黃志輝,包永忠,潘鵬舉
?
可逆加成-斷裂鏈轉(zhuǎn)移聚合制備聚氯乙烯--聚乙二醇--聚氯乙烯共聚物
黃志輝,包永忠,潘鵬舉
(化學(xué)工程聯(lián)合國(guó)家實(shí)驗(yàn)室,浙江大學(xué)化學(xué)工程與生物工程學(xué)院,浙江杭州 310027)
合成了含黃原酸酯端基的聚乙二醇(X-PEG-X)大分子鏈轉(zhuǎn)移劑,并以其為可逆加成-斷裂鏈轉(zhuǎn)移試劑調(diào)控氯乙烯(VC)溶液和懸浮聚合,合成聚氯乙烯--聚乙二醇--聚氯乙烯(PVC--PEG--PVC)三嵌段共聚物。X-PEG-X調(diào)控VC溶液聚合得到的共聚物的分子量隨聚合時(shí)間增加而增大,分子量分布指數(shù)小于1.65。X-PEG-X具有水/油兩相分配和可顯著降低水/油界面張力的特性,以X-PEG-X為鏈轉(zhuǎn)移劑和分散劑,通過(guò)自穩(wěn)定懸浮聚合也可合成PVC--PEG--PVC共聚物,共聚物顆粒無(wú)皮膜結(jié)構(gòu),分子量隨聚合時(shí)間增加而增大;由于VC懸浮聚合具有聚合物富相和單體富相兩相聚合特性,共聚物分子量分布指數(shù)略大于溶液聚合共聚物。通過(guò)乙酸乙烯酯(VAc)擴(kuò)鏈反應(yīng)進(jìn)一步證實(shí)了PVC--PEG--PVC的“活性”,并合成PVAc--PVC--PEG--PVC--PVAc共聚物。水接觸角測(cè)試表明PVC--PEG--PVC的親水性優(yōu)于PVC。
聚合物;合成;懸浮系;聚氯乙烯;聚乙二醇;可逆加成-斷裂鏈轉(zhuǎn)移聚合
采用普通自由基聚合制備的聚氯乙烯(PVC)存在烯丙基氯等結(jié)構(gòu)缺陷,影響其熱穩(wěn)定性[1-2]?;钚宰杂苫酆希↙RP)是制備分子量分布窄、結(jié)構(gòu)規(guī)整的聚合物的重要手段。盡管氯乙烯(VC)因活性低、聚合過(guò)程向單體鏈轉(zhuǎn)移顯著而增加了LRP的難度,但VC的LRP及進(jìn)一步合成其嵌段共聚物仍引起不少研究者的興趣。一些研究報(bào)道了以Cu0或連二亞硫酸鈉為催化劑、碘代烷烴為引發(fā)劑的單電子轉(zhuǎn)移-蛻化鏈轉(zhuǎn)移(SET-DT)LRP方法[3-14],發(fā)現(xiàn)其適用于VC和丙烯酸酯類單體,由此合成了規(guī)整性好、熱穩(wěn)定性好的碘封端PVC。從碘封端的PVC或丙烯酸酯類聚合物出發(fā)[15-21],研究者們合成了由PVC和丙烯酸酯類聚合物(如聚甲基丙烯酸甲酯、聚丙烯酸丁酯、聚(丙烯酸-2-乙基己酯)、聚丙烯酸異冰片酯、聚丙烯酸羥丙酯等)嵌段組成的共聚物。氮氧調(diào)控聚合和鈷絡(luò)合物輔助LRP也可實(shí)現(xiàn)VC聚合的調(diào)控, 并用于合成PVC嵌段共聚物,但存在聚合速率較低、聚合物分子量分布較寬等不 足[22-26]??赡婕映?斷裂鏈轉(zhuǎn)移(RAFT)聚合是單體適用性廣、對(duì)聚合環(huán)境要求低、可以采用多種聚合方式(如溶液、乳液、細(xì)乳液、懸浮等)的LRP方法[27]。Abreu等[28]采用Z基團(tuán)與CS通過(guò)N連接、R基團(tuán)為強(qiáng)吸電子的CN的RAFT試劑,實(shí)現(xiàn)了VC的RAFT溶液聚合,但聚合速率較低。本課題組采用氟代黃原酸酯RAFT試劑調(diào)控VC溶液和細(xì)乳液聚合,證實(shí)了聚合的活性特性,發(fā)現(xiàn)細(xì)乳液聚合速率大,但所得PVC的分子量分布略寬于溶液聚合PVC,并通過(guò)活性PVC的擴(kuò)鏈反應(yīng)制得聚氯乙烯--聚醋酸乙烯酯嵌段共聚物[29]。
