎn)移至離心管中,12 000 r/min離心10 min,吸取蛋白上清液,按照BCA蛋白濃度檢測(cè)試劑盒說明書檢測(cè)提取的蛋白濃度。取蛋白樣品與Loading buffer充分混合后,放在100℃的孵育器煮沸5 min。取變性蛋白樣品加入SDS-PAGE凝膠中,80 V電泳30 min后,調(diào)整電壓為120 V至電泳結(jié)束。取出蛋白凝膠,在4℃轉(zhuǎn)膜1.5 h,將蛋白轉(zhuǎn)印至PVDF膜上。分別與一抗(500倍稀釋)、二抗(1 000倍稀釋)反應(yīng)后,滴加顯色液,曝光后,以GAPDH為內(nèi)參,分析蛋白表達(dá)情況。
1.2.4 雙縮脲法檢測(cè)MDA含量 取腓腸肌組織,加入含有預(yù)冷的勻漿緩沖液的勻漿器中,研磨5 min后,加入適量的生理鹽水,制備含有骨骼肌組織為10%的勻漿液。用MDA含量檢測(cè)試劑盒檢測(cè)MDA含量,計(jì)算MDA含量。
MDA含量(nmol/L/g)=10 nmol/L/g×樣品稀釋倍數(shù)×(測(cè)定管吸光度-空白管吸光度)/(標(biāo)準(zhǔn)管吸光度-標(biāo)準(zhǔn)空白吸光度)
1.2.5 黃嘌呤氧化酶法檢測(cè)SOD活性 取腓腸肌組織,根據(jù)SOD活性檢測(cè)試劑盒檢測(cè)組織中的SOD活性。550 nm處檢測(cè)吸光度。如果樣品中含有SOD,SOD會(huì)抑制超氧陰離子的氧化為亞硝酸鹽。
SOD活性(U/g)=2×稀釋倍數(shù)×(對(duì)照管吸光度-測(cè)定管吸光度)/對(duì)照管吸光度
2.1 細(xì)胞凋亡指數(shù)檢測(cè)結(jié)果
各組小鼠運(yùn)動(dòng)訓(xùn)練后,取腓腸肌組織,TUNEL法檢測(cè)細(xì)胞凋亡指數(shù)。結(jié)果顯示,大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)細(xì)胞凋亡指數(shù)均高于對(duì)照組(C),差異極顯著(P<0.01)。大強(qiáng)度運(yùn)動(dòng)組(H)凋亡指數(shù)明顯高于力竭組(G)(圖1)。
C.對(duì)照組;H.大強(qiáng)度運(yùn)動(dòng)組;G.力竭組;a.P<0.01 vs 對(duì)照組;b.P<0.01 vs 大強(qiáng)度運(yùn)動(dòng)組
C.Control group; H.High intensity exercise group; G.Exhaustive group; a.P<0.01 vs control group;b.P<0.01 vs high intensity exercise group
圖1 骨骼肌細(xì)胞凋亡指數(shù)檢測(cè)結(jié)果
Fig.1 Apoptosis index of skeletal muscle cells
2.2 Bcl-2、Bax蛋白水平檢測(cè)結(jié)果
各組小鼠腓腸肌組織經(jīng)蛋白提取,Western blot檢測(cè)組織中Bcl-2、Bax蛋白水平。結(jié)果顯示,大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)Bax蛋白水平均高于對(duì)照組(C),差異極顯著(P<0.01)。大強(qiáng)度運(yùn)動(dòng)組(H)Bax蛋白水平明顯高于力竭組(G),差異極顯著(P<0.01)。大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)Bcl-2蛋白水平均低于對(duì)照組(C),差異極顯著(P<0.01)。大強(qiáng)度運(yùn)動(dòng)組(H)Bcl-2蛋白水明顯低于力竭組(G),差異極顯著(P<0.01)(圖2)。
2.3 mTOR、Akt蛋白水平檢測(cè)結(jié)果
各組小鼠腓腸肌組織經(jīng)蛋白提取,Western blot檢測(cè)組織中mTOR、Akt蛋白水平。結(jié)果顯示,大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)mTOR、p-Akt蛋白水平均低于對(duì)照組(C),差異極顯著(P<0.01)。大強(qiáng)度運(yùn)動(dòng)組(H)mTOR、p-Akt蛋白水平均低于力竭組(G),差異極顯著(P<0.01)。大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G)Akt蛋白水平與對(duì)照組(C)相比沒有明顯變化(圖3)。
2.4 MDA含量檢測(cè)結(jié)果
