黃 琳 滕美君 徐竟男 張純潔 鐘克禎 程名揚(yáng) 陶雅軍
(大連大學(xué)醫(yī)學(xué)院,大連116622)
HIF-1α、ALDH1和Hedgehog信號通路協(xié)同促進(jìn)三陰性乳腺癌中癌癥干細(xì)胞活化的相關(guān)性研究①
黃 琳 滕美君 徐竟男 張純潔 鐘克禎 程名揚(yáng) 陶雅軍
(大連大學(xué)醫(yī)學(xué)院,大連116622)
目的:探討HIF-1α、ALDH1和Hedgehog信號通路在三陰性乳腺癌中癌癥干細(xì)胞活化的相關(guān)性及其臨床意義。方法:采用免疫磁珠法從三陰性乳腺癌細(xì)胞系MDA-MB-231細(xì)胞中分選出ALDH1+乳腺癌干細(xì)胞和ALDH1-乳腺癌細(xì)胞,采用qRT-PCR方法比較HIF-1α和Hedgehog信號傳導(dǎo)通路主要分子SHH、PTCH1、SMO、GLI1在這兩種細(xì)胞中的表達(dá)差異;采用免疫組化方法了解HIF-1α和ALDH1在三陰性乳腺癌組織中的表達(dá)以及與干細(xì)胞信號傳導(dǎo)通路Hedgehog的相互關(guān)系。結(jié)果:HIF-1α mRNA、SMO mRNA和GLI1 mRNA在ALDH1+乳腺癌干細(xì)胞中的表達(dá)均明顯高于ALDH1-乳腺癌細(xì)胞,差異具有顯著統(tǒng)計學(xué)意義(P均<0.05)。在三陰性乳腺癌與非三陰性乳腺癌組織中HIF-1α的陽性表達(dá)率分別為90.0%和70.0%,ALDH1的陽性表達(dá)率分別為93.3%和66.7%,差異均具有顯著統(tǒng)計學(xué)意義(P均<0.05)。在三陰性乳腺癌組織中HIF-1α和ALDH1的表達(dá)呈正相關(guān)(r=0.53,P<0.01)。HIF-1α的表達(dá)與三陰性乳腺癌的淋巴結(jié)轉(zhuǎn)移和TNM分期有關(guān)(P均<0 .05),ALDH1的表達(dá)與組織學(xué)分級和TNM分期有關(guān)(P均<0.05)。HIF-1α與Hedgehog信號通路分子SHH(r=0.584,P<0.01)、SMO(r=0.467,P<0.01)和GLI1(r=0.439,P<0.05)的表達(dá)呈正相關(guān),ALDH1與SHH(r=0.426,P<0.05)和GLI1(r=0.394,P<0.05)的表達(dá)呈正相關(guān)。結(jié)論:HIF-1α和Hedgehog信號通路在ALDH1+乳腺癌干細(xì)胞中活化,HIF-1α、ALDH1與Hedgehog信號傳導(dǎo)通路可能相互協(xié)同激活癌癥干細(xì)胞從而促進(jìn)三陰性乳腺癌的惡性進(jìn)展。
三陰性乳腺癌;癌癥干細(xì)胞;HIF-1α;ALDH1;Hedgehog信號通路
癌癥干細(xì)胞(Cancer stem cell,CSC)具有自我更新、分化與無限增殖能力,與腫瘤的持續(xù)增殖、抗凋亡、轉(zhuǎn)移、復(fù)發(fā)及耐藥等惡性生物學(xué)行為關(guān)系密切。乳腺癌是一類在分子水平上具有高度異質(zhì)性的疾病。2000年,Perou等[1]最先對乳腺癌的基因表達(dá)進(jìn)行研究,將乳腺癌分成luminal A型(ER+HER-2-)、luminal B型(ER+HER-2+)、ER-/HER-2+型、basal-like型(ER-HER-2-)及normal breast-like型等。在basal-like型乳腺癌中ER-PR-HER-2-亞型被稱為三陰性乳腺癌(Triple negative breast cancer,TNBC)[2],約占全部乳腺癌的10%~17%。與其他類型乳腺癌相比,TNBC更富有侵襲性,轉(zhuǎn)移早、復(fù)發(fā)率高、耐藥且患者預(yù)后較差,該類型乳腺癌患者的臨床病理改變符合癌癥干細(xì)胞性腫瘤的特點,有研究發(fā)現(xiàn)活化的CSC在TNBC組織中的含量明顯高于其他類型乳腺癌[3],故又被稱為干細(xì)胞性乳腺癌[4,5],但在TNBC中CSC活化的機(jī)制迄今還不清楚。