聚乙二醇(PEG)是常見(jiàn)水溶性聚合物,與PVC形成嵌段共聚物可改進(jìn)PVC親水性弱和生物相容性差的缺點(diǎn),嵌段共聚物可用作分散(乳化)劑、PVC醫(yī)用器械和分離膜的改性劑。通過(guò)含偶氮基團(tuán)的PEG大分子引發(fā)劑引發(fā)VC聚合制備PVC-PEG嵌段共聚物早期雖有報(bào)道,但產(chǎn)物的組成復(fù)雜(存在二、三嵌段共聚物和PVC均聚物等)[30]。本文通過(guò)溴化PEG與乙基黃原酸鉀的反應(yīng)合成了PEG大分子黃原酸酯(X-PEG-X),以其為鏈轉(zhuǎn)移劑進(jìn)行VC的RAFT聚合,合成PVC--PEG--PVC三嵌段共聚物,研究了聚合動(dòng)力學(xué)行為和嵌段共聚物的結(jié)構(gòu)。
圖1 PEG大分子RAFT試劑的制備過(guò)程
1.1 試劑與材料
聚合級(jí)VC由杭州電化集團(tuán)公司提供;PEG(數(shù)均分子量1000,PDI:1.03)、2-溴丙酸、二環(huán)己基碳二亞胺(DCC)、二甲氨基吡啶(DMAP)、偶氮二異庚腈(ABVN),購(gòu)自百靈威化學(xué);乙酸乙烯酯(VAc)、1,4-二氧六環(huán)、1,2-二氯乙烷、二氯甲烷、乙醚購(gòu)自國(guó)藥集團(tuán);乙基黃原酸鉀按照文獻(xiàn)[29] 制備。
1.2 PEG大分子RAFT試劑的合成
含黃原酸酯基團(tuán)的PEG大分子RAFT試劑(X-PEG-X)的制備路線如圖1所示。首先,制備溴端基的PEG(Br-PEG-Br),將0.1 g的DMAP、30.0 g的 PEG、9.7 g的2-溴丙酸、100 ml的CH2Cl2加入到250 ml燒瓶中,在0℃下攪拌10 min達(dá)到溶解;將14.8 g的 DCC溶于70 ml的 CH2Cl2中,加入到以上反應(yīng)物中,在0℃下反應(yīng)24 h,減壓過(guò)濾,將濾液濃縮后用冰乙醚沉淀,離心、30℃干燥24 h, 得到Br-PEG-Br。然后,將20.0 g Br-PEG-Br加入含100 ml CH2Cl2的250 ml燒瓶中,0℃攪拌溶解. 將9.0 g乙基黃原酸鉀溶于50 ml無(wú)水甲醇中,并緩慢滴入燒瓶,0℃反應(yīng)24 h,過(guò)濾、濾液水洗3次后用無(wú)水MgSO4干燥,再次過(guò)濾,濾液濃縮后用冰乙醚沉淀,離心、30℃干燥24 h得到X-PEG-X,產(chǎn)率約為93%。
1.3 RAFT溶液與懸浮聚合制備PVC--PEG--PVC共聚物
溶液聚合:將60 ml 1,4-二氧六環(huán)、10 mg ABVN和2.2 g X-PEG-X加入到180 ml不銹鋼封管反應(yīng)器中,N2置換3次以排除封管內(nèi)的O2;壓入約30.0 g VC單體,將反應(yīng)器放入帶攪拌裝置的水浴中,45℃進(jìn)行聚合反應(yīng);聚合達(dá)到一定時(shí)間后取出,產(chǎn)物經(jīng)甲醇沉淀、過(guò)濾、50℃干燥至恒重。
懸浮聚合:將10 mg ABVN、2.2 g X-PEG-X和60 ml去離子水加入到180 ml不銹鋼封管反應(yīng)器中,N2置換3次以排除其中的O2;壓入約30.0 g VC單體,將反應(yīng)器放入帶攪拌裝置的水浴中,聚合達(dá)到一定時(shí)間后取出,產(chǎn)物經(jīng)甲醇沉淀、過(guò)濾、50℃干燥至恒重。
1.4 PVC--PEG--PVC共聚物的擴(kuò)鏈反應(yīng)
將0.1 mmol 的PVC--PEG--PVC、5 mg AIBN、10.0 g VAc和30 ml 1,4-二氧六環(huán)加入到50 ml玻璃釜中,通氮20 min以排除釜內(nèi)O2,70℃開(kāi)始聚合,6 h后停止,經(jīng)甲醇沉淀、離心、40℃干燥得到共聚物樣品。
1.5 測(cè)試與表征
將1.0 g 的X-PEG-X溶于10 ml的1,2-二氯乙烷中,然后加入10 ml去離子水并振蕩混合;靜置24 h分層,小心吸取有機(jī)相,加入200 ml冰乙醚沉淀,離心后將固體于30℃干燥至恒重,計(jì)算X-PEG-X在水/油相兩相的分配。采用OCA20光學(xué)接觸角測(cè)試儀測(cè)試X-PEG-X水溶液/1,2-二氯乙烷的界面張力:將不同X-PEG-X濃度的1,2-二氯乙烷溶液懸滴于水中,針頭直徑0.23 mm,25℃。