取各組小鼠腓腸肌組織,檢測(cè)組織中MDA含量。結(jié)果顯示,大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G) MDA含量均高于對(duì)照組(C),差異極顯著(P<0.01)。大強(qiáng)度運(yùn)動(dòng)組(H)MDA含量高于力竭組(G),差異極顯著(P<0.01)(圖4)。
C.對(duì)照組;H.大強(qiáng)度運(yùn)動(dòng)組;G.力竭組;A.Western blot結(jié)果圖;B.蛋白表達(dá)率;a.P<0.01 vs 對(duì)照組;b.P<0.01 vs 大強(qiáng)度運(yùn)動(dòng)組
C.Control group; H.High intensity exercise group;G.Exhaustive group;A.Western blot results ;B.Protein expression rate;a.P<0.01 vs control group;b.P<0.01 vs high intensity exercise group
圖2 Bcl-2、Bax蛋白水平檢測(cè)結(jié)果
Fig.2 Detection results of Bcl-2 and Bax protein levels
C.對(duì)照組;H.大強(qiáng)度運(yùn)動(dòng)組;G.力竭組;A.Western blot結(jié)果圖;B.蛋白表達(dá)率;a.P<0.01 vs 對(duì)照組;b.P<0.01 vs 大強(qiáng)度運(yùn)動(dòng)組
C.Control group; H.High intensity exercise group;G.Exhaustive group;A.Western blot results ;B.Protein expression rate;a.P<0.01 vs control group;b.P<0.01 vs high intensity exercise group
圖3 mTOR、Akt蛋白水平檢測(cè)結(jié)果
Fig.3 Detection results of mTOR and Akt protein levels
C.對(duì)照組;H.大強(qiáng)度運(yùn)動(dòng)組;G.力竭組;aP<0.01 vs 對(duì)照組;bP<0.01 vs 大強(qiáng)度運(yùn)動(dòng)組
C.Control group; H.High intensity exercise group;G.Exhaustive group;aP<0.01 vs control group;bP<0.01 vs high intensity exercise group
圖4 MDA含量檢測(cè)結(jié)果
Fig.4 Detection results of MDA level
2.5 SOD活性檢測(cè)結(jié)果
取各組小鼠腓腸肌組織檢測(cè) SOD活性。結(jié)果顯示,大強(qiáng)度運(yùn)動(dòng)組(H)和力竭組(G) SOD活性均低于對(duì)照組(C),差異極顯著(P<0.01)。大強(qiáng)度運(yùn)動(dòng)組(H)SOD活性高于力竭組(G),差異極顯著(P<0.01)(圖5)。
C.對(duì)照組;H.大強(qiáng)度運(yùn)動(dòng)組;G.力竭組;aP<0.01 vs 對(duì)照組;bP<0.01 vs 大強(qiáng)度運(yùn)動(dòng)組
C.Control group; H.High intensity exercise group;G.Exhaustive group;aP<0.01 vs control group;bP<0.01 vs high intensity exercise group
圖5 SOD活性檢測(cè)結(jié)果
Fig.5 Detection results of SOD level