缺氧誘導(dǎo)因子-1α(Hypoxia-inducible factor-1α,HIF-1α)是維持細(xì)胞內(nèi)氧代謝平衡的重要調(diào)控因子[6],有研究發(fā)現(xiàn)在乳腺腫瘤中HIF-1α可通過促進(jìn)CSC活化來調(diào)控腫瘤細(xì)胞的生長和轉(zhuǎn)移[7]。ALDH1(Aldehyde dehydrogenase 1)是細(xì)胞內(nèi)乙醛氧化脫氫酶,是干細(xì)胞生長、分化的必需物質(zhì),也是目前CSC標(biāo)記物研究的熱點之一[8]。Hedgehog信號通路在維持干細(xì)胞的增殖潛能、自我更新方面具有重要作用[9],該通路紊亂可能與惡性腫瘤的發(fā)生、發(fā)展有關(guān)[10]。本課題在前期研究中發(fā)現(xiàn)Hedgehog這一干細(xì)胞信號傳導(dǎo)通路在三陰性乳腺癌中的表達(dá)明顯增強(qiáng),其與乳腺癌的浸潤轉(zhuǎn)移以及預(yù)后關(guān)系密切,抑制Hedgehog信號傳導(dǎo)通路可明顯抑制乳腺癌細(xì)胞的增殖與侵襲[5]。本研究擬通過了解TNBC細(xì)胞或組織中HIF-1α、ALDH1和Hedgehog信號通路主要分子Sonic hedgehog(SHH)、patched1(PTCH1)、Smoothened(SMO)和Glioma-associated oncogene homoglog1(GLI1)的表達(dá)及其相互關(guān)系進(jìn)一步探討三陰性乳腺癌中癌癥干細(xì)胞活化的機(jī)制及其在三陰性乳腺癌惡性進(jìn)展中的作用。
1.1 材料
1.1.1 細(xì)胞與臨床標(biāo)本 乳腺癌MDA-MB-231細(xì)胞為本室保存。30例TNBC和30 例非三陰性乳腺癌(non-triple-negative breast cancer,non-TNBC)組織石蠟標(biāo)本均采集自2008年5月~2012年11月大連市中心醫(yī)院病理科存檔標(biāo)本,全部乳腺癌患者術(shù)前均未接受放療、化療、激素或免疫治療,病理類型均為浸潤性導(dǎo)管癌。
1.1.2 試劑 DMEM/F12培養(yǎng)基、EGF、bFGF和B27(Gibco公司);胎牛血清(浙江天杭生物科技有限公司);Trypsin-EDTA(Gibco公司);TRIzol、Super-ScriptTMⅢ First-Strand Synthesis Kit(Invitrogen公司);免疫磁珠分選系統(tǒng)(Bioworld公司);HIF-1α(ab51608)、SHH(ab53281) 、GLI1(ab49314)單克隆抗體和SMO(ab72130)、PTCH1(ab53715)兔抗人多克隆抗體(Abcam公司);ALDH1(sc-50385) 兔抗人單克隆抗體(Santa cruz公司);SP廣譜超敏試劑盒、DAB 酶底物顯色劑(福建邁新生物技術(shù)開發(fā)公司)。
1.2 實驗方法
1.2.1 細(xì)胞培養(yǎng) 含10%胎牛血清的DMEM/F12培養(yǎng)基于37℃ 5%CO2培養(yǎng)箱中培養(yǎng)MDA-MB-231細(xì)胞,每3 d換液一次,并傳代培養(yǎng)。