聚合物分子量及分子量分布采用Waters 1525/2414型凝膠滲透色譜儀(GPC)測(cè)定,THF流動(dòng)相,流速1 ml·min-1,窄分布PS為標(biāo)樣。使用Bruker Avance 500 MHz傅里葉變換超導(dǎo)核磁共振儀進(jìn)行聚合物1H NMR表征,室溫,90°脈沖,四甲基硅烷為參比。聚合物顆粒的粒徑分布采用Coulter LS-320型激光粒徑檢測(cè)儀,室溫,光散射角度為90°,水為分散相。聚合物樣品的形貌采用Carl Zeiss Ultra55掃描電子顯微鏡觀察,真空濺射鍍膜儀(Quorum/Emitech SC7620)噴金120 s。
將聚合物溶于THF中(約120 mg·g-1),玻璃基片上澆筑成膜,60℃干燥24 h,室溫下采用OCA20光學(xué)接觸角測(cè)試儀測(cè)定聚合物膜的水接 觸角。
2.1 RAFT溶液聚合制備PVC--PEG--PVC共聚物
圖2為X-PEG-X的1H NMR譜圖。分子結(jié)構(gòu)中不同位置的氫原子有對(duì)應(yīng)位移峰,無(wú)明顯雜質(zhì)峰。通過(guò)對(duì)比峰b和f的面積,計(jì)算得出X-PEG-X中乙二醇的鏈節(jié)數(shù)為23,與采用的PEG的分子量相符。
圖2 X-PEG-X的1H NMR譜圖
圖3為典型的X-PEG-X調(diào)控VC溶液聚合產(chǎn)物的GPC曲線隨聚合時(shí)間的變化([VC]/[X-PEG-X]200 : 1)??梢?jiàn),由X-PEG-X調(diào)控得到的共聚物的GPC曲線均為單峰分布,隨著聚合時(shí)間增加,GPC曲線流出時(shí)間逐漸減小,分子量增大,呈現(xiàn)“活性”聚合特征。由此表明,X-PEG-X可以調(diào)控VC的RAFT溶液聚合,制備PVC--PEG--PVC嵌段共聚物。
圖3 X-PEG-X調(diào)控VC溶液聚合產(chǎn)物GPC曲線隨聚合時(shí)間的變化([VC]/[X-PEG-X]200:1)
表1為不同[VC]/[X-PEG-X]配比下VC溶液聚合得到的PVC--PEG--PVC共聚物的平均分子量和分子量分布。在不同[VC]/[X-PEG-X]配比下,PVC--PEG--PVC共聚物的分子量均隨聚合時(shí)間增加而增大,聚合物的分子量分布指數(shù)(PDI)都在1.65以下,表明X-PEG-X對(duì)VC溶液聚合的調(diào)控效果較好。
表1 不同[VC]/[X-PEG-X]配比下RAFT溶液聚合制備的PVC-b-PEG-b-PVC的平均分子量及分子量分布
圖4為不同分子量PVC--PEG--PVC共聚物的1H NMR譜圖。圖中a、c峰對(duì)應(yīng)于VC結(jié)構(gòu)單元中的CH和CH2,b峰對(duì)應(yīng)于PEG主鏈中的CH2,沒(méi)有明顯的PVC結(jié)構(gòu)缺陷峰。對(duì)于GPC測(cè)定的數(shù)均分子量為6060、7270和8530的PVC--PEG--PVC共聚物,從1H NMR計(jì)算出的數(shù)均分子量分別為4120、6560和7070,分別小于對(duì)應(yīng)的GPC法測(cè)定的分子量,這是由PEG和PVC鏈段在THF中具有不同的流體力學(xué)行為所致。此外,由共聚物的1H NMR結(jié)果計(jì)算的聚合8 h后的VC轉(zhuǎn)化率均小于40%。
圖4 不同分子量PVC-b-PEG-b-PVC共聚物的1H NMR譜圖
2.2 RAFT懸浮聚合制備PVC--PEG--PVC共聚物
由于VC常壓下為氣體,故以1,2-二氯乙烷為VC模擬物,研究X-PEG-X的水/油分配特性及其濃度對(duì)水/油界面張力的影響。測(cè)得X-PEG-X在水相和VC中的分配比例為0.12:0.88,說(shuō)明X-PEG-X具有親水/親油兩親特性,但親油性大于親水性,更傾向于分配在1,2-二氯乙烷相中。X-PEG-X濃度對(duì)1,2-二氯乙烷-水相界面張力的影響如圖5所示。不加X(jué)-PEG-X時(shí),1,2-二氯乙烷-水界面張力為35 mN·m-1,X-PEG-X濃度為0.02%(質(zhì)量)時(shí),界面張力下降至16 mN·m-1,繼續(xù)增加X(jué)-PEG-X濃度,界面張力下降變緩。可見(jiàn),X-PEG-X能顯著降低油-水界面張力,可促進(jìn)液-液分散。