不同運(yùn)動(dòng)方式和運(yùn)動(dòng)時(shí)間對(duì)骨骼肌細(xì)胞凋亡的影響不同。在一定條件下,肌肉組織中細(xì)胞凋亡增多,臨近的正常的肌細(xì)胞能夠吞噬肌細(xì)胞產(chǎn)生的凋亡小體[5]。純種馬經(jīng)過3個(gè)月的跑臺(tái)訓(xùn)練后,運(yùn)用TUNEL法檢測(cè)了組織中肌細(xì)胞的凋亡情況,發(fā)現(xiàn)運(yùn)動(dòng)后的肌細(xì)胞凋亡率高于不訓(xùn)練的純種馬[6]。大鼠力竭運(yùn)動(dòng)后,大鼠的骨骼肌細(xì)胞凋亡明顯增多[7]。不同負(fù)荷的游泳訓(xùn)練能夠損害大鼠骨骼肌細(xì)胞的微細(xì)結(jié)構(gòu),影響大鼠的運(yùn)動(dòng)能力[8]。本研究將試驗(yàn)分為三組,經(jīng)過大強(qiáng)度運(yùn)動(dòng)和力竭運(yùn)動(dòng)后,取各組小鼠的腓腸肌,通過TUNEL法檢測(cè)骨骼肌組織中骨骼肌細(xì)胞的凋亡情況,結(jié)果發(fā)現(xiàn),大強(qiáng)度運(yùn)動(dòng)和力竭運(yùn)動(dòng)均能引起骨骼肌細(xì)胞的凋亡。且大強(qiáng)度運(yùn)動(dòng)對(duì)骨骼肌細(xì)胞凋亡的促進(jìn)作用更為顯著。
Bax和Bcl-2都屬于Bcl-2蛋白家族成員。在細(xì)胞凋亡過程中發(fā)揮不同的作用。Bcl-2和Bax廣泛存在于生物體細(xì)胞中,在線粒體膜、細(xì)胞膜、內(nèi)質(zhì)網(wǎng)膜中廣泛表達(dá)。Bcl-2具有抑制細(xì)胞凋亡的作用,屬于抗凋亡基因,而Bax屬于促凋亡基因,在細(xì)胞凋亡過程中發(fā)揮促進(jìn)作用[9]。Bcl-2參與調(diào)控細(xì)胞的增殖,發(fā)揮琥珀酸脫氫酶活性,能夠延長(zhǎng)細(xì)胞的壽命,抑制脂質(zhì)的氧化[10]。大鼠在夜間經(jīng)過輪形籠跑步后,大鼠骨骼肌細(xì)胞出現(xiàn)凋亡,檢測(cè)大鼠骨骼肌中Bcl-2水平,結(jié)果發(fā)現(xiàn),肌纖維中的Bcl-2水平下調(diào)[11]。大鼠經(jīng)過8周的跑臺(tái)運(yùn)動(dòng)后,骨骼肌細(xì)胞凋亡明顯,且Bax水平升高,Bcl-2水平下降[12]。經(jīng)過長(zhǎng)期反復(fù)力竭運(yùn)動(dòng)后,骨骼肌細(xì)胞抗凋亡能力減弱,引發(fā)骨骼肌損傷[13]。研究表明,細(xì)胞凋亡與氧自由基密切相關(guān)。細(xì)胞內(nèi)的氧自由基能夠促進(jìn)細(xì)胞凋亡,且這種促進(jìn)關(guān)系具有劑量依賴的特點(diǎn)[14]。SOD活性和MDA含量能夠間接反應(yīng)組織器官中氧自由基的水平。SOD的活性減弱,細(xì)胞凋亡增多。而MDA含量增加,細(xì)胞凋亡增多。當(dāng)MDA含量大幅度增加,而SOD活性大幅度降低時(shí),則可能出現(xiàn)細(xì)胞壞死[15]。
雷帕霉素靶蛋白(mTOR)屬于絲/蘇氨酸蛋白激酶,分子質(zhì)量約為289 ku。mTOR蛋白是一種保守蛋白,人和鼠的mTOR蛋白有95%的氨基酸是一致的[16-18]。絲氨酸/蘇氨酸蛋白激酶(Akt)廣泛存在于生命機(jī)體中,在細(xì)胞生長(zhǎng)、凋亡過程中發(fā)揮重要作用[19]。運(yùn)動(dòng)對(duì)骨骼肌組織中mTOR和Akt的影響不一。有研究表明,漸增負(fù)荷運(yùn)動(dòng)能夠促進(jìn)老年小鼠骨骼肌內(nèi)mTOR的活化,改善骨骼肌的質(zhì)量[20]。
本研究中,Western blot檢測(cè)了各組小鼠腓腸肌組織中Bcl-2、Bax、mTOR、Akt蛋白水平。結(jié)果發(fā)現(xiàn),大強(qiáng)度運(yùn)動(dòng)和力竭運(yùn)動(dòng)均能引起B(yǎng)ax蛋白表達(dá)上調(diào),抑制Bcl-2蛋白的表達(dá)。而大強(qiáng)度運(yùn)動(dòng)和力竭運(yùn)動(dòng)小鼠骨骼肌組織中mTOR、p-Akt表達(dá)下調(diào)。運(yùn)動(dòng)后的小鼠SOD活性降低,MDA含量增加。綜上所述,大強(qiáng)度運(yùn)動(dòng)和力竭運(yùn)動(dòng)能夠引起小鼠骨骼肌細(xì)胞凋亡,這可能與mTOR、Akt蛋白表達(dá)及氧自由基有關(guān)。這為進(jìn)一步研究運(yùn)動(dòng)對(duì)骨骼肌細(xì)胞凋亡的作用機(jī)制奠定了基礎(chǔ)。
[1] Jaiswal N,Maurya C K,Arha D,et al.Fructose induces mitochondrial dysfunction and triggers apoptosis in skeletal muscle cells by provoking oxidative stress[J].Apoptosis,2015,20(7):930-947.
[2] Sciorati C,Rigamonti E,Manfredi A A,et al.Cell death,clearance and immunity in the skeletal muscle[J].Cell Death & Differentiation,2016,23(6):927-937.