1.2.2 免疫磁珠篩選 0.25%Trypsin-EDTA(Gibco公司)消化處于對數(shù)生長期的MDA-MB-231細(xì)胞,制備單細(xì)胞懸液,以1×105ml-1接種于含20 U/L EGF、20 U/L bFGF和2%B27的DMEM/F12無血清培養(yǎng)液中繼續(xù)培養(yǎng)。收集懸浮細(xì)胞,制成單細(xì)胞懸液,調(diào)整細(xì)胞總數(shù)為2×107ml-1。加入10 μg ALDH1一抗(Santa cruz公司)與40 μl IgG免疫磁珠(Bioworld公司)混勻,過磁性分選柱,ALDH1+細(xì)胞被吸附在分選柱中,收集流出的ALDH1-細(xì)胞并計數(shù)。將分選柱脫離磁場,用PBE沖洗分選柱,收集ALDH1+細(xì)胞并計數(shù)。
1.2.3 Real-time RT-PCR 應(yīng)用TRIzol試劑(Invi-trogen)從分選出的ALDH1+的乳腺癌干細(xì)胞和ALDH1-乳腺癌細(xì)胞中分別提取總RNA并按照試劑盒(SuperScriptTMⅢ First-Strand Synthesis Kit,Invitrogen,USA)說明書操作逆轉(zhuǎn)錄成cDNA,引物序列如下:HIF-1α F primer:5′-CAGAGCAGGAAAAGGAGTCA-3′,R primer:5′-AGTAGCTGCATGATCG-TCTG-3′;SHH F primer:5′-CAGCGGAAGGTATGAAGGGAA-3′,R primer:5′-GCCAAAGCGTTCAA-CTTGTCCT-3′;PTCH1 F primer:5′-CTGGCAGGAGGAGTTGATTG-3′,R primer:5′-TTGAAGTGCTCGTACATTTGCT-3′;SMO F primer:5′-CTTTGTCATCGTGTACTACGCC-3′,R primer:5′-CGAGAGAGGCT-GGTAGGTG-3′;GLI1 F primer:5′-GAACCCTTGGAAGGTGATATGTC-3′,R primer:5′-GGCA-GTCAG-TTTCATACACAGAT-3′;GAPDH F primer:5′-CATGAGAAGTATGACAACAGCCT-3′,R primer:5′- AGTCCTTCCACGATACCAAAGT-3′,引物由上海生工公司合成,GAPDH作為內(nèi)參。qPCR反應(yīng)體系包括:2×Real-time PCR Master Mix 10 μl,上游引物(20 μmol/L)0.1 μl,下游引物(20 μmol/L)0.1 μl,cDNA template 2 μl,rTaq DNA polymerase(5 U/μl)0.4 μl,加ddH2O至20 μl。反應(yīng)條件為95℃ 3 min,95℃ 30 s,62℃ 40 s,共40個循環(huán)。
1.2.4 免疫組織化學(xué)方法 免疫組化SP法及DAB顯色操作步驟均按照說明書進(jìn)行。免疫組化結(jié)果采用半定量法進(jìn)行判定,根據(jù)染色密度(陰性=0、弱陽性=1、中度陽性=2、強(qiáng)陽性=3)和陽性細(xì)胞百分比(0=陰性、1=<25%、2=25%~50%、3=51%~75%、4=>75%)的乘積計算5個高倍視野的免疫反應(yīng)評分(Immuno-Reactive score,IRS)。最后結(jié)果:陰性(IRS:0):-,弱陽性(IRS:1~4):+,中度陽性(IRS:5~8):++,強(qiáng)陽性(IRS:9~12):+++。
1.3 統(tǒng)計學(xué)分析 采用SPSS17.0統(tǒng)計軟件(SPSS Inc.,Chicago,IL,USA)進(jìn)行數(shù)據(jù)分析,對HIF-1α mRNA、SHH mRNA、PTCH1 mRNA、SMO mRNA、GLI1 mRNA在ALDH1+乳腺癌干細(xì)胞和ALDH1-乳腺癌細(xì)胞中的表達(dá)量2-ΔΔCt行One-way ANOVA檢驗,采用Pearson卡方檢驗對HIF-1α、ALDH1在TNBC或non-TNBC組織中的表達(dá)進(jìn)行分析,采用Spearman等級相關(guān)分析HIF-1α和ALDH1以及Hedgehog信號分子的相互關(guān)系,P<0.05表示差異具有統(tǒng)計學(xué)意義。