圖5 不同X-PEG-X濃度下1,2-二氯乙烷-水的界面張力
根據(jù)X-PEG-X的以上特性,提出了一種新的VC RAFT懸浮聚合方法,即以X-PEG-X為鏈轉(zhuǎn)移劑和分散劑,不添加其他乳化劑或分散劑,進(jìn)行VC的RAFT懸浮聚合。在聚合反應(yīng)開(kāi)始前,X-PEG-X主要以溶解在VC液滴和位于水-油界面為主,少量溶解在水相。隨著聚合進(jìn)行,單體液滴中和水-油界面的X-PEG-X參與RAFT聚合形成X-PVC--PEG--PVC-X結(jié)構(gòu)。由于PVC鏈不溶于VC單體,X-PVC--PEG--PVC-X逐漸沉淀并被VC溶脹,而位于界面的嵌段共聚物對(duì)單體液滴/樹(shù)脂顆粒起膠體保護(hù)作用,防止顆粒的過(guò)度黏并,實(shí)現(xiàn)自穩(wěn)定RAFT懸浮聚合(圖6)。
圖7、圖8分別為自穩(wěn)定懸浮聚合制備的共聚物顆粒的粒徑分布和SEM照片??梢?jiàn),聚合形成的顆粒尺寸為40~120 μm,與外加分散劑(聚乙烯醇等)懸浮聚合得到PVC樹(shù)脂顆粒尺寸相當(dāng)。自穩(wěn)定懸浮聚合得到的聚合物顆粒結(jié)構(gòu)相對(duì)疏松,無(wú)明顯的皮膜結(jié)構(gòu),而傳統(tǒng)的使用聚乙烯醇分散劑的懸浮PVC樹(shù)脂存在明顯的皮膜結(jié)構(gòu)[31]。這是由于VC易與聚乙烯醇發(fā)生接枝共聚,成為皮膜;而自穩(wěn)定RAFT懸浮聚合形成的均為PVC--PEG--PVC共聚物。
圖6 VC的RAFT自穩(wěn)定懸浮聚合機(jī)理
圖7 自穩(wěn)定RAFT懸浮聚合得到的PVC-b-PEG-b-PVC共聚物的粒徑分布([VC]/[X-PEG-X]200:1, 480 min)
圖8 自穩(wěn)定RAFT懸浮聚合得到的PVC-b-PEG-b-PVC共聚物的SEM圖([VC]/[X-PEG-X]200:1, 480 min)
圖9所示為[VC]/[X-PEG-X]為200:1時(shí)所得PVC--PEG--PVC共聚物的GPC曲線隨聚合時(shí)間的變化,可見(jiàn),GPC曲線均為單峰分布,這是因?yàn)楸M管X-PEG-X在水相中有一定溶解度,但是由于引發(fā)劑ABVN在VC液滴中熱分解產(chǎn)生初級(jí)自由基,并且初級(jí)自由基的平均自由程遠(yuǎn)小于液滴尺寸,鏈引發(fā)過(guò)程發(fā)生在VC液滴內(nèi)部。隨著聚合進(jìn)行,X-PEG-X迅速生成為PVC--PEG--PVC,水相的X-PEG-X則不斷擴(kuò)散進(jìn)入VC液滴,聚合場(chǎng)所單一。
圖9 PVC-b-PEG-b-PVC共聚物的GPC曲線隨RAFT自穩(wěn)定懸浮聚合時(shí)間的變化([VC]/[X-PEG-X]200:1)
相近分子量下,RAFT自穩(wěn)定懸浮聚合制備的PVC--PEG--PVC分子量分布略寬于RAFT溶液聚合(表2),這是因?yàn)镽AFT溶液聚合為均相聚合過(guò)程,而懸浮聚合的PVC嵌段達(dá)到一定鏈長(zhǎng)后,形成的PVC--PEG--PVC共聚物不溶于VC而沉淀,形成溶脹VC的聚合物富相和溶解很少量聚合物的單體富相,這與VC懸浮聚合的兩相(單體富相和聚合物富相)機(jī)理類似[32]。由于兩相中自由基、單體擴(kuò)散速率等不同,導(dǎo)致形成的共聚物分子量分布的寬化。隨[VC]/[X-PEG-X]的增加,PVC--PEG--PVC的PDI進(jìn)一步寬化,聚合可控性變差(表2)。
表2 不同[VC]/[X-PEG-X]下RAFT自穩(wěn)定懸浮聚合制備的PVC-b-PEG-b-PVC的GPC結(jié)果