[3] Harding R L,Clark D L,Halevy O,et al.The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types[J].Physiol Reports,2015,3(9):e12539.
[4] Cheema N,Herbst A,McKenzie D,et al.Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities[J].Aging Cell,2015,14(6):1085-1093.
[5] Deshmukh A S,Murgia M,Nagaraj N,et al.Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms,metabolic pathways,and transcription factors[J].Mol Cell Proteomics,2015,14(4):841-853.
[6] Shelar S B,Narasimhan M,Shanmugam G,et al.Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling:a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle[J].FASEB J,2016,30(5):1865-1879.
[7] Favero G,Rodella L F,Nardo L,et al.A comparison of melatonin and β-lipoic acid in the induction of antioxidant defences in L6 rat skeletal muscle cells[J].AGE,2015,37(4):1-10.
[8] Flück M,von Allmen R S,Ferrié C,et al.Protective effect of focal adhesion kinase against skeletal muscle reperfusion injury after acute limb ischemia[J].Eu J Vasc Endovasc Surg,2015,49(3):306-313.
[9] Narasimhan K K S,Paul L,Sathyamoorthy Y K,et al.Amelioration of apoptotic events in the skeletal muscle of intra-nigrally rotenone-infused Parkinsonian rats byMorindacitrifolia-up-regulation of Bcl-2 and blockage of cytochrome c release[J].Food Function,2016,7(2):922-937.
[10] Varanita T,Soriano M E,Romanello V,et al.The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic,apoptotic,and ischemic tissue damage[J].Cell Metab,2015,21(6):834-844.
[11] Sch?neich C,Dremina E,Galeva N,et al.Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes[J].Apoptosis,2014,19(1):42-57.
[12] Yu A P,Pei X M,Sin T K,et al.Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal muscle[J].Acta Physiol,2014,211(1):201-213.
[13] 張學(xué)林,高曉娟,史冀鵬,等.離心運(yùn)動(dòng)引起骨骼肌過度使用損傷機(jī)理研究[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2013,31(12):1064-1074.
[14] 閔 柱,劉文杰,耿 瀟,等.原花青素干預(yù)大負(fù)荷運(yùn)動(dòng)大鼠腓腸肌相關(guān)凋亡蛋白的表達(dá)[J].中國(guó)組織工程研究,2013,17(2):309-314.