2.1 HIF-1α和Hedgehog信號通路主要分子SHH、PTCH1、SMO、GLI1在ALDH1+乳腺癌干細(xì)胞和ALDH1-乳腺癌細(xì)胞中的表達(dá) HIF-1α mRNA、SMO mRNA和GLI1 mRNA在ALDH1+乳腺癌干細(xì)胞中的表達(dá)均明顯高于ALDH1-乳腺癌細(xì)胞,差異具有顯著統(tǒng)計學(xué)意義(P均<0.05),而SHH mRNA和PTCH1 mRNA在兩種細(xì)胞中的表達(dá)未見顯著性差異(P均>0.05),見圖1。
2.2 HIF-1α和ALDH1在TNBC組織中的表達(dá) HIF-1α抗體陽性著色部位在胞漿和胞核,ALDH1抗體陽性著色部位主要在胞漿(圖2)。在TNBC組織中HIF-1α的陽性表達(dá)率為90.0%(27/30),與non-TNBC的陽性表達(dá)率70.0%(21/30)比較,差異具有統(tǒng)計學(xué)意義(P<0.05)。ALDH1在TNBC組織的陽性表達(dá)率為93.3%(28/30),亦與non-TNBC的陽性表達(dá)率66.7%(20/30)具有顯著性差異(P<0.05)。Spearman等級相關(guān)分析提示在TNBC中HIF-1α和ALDH1的表達(dá)呈正相關(guān)(r=0.53,P<0.01),結(jié)果見表1。
2.3 HIF-1α和ALDH1的表達(dá)與TNBC臨床病理因素的關(guān)系 結(jié)果見表2,病理分期依據(jù)AJCC 標(biāo)準(zhǔn)[11]。HIF-1α在有淋巴結(jié)轉(zhuǎn)移的TNBC組織中表達(dá)明顯增高(P<0.05),ALDH1的表達(dá)與組織學(xué)分級有關(guān)(P<0.05),HIF-1α和ALDH1的表達(dá)均與TNM分期有關(guān)(P<0.05)。
2.4 HIF-1α和ALDH1與Hedgehog信號傳導(dǎo)通路分子的相互關(guān)系 本課題在前期研究中發(fā)現(xiàn)Hedgehog信號通路在TNBC組織中處于活化狀態(tài),SHH和SMO的表達(dá)與TNBC的組織學(xué)分級相關(guān),GLI1的表達(dá)與淋巴結(jié)轉(zhuǎn)移相關(guān),SMO和GLI1的表達(dá)均與TNM分期相關(guān)[5]。本研究結(jié)果顯示在TNBC中HIF-1α的表達(dá)與SHH、SMO和GLI1均呈正相關(guān)(P均<0.05),ALDH1的表達(dá)亦與SHH和GLI1正相關(guān)(P均<0.05),見表3。
圖1 HIF-1α和Hedgehog信號通路主要分子在ALDH1+乳腺癌干細(xì)胞和ALDH1-乳腺癌細(xì)胞中的表達(dá)Fig.1 Expression of HIF-1α and Hedgehog signaling molecules in ALDH1+ breast cancer stem cell and ALDH1- breast cancer cell Note: The expression of HIF-1α and Hedgehog signaling molecules SHH,PTCH1,SMO and GLI1 in ALDH1+ breast cancer stem cell and ALDH1- breast cancer cell were examined by qRT-PCR.*.P<0.05,compared to ALDH1- breast cancer cell.