根據(jù)1H NMR計(jì)算,[VC]/[X-PEG-X]200:1和800:1時(shí),RAFT懸浮聚合8 h后的VC轉(zhuǎn)化率均為50%左右,大于RAFT溶液聚合的轉(zhuǎn)化率。
2.3 擴(kuò)鏈反應(yīng)
為進(jìn)一步確定PVC--PEG--PVC大分子RAFT試劑的反應(yīng)活性,用VAc對(duì)其進(jìn)行了擴(kuò)鏈反應(yīng),得到VAc轉(zhuǎn)化率約為12%的嵌段共聚物的GPC結(jié)果如圖10所示。
圖10 X-PEG-X、PVC-b-PEG-b-PVC及其 VAc擴(kuò)鏈產(chǎn)物的GPC曲線
X-PEG-X和PVC--PEG--PVC的GPC曲線均為單峰分布,PDI分別為1.09和1.35,經(jīng)過(guò)VAc擴(kuò)鏈后,GPC曲線仍為單峰,符合高斯分布,同時(shí)流出時(shí)間逐漸縮短,分子量增大,PDI為1.43,這表明PVC--PEG--PVC具有“活性”,通過(guò)VAc擴(kuò)鏈可制備PVAc--PVC--PEG--PVC--PVAc共聚物。
2.4 PVC--PEG--PVC共聚物的親水性
圖11為PVC均聚物(按文獻(xiàn)[18]的“活性”聚合方法制備,n11200,PDI1.65)和不同分子量PVC--PEG--PVC共聚物的動(dòng)態(tài)接觸角。PVC均聚物的初始接觸角約為98°,并且隨時(shí)間增加變化很??;PVC--PEG--PVC共聚物的初始接觸角小于80°,并且隨時(shí)間增加逐漸減小,表現(xiàn)出良好的親水性。
圖11 PVC均聚物和不同分子量PVC-b-PEG-b-PVC共聚物的動(dòng)態(tài)接觸角
通過(guò)溴端基PEG與乙基黃原酸鉀的反應(yīng)制備了含黃原酸酯端基的PEG大分子RAFT試劑(X-PEG-X),X-PEG-X不僅可調(diào)控VC溶液聚合,而且具有降低水-油界面張力的作用,可作為鏈轉(zhuǎn)移劑和分散劑實(shí)現(xiàn)VC的自穩(wěn)定RAFT溶液聚合。溶液聚合和懸浮聚合得到的PVC--PEG--PVC共聚物的分子量均隨聚合時(shí)間(轉(zhuǎn)化率)的增加而增加,且可進(jìn)一步進(jìn)行VAc的擴(kuò)鏈反應(yīng),說(shuō)明聚合具有“活性”特性,自穩(wěn)定懸浮聚合的可控性隨[VC]/[X-PEG-X]的增加而減弱。由于VC懸浮聚合的兩相特性,自穩(wěn)定懸浮聚合得到的PVC--PEG--PVC共聚物的分子量分布較溶液聚合共聚物寬。PVC--PEG--PVC共聚物的親水性優(yōu)于PVC均 聚物。
[1] STAMES W H. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride) [J]. Progress in Polymer Science, 2002, 27 (10): 2133-2170.
[2] STAMES W H. Structural defects in poly(vinyl chloride) [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43 (12): 2451-2467.
[3] ROSEN B M, PERCEC V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization [J]. Chemical Reviews, 2009, 109 (11): 5069-5119.
[4] ASANDEI A D, PERCEC V. From metal-catalyzed radical telomerization to metal catalyzed radical polymerization of vinyl chloride: toward living radical polymerization of vinyl chloride [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39 (19): 3392-3418.