[15] García-Prat L,Sousa-Victor P,Muoz-Cánoves P.Functional dysregulation of stem cells during aging:a focus on skeletal muscle stem cells[J].FEBS J,2013,280(17):4051-4062.
[16] 張麗勇.AKT-mTOR 信號(hào)通路在大鼠椎間盤軟骨終板細(xì)胞自然退變中的意義[J].中國(guó)老年學(xué)雜志,2016,36(15):3651-3653.
[17] Sandri M,Barberi L,Bijlsma A Y,et al.Signalling pathways regulating muscle mass in ageing skeletal muscle.The role of the IGF1-Akt-mTOR-FoxO pathway[J].Biogerontology,2013,14(3):303-323.
[18] Jaafar R,De Larichaudy J,Chanon S,et al.Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling[J].Cell Commun Sign,2013,11(1):1-15.
[19] Miniaci M C,Bucci M,Santamaria R,et al.CL316,243,a selective β3-adrenoceptor agonist,activates protein translation through mTOR/p70S6K signaling pathway in rat skeletal muscle cells[J].Pflugers Archiv-Euro J Physiol,2013,465(4):509-516.
[20] Seldin M M,Lei X,Tan S Y,et al.Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver[J].J Biol Chem,2013,288(50):36073-36082.
Effect of Different Load Exercises on Skeletal Muscle Cell Apoptosis in Mice
CEN Ren-jun1,HUA Qi-kai2,WEI Xue-liang1,ZHANG Wen-zhen3
(1.CollegeofPhysicalEducationofGuangxiUniversity,Nanning,Guangxi,530004,China;2.TheFirstAffiliatedHospitalofGuangxiMedicalUniversity,Nanning,Guangxi,530004,China;3.StomatologicalHospitalAffiliatedtoGuangxiMedicalUniversity,Nanning,Guangxi,530004,China)
To investigate the effect of different load exercise on the apoptosis of skeletal muscle cells and the expression of Akt and mTOR protein in mice,30 mice were divided into three groups,which were control group (C),high intensity exercise group (H),and exhaustive exercise group (G).The control group did not exercise training.High intensity exercise group (H) gave 25m/min exercise training.Exhaustive exercise group (G) was given 10m/min exercise training to exhaustion.After 6 weeks of exercise,the gastrocnemius muscle was taken to detect the apoptosis by TUNEL.Detection of Bcl-2,Bax,mTOR,Akt protein levels in the organization by Western blot.Content of malondialdehyde (MDA) was detected by biuret method.SOD activity was detected by xanthine oxidase method.The apoptosis indexes of high intensity exercise group (H) and exhaustion group (G) were higher than that of control group (C).The apoptosis index of high intensity exercise group (H) was higher than that of exhaustive group (G).High intensity exercise group (H) and exhaustion group (G) Bax protein levels were higher than the control group (C).High intensity exercise group (H) Bax level was higher than the exhaustive group (G).The levels of Bcl-2,mTOR and p-Akt in the high intensity exercise group (H) and the exhaustion group (G) were lower than those in the control group (C).High intensity exercise group (H) Bcl-2,mTOR,p-Akt protein levels were lower than the exhaustive group (G).High intensity exercise group (H) and (G) Akt protein levels had no significant change compared with the control group (C).High intensity exercise group (H) and exhaustion group (G) MDA contents were higher than the control group (C).The content of MDA in high intensity exercise group (H) was higher than that in exhaustion group (G).SOD activities in high intensity exercise group (H) and exhaustion group(G) were lower than that in the control group (C).High intensity exercise group (H) SOD activity was lower than the exhaustive group (G).High intensity exercise and exhaustive exercise could induce the apoptosis of skeletal muscle cells,and high intensity exercise exercise is more likely to cause apoptosis in skeletal muscle.
skeletal muscle cell; different load exercise; apoptosis; influence
2016-11-09
岑人軍(1978-),男,廣西北海人,講師,碩士,主要從事體育運(yùn)動(dòng)訓(xùn)練、運(yùn)動(dòng)醫(yī)學(xué)與運(yùn)動(dòng)人體科學(xué)。
S852.2
A
1007-5038(2017)06-0052-05