TypeTNBCnon-TNBCPHIF-1α8.60±2.379.47±3.66<0.05ALDH19.67±3.458.20±2.39<0.05
表2 HIF-1α和ALDH1與TNBC臨床病理因素的關(guān)系(n=30)
Tab.2 Association between HIF-1α and ALDH1 expressions and clinicopathological parameters of TNBC patients(n=30)
ClinicopathologicalparametersNo.ofcasesMedianexpressionofHIF-1αPMedianexpressionofALDH1PHistologicgrade>0.05<0.05Ⅰ82.25±0.712.33±0.50Ⅱ113.73±0.475.18±2.52Ⅲ113.91±1.044.82±1.60Lymphaticinvolvement<0.05>0.05N0123.18±0.873.83±1.40N1-2186.79±1.556.33±2.83pTNM<0.05<0.05Ⅰ73.86±1.953.86±1.95Ⅱa92.78±1.203.00±1.22Ⅱb63.00±1.552.33±0.82Ⅲa42.20±1.092.20±1.09Ⅳ42.20±1.094.00±0.00
表3 HIF-1α和ALDH1與Hedgehog信號傳導(dǎo)通路分子在TNBC中表達(dá)的相關(guān)性
Tab.3 Correlation of expressions between HIF-1α and ALDH1 and Hedgehog signaling molecules in TNBC
TypeSHHrPPTCH1rPSMORPGLI1RPHIF-1α0.584<0.01-0.033>0.050.467<0.010.439<0.05ALDH10.426<0.05-0.056>0.050.176>0.050.394<0.05
Note:rrepresents Spearman′s rank correlation coefficient.
圖2 HIF-1α和ALDH1在乳腺癌組織中的表達(dá)(SP,×200)Fig.2 Expression of HIF-1α and ALDH1 in breast cancer(SP,×200)Note: A.HIF-1α located in the cytoplasm and nucleus of breast cancer;B.ALDH1 located in the cytoplasm of breast cancer;C.Normal breast tissue.
TNBC的高復(fù)發(fā)率、耐藥以及易發(fā)生遠(yuǎn)隔臟器轉(zhuǎn)移的特性與組織內(nèi)富含較多的CSC關(guān)系密切。當(dāng)前臨床放化療主要對快速增殖的腫瘤細(xì)胞有效,而處于慢周期的CSC往往逃避放化療的殺滅作用[12,13],故目前臨床上對于TNBC尚無有效治療措施。TNBC組織中CSC的分子調(diào)控機(jī)制尚不清楚,如何靶向抑制CSC的活化或消滅CSC成為目前TNBC治療的難題和關(guān)鍵。因此,了解TNBC的分子調(diào)控機(jī)制、找到靶向調(diào)控CSC的因子并應(yīng)用于臨床,將會有助于改善TNBC患者的預(yù)后。
HIF-1對環(huán)境中氧的含量變化非常敏感,是維持細(xì)胞內(nèi)氧代謝平衡的重要調(diào)控因子。HIF-1α是HIF-1活性亞單位,在正常氧壓情況下,HIF-1α可因前羥基化酶的羥基化而快速降解,在缺氧狀態(tài)下,HIF-1α的羥基化進(jìn)程停止,穩(wěn)定狀態(tài)的HIF-1α轉(zhuǎn)入細(xì)胞核,與結(jié)構(gòu)表達(dá)亞單位HIF-1β結(jié)合[14,15],形成異質(zhì)二聚體再與靶基因啟動子的缺氧應(yīng)答元件相結(jié)合,從而激活靶基因的轉(zhuǎn)錄[16]。HIF-1α在缺氧的腫瘤組織里往往高表達(dá),其介導(dǎo)多種基因的轉(zhuǎn)錄幫助腫瘤細(xì)胞適應(yīng)不利的腫瘤微環(huán)境[17,18]。Lacerda等[19]發(fā)現(xiàn)在乳腺腫瘤中HIF-1α沉默可減少腫瘤起始細(xì)胞的數(shù)量和活性、Conley等[20]報道經(jīng)過抗腫瘤治療后在乳腺腫瘤的缺氧區(qū)域可重新出現(xiàn)并富含CSC,Keith等[21]報道HIF-1α過表達(dá)與乳腺癌復(fù)發(fā)和預(yù)后差有關(guān)。與這些報道類似,本研究發(fā)現(xiàn)在分選出的ALDH1+乳腺癌干細(xì)胞中HIF-1α的表達(dá)明顯高于ALDH1-乳腺癌細(xì)胞,同時發(fā)現(xiàn)HIF-1α在TNBC組織中的表達(dá)亦明顯高于其在non-TNBC中的表達(dá),HIF-1α的表達(dá)與TNBC的淋巴結(jié)轉(zhuǎn)移和TNM分期相關(guān),這些結(jié)果提示HIF-1α在乳腺癌干細(xì)胞的活化以及TNBC的惡性進(jìn)展中發(fā)揮重要作用。