[5] PERCEC V, POPOV A V, RAMIREZ-CASTILLO E,. Aqueous room temperature metal-catalyzed living radical polymerization of vinyl chloride [J]. Journal of the American Chemical Society, 2002, 124 (18): 4940-4941.
[6] PERCEC V, POPOV A V, RAMIREZ-CASTILLO E,. Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu0/tris(2-aminoethyl)amine or polyethyleneimine in water at 25℃ proceeds by a new competing pathways mechanism [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41 (21): 3283-3299.
[7] PERCEC V, POPOV A V, RAMIREZ-CASTILLO E,. Non-transition metal-catalyzed living radical polymerization of vinyl chloride initiated with iodoform in water at 25℃ [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42 (24): 6267-6282.
[8] PERCEC V, POPOV A V, RAMIREZ-CASTILLO E,. Acceleration of the single electron transfer-degenerative chain transfer mediated living radical polymerization (SET-DTLRP) of vinyl chloride in water at 25℃ [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42 (24): 6364-6374.
[9] PERCEC V, POPOV A V, RAMIREZ-CASTILLO E. Single-electron-transfer/degenerative-chain-transfer mediated living radical polymerization of vinyl chloride catalyzed by thiourea dioxide/octyl viologen in water/tetrahydrofuran at 25℃ [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43 (2): 287-295.
[10] SAMANTA S R, PERCEC V. Synthesis of high molar mass poly(-butyl acrylate) and poly(2-ethylhexyl acrylate) by SET-LRP in mixtures of fluorinated alcohols with DMSO [J]. Polymer Chemistry, 2013, 5 (1): 169-174.
[11] NGUYEN N H, LENG X F, PERCEC V. Synthesis of ultrahigh molar mass poly(2-hydroxyethyl methacrylate) by single-electron transfer living radical polymerization [J]. Polymer Chemistry, 2013, 4 (9): 2760-2766.
[12] LLIGADAS G, PERCEC V. Alkyl chloride initiators for SET-LRP of methyl acrylate [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46 (14): 4917-4926.
[13] NGUYEN N H, ROSEN B M, LLIGADAS G,. Surface-dependent kinetics of Cu(0)-wire-catalyzed single-electron transfer living radical polymerization of methyl acrylate in DMSO at 25℃ [J]. Macromolecules, 2009, 42 (7): 2379-2386.
[14] SAMANTA S R, ANASTASAKI A, WALDRON C,. SET-LRP of methacrylates in fluorinated alcohols [J]. Polymer Chemistry, 2013, 4 (22): 5563-5569.
[15] PERCEC V, GULIASHVILI T, POPOV A V,. Synthesis of poly(methyl methacrylate)--poly(vinyl chloride)--poly(methyl methacrylate) block copolymers by CuCl/2,2′-bipyridine-catalyzed living radical block copolymerization initiated from alpha, omega-di(iodo)poly(vinyl chloride) prepared by single-electron-transfer/ degenerative-chain-transfer mediated living radical polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43 (7): 1478-1486.
[16] PERCEC V, GULIASHVILI T, POPOV A V,. Ultrafast synthesis of poly(methyl methacrylate)--poly(vinyl chloride)--poly(methyl methacrylate) block copolymers by the Cu(0)/tris(2-dimethylaminoethyl)amine-catalyzed living radical block copolymerization of methyl methacrylate initiated with,-di(iodo)poly(vinyl chloride) in the presence of dimethyl sulfoxide at 25℃ [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43 (8): 1660-1669.
[17] PERCEC V, POPOV A V, RAMIREZ-CASTILLO E,. Synthesis of poly(vinyl chloride)--poly(2-ethylhexyl acrylate)--poly(vinyl chloride) by the competitive single-electron-transfer/degenerative- chain-transfer mediated living radical polymerization of vinyl chloride initiated from,-di(iodo)poly(2-ethylhexyl acrylate) and catalyzed with sodium dithionite in water [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43 (11): 2276-2280.
[18] COELHO J F J, SILVA A, POPOV A V,. Synthesis of poly(vinyl chloride)--poly(-butyl acrylate)--poly(vinyl chloride) by the competitive single-electron-transfer/degenerative-chain-transfer-mediated living radical polymerization in water [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44 (9): 3001-3008.
[19] PERCEC V, SIENKOWSKA M J. Synthesis of the four-arm star-block copolymer [PVC--PBA-CH(CH3)-CO-O-CH2]4C by SET-DTLRP initiated from a tetrafunctional initiator [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47 (2): 628-634.
[20] ROCHA N, GAMELAS J A F, GONCALVES P M,. Influence of physical-chemical interactions on the thermal stability and surface properties of poly(vinyl chloride)--poly(hydroxypropyl acrylate)-- poly(vinyl chloride) block copolymers [J]. European Polymer Journal, 2009, 45 (12): 3389-3398.
[21] ROCHA N, COELHO J F J, GOIS J R,. Poly(vinyl chloride)--poly(hydroxypropyl acrylate)--poly(vinyl chloride): understanding the synthesis of an amphiphilic PVC block copolymer on a pilot scale [J]. Journal of Vinyl & Additive Technology, 2013, 19 (2): 94-104.
[22] WANNEMACHER T, BRAUN D, PFAENDNER R. Novel copolymersnitroxide mediated controlled free radical polymerization of vinyl chloride [J]. Macromolecular Symposia, 2003, 202 (1): 11-24.
[23] GRISHIN D F, SEMENYCHEVA L L, PAVLOVSKAYA M V,. Features of radical polymerization of vinyl chloride in the presence of nitroxyl radicals [J]. Russian Journal of Applied Chemistry, 2001, 74 (9): 1594-1599.
[24] ABREU C M R, MENDONCA P V, SERRA A C,. Nitroxide-mediated polymerization of vinyl chloride at low temperature: kinetic and computational studies [J]. Macromolecules, 2016, 49 (2): 490-498.