ALDH1在多發(fā)性骨髓瘤、急性髓性白血病、肺癌、前列腺癌、結(jié)直腸癌等的干細(xì)胞中均有高表達(dá),目前已成為CSC標(biāo)記物之一[22-24]。Ginestier等[25]發(fā)現(xiàn)ALDH1活性增加的乳腺癌患者的乳腺上皮細(xì)胞具有干/祖細(xì)胞特性,他們將ALDH1+乳腺癌細(xì)胞接種于NOD/SCID小鼠去除乳腺的脂肪墊內(nèi),發(fā)現(xiàn)500個ALDH1+乳腺癌細(xì)胞就能形成腫瘤,而即使接種50 000個ALDH1-細(xì)胞也不會形成腫瘤,說明ALDH1+細(xì)胞具有較強(qiáng)的致瘤能力。此外富含ALDH1的乳腺癌細(xì)胞擁有自我更新潛能、分化潛能以及無限增殖能力,可以重現(xiàn)親代腫瘤的雜合性,并與患者預(yù)后差密切相關(guān)[26,27],提示ALDH1對于維持CSC的干性具有重要作用。Hedgehog信號通路由分泌型配體SHH、受體PTCH1以及下游信號分子SMO和GLI1等組成,原癌基因SMO和GLI1的高表達(dá)是目前公認(rèn)的Hedgehog信號通路激活的標(biāo)志之一。激活的Hedgehog信號通路可通過調(diào)控干細(xì)胞相關(guān)基因的表達(dá)及與其他相關(guān)信號通路和致癌因子相互作用從而維持CSC的增殖、自我更新并促進(jìn)腫瘤的發(fā)生發(fā)展。本研究結(jié)果顯示ALDH1在TNBC組織中的表達(dá)明顯高于其在non-TNBC中的表達(dá),其表達(dá)與TNBC的組織學(xué)分級和TNM分期均相關(guān),提示ALDH1的表達(dá)增強(qiáng)與TNBC的惡性進(jìn)展關(guān)系密切。此外,本研究發(fā)現(xiàn)在分選出的ALDH1+乳腺癌干細(xì)胞中Hedgehog信號通路主要分子SMO和GLI1的表達(dá)明顯高于ALDH1-乳腺癌細(xì)胞,提示在ALDH1+乳腺癌干細(xì)胞中Hedgehog信號通路活化。在TNBC組織中ALDH1的表達(dá)與SHH和GLI1的表達(dá)相關(guān)、亦與HIF-1α的表達(dá)關(guān)系密切,而HIF-1α的表達(dá)與SHH、SMO和GLI1均呈正相關(guān)。這些研究結(jié)果提示在TNBC組織中HIF-1α、ALDH1可能與Hedgehog信號通路相互作用協(xié)同促進(jìn)乳腺癌CSC的活化并參與TNBC的惡性進(jìn)展,但具體機(jī)制不清。因此,進(jìn)一步了解在TNBC組織中CSC活化的機(jī)理、阻斷HIF-1α、ALDH1和Hedgehog信號通路的相互作用對于抑制TNBC的惡性進(jìn)展、改善患者的預(yù)后可能具有重要的臨床病理意義。
[1] Perou CM,Sorlie T,Eisen MB,etal.Molecular portraits of human breast tumors[J].Nature,2000,406(6797):747-752.
[2] Maka VV,Pancha H,Shukla SN,etal.Clinical characteristics and prognostic analysis of Triple-negative breast cancer:Single institute experience[J].Gulf J Oncolog,2016,1(20):38-44.
[3] Idowu MQ,Kmieciak M,Dumur C,etal.CD44(+)/CD24(-/low)cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome[J].Hum Pathol,2012,43(3):364-373.
[4] Wang X,Jung YS,Jun S,etal.PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness[J].Nat Commun,2016,7:10633.
[5] Tao Y,Mao J,Zhang Q,etal.Overexpression of Hedgehog signalling molecules and its involvement in triple-negative breast cancer[J].Oncol Letters,2011,2(5):995-1001.
[6] Cui XY,Tinholt M,Stavik B,etal.Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer[J].J Thromb Haemost,2016,14(2):387-396.
[7] Brooks DL,Schwab LP,Krutilina R,etal.ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models[J].Mol Cancer,2016,15:26.
[8] Chute JP,Muramoto GG,Whitesides J,etal.Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells[J].Proc Natl Acad Sci U S A,2006,103(31):11707-11712.
[9] Kasper M,Jaks V,Fiaschi M,etal.Hedgehog signaling in breast cancer[J].Carcinogenesis,2009,30(6):903-911.
[10] Liu S,Dontu G,Mantle ID,etal.Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells[J].Cancer Res,2006,66(12):6063-6071.
[11] Singletary SE,Connolly JL.Breast cancer staging:working with the sixth edition of the AJCC cancer staging manual[J].CA Cancer J Clin,2006,56(1):37-47.
[12] Liu H,Patel MR,Prescher JA,etal.Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models[J].Proc Natl Acad Sci U S A,2010,107(42):18115-18120.
[13] Liang DH,Choi DS,Ensor JE,etal.The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair[J].Cancer Lett,2016,376(2):249-258.
[14] Semenza GL.Targeting HIF-1 for cancer therapy[J].Nat Rev Cancer,2003,3(10):721-732.
[15] Wenger RH.Cellular adaptation to hypoxia:O2-sensing protein hydroxylases,hypoxia-inducible transcription factors,and O2-regulated gene expression[J].FASEB J,2002,16(10):1151-1162.
[16] Semenza GL.HIF-1,O(2),and the 3 PHDs:how animal cells signal hypoxia to the nucleus[J].Cell,2001,107(1):1-3.
[17] Semenza GL.Hypoxia-inducible factors in physiology and medicine[J].Cell,2012,148(3):399-408.
[18] Iriondo O,Rábano M,Domenici G,etal.Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions[J].Oncotarget,2015,6(31):31721-31739.
[19] Lacerda L,Pusztai L,Woodward WA.The role of tumor initiating cells in drug resistance of breast cancer:Implications for future therapeutic approaches[J].Drug Resist Updat,2010,13(4-5):99-108.
[20] Conley SJ,Gheordunescu E,Kakarala P,etal.Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia[J].Proc Natl Acad Sci U S A,2012,109(8):2784-2789.
[21] Keith B,Johnson RS,Simon MC.HIF1alpha and HIF2alpha:sibling rivalry in hypoxic tumour growth and progression[J].Nat Rev Cancer,2012,12(1):9-22.
[22] Hess DA,Wirthlin L,Craft TP,etal.Selection based on CD133 and high aldehyde dehydrogenase activity isolates longterm reconstituting human hematopoietic stem cells[J].Blood,2006,107(5):2162-2169.
[23] Li C,Heidt DG,Dalerba P,etal.Identification of pancreatic cancer stem cells[J].Cancer Res,2007,67(3):1030-1037.
[24] Kida K,Ishikawa T,Yamada A,etal.Effect of ALDH1 on prognosis and chemoresistance by breast cancer subtype[J].Breast Cancer Res Treat,2016,156(2):261-269.
[25] Ginestier C,Hur MH,Charafe-Jauffret E,etal.ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J].Cell Stem Cell,2007,1(5):555-567.
[26] Mansour SF,Atwa MM.Clinicopathological Significance of CD133 and ALDH1 Cancer Stem Cell Marker Expression in Invasive Ductal Breast Carcinoma[J].Asian Pac J Cancer Prev,2015,16(17):7491-7496.
[27] Li H,Ma F,Wang H,etal.Stem cell marker aldehyde dehydrogenase 1(ALDH1)-expressing cells are enriched in triple-negative breast cancer[J].Int J Biol Markers,2013,28(4):e357-364.
[收稿2016-04-18 修回2016-12-05]
(編輯 倪 鵬)
Research of HIF-1α,ALDH1 and Hedgehog signaling pathway cooperation involved in activation of cancer stem cell in triple negative breast cancer
HUANGLin,TENGMei-Jun,