[25] PIETTE Y, DEBUIGNE A, JEROME C,. Cobalt-mediated radical (co)polymerization of vinyl chloride and vinyl acetate [J]. Polymer Chemistry, 2012, 3 (10): 2880-2891.
[26] PIETTE Y, DEBUIGNE A, BODART V,. Synthesis of poly(vinyl acetate)--poly(vinyl chloride) block copolymers by cobalt-mediated radical polymerization (CMRP) [J]. Polymer Chemistry, 2013, 4 (5): 1685-1693.
[27] MOAD G, RIZZARDO E, THANG S H. Living radical polymerization by the RAFT process—a second update [J]. Australian Journal of Chemistry, 2009, 62 (11): 1402-1472.
[28] ABREU C M R, MENDONCA P V, SERRA A C,. Reversible addition-fragmentation chain transfer polymerization of vinyl chloride [J]. Macromolecules, 2012, 45 (5): 2200-2208.
[29] HUANG Z H, PAN P J, BAO Y Z. Solution and aqueous miniemulsion polymerization of vinyl chloride mediated by a fluorinated xanthate [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54 (14): 2092-2101.
[30] LAVERTY J J, GARDLUND Z G. Poly(vinyl chloride)-poly(ethylene oxide) block copolymers: Synthesis and characterization [J]. Journal of Polymer Science: Polymer Chemistry Edition, 1977, 15 (8): 2001-2011.
[31] SMALLWOOD P V. The formation of grains of suspension poly(vinyl chloride) [J].Polymer, 1986, 27 (10): 1609-1618.
[32] ALEXOPOULOS A H, KIPARISSIDES C. On the prediction of internal particle morphology in suspension polymerization of vinyl chloride (Ⅰ): The effect of primary particle size distribution [J]. Chemical Engineering Science, 2007, 62 (15): 3970-3983.
Synthesis of poly(vinyl chloride)--poly(ethylene glycol)--poly(vinyl chloride) block copolymers by reversible addition-fragmentation chain transfer polymerizations
HUANG Zhihui, BAO Yongzhong, PAN Pengju
(State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University,Hangzhou 310027, Zhejiang, China)
Poly(ethylene glycol) terminated with xanthate (X-PEG-X) was synthesized and used as the reversible addition-fragmentation chain transfer (RAFT) agent for controlling vinyl chloride (VC) solution and suspension polymerizations to synthesize poly(vinyl chloride)--poly(ethylene glycol)--poly(vinyl chloride) (PVC--PEG--PVC) triblock copolymers. Results show that the molecular weights (MW) of block copolymers prepared by the solution polymerization are increased with the polymerization conversion, and the molecular weight distribution (MWD) index is lower than 1.65. X-PEG-X is amphiphilic and can effectively reduce the interfacial tension between water and oil. Thus, a novel VC RAFT suspension polymerization method was proposed to prepare PVC--PEG--PVC copolymers using X-PEG-X as the RAFT agent and a suspending agent. The block copolymer particles have no surface membranes, and MW of copolymer is increased with conversion. However, the block copolymers prepared by suspension polymerization exhibit wider MWD than the block copolymers prepared by solution polymerization, due to the two-phase mechanism of VC suspension polymerization. The chain extension of PVC--PEG--PVC with vinyl acetate (VAc) further prove the “l(fā)iving” nature of PVC--PEG--PVC copolymers and result the formation of PVAc--PVC--PEG--PVC--PVAc copolymer. PVC--PEG--PVC copolymers exhibit better hydrophilicity than PVC.
polymers; synthesis; suspensions; poly(vinyl chloride); poly(ethylene glycol); reversible addition- fragmentation chain transfer polymerization
10.11949/j.issn.0438-1157.20170011
TQ 325.3
A
0438—1157(2017)06—2569—08
包永忠。
黃志輝(1985—),男,博士研究生。
國(guó)家自然科學(xué)基金(21676235)。
2017-01-05收到初稿,2017-02-16收到修改稿。
2017-01-05.
Prof.Bao Yongzhong, yongzhongbao@zju.edu.cn
supported by the NationalNatural Science Foundation of China (21676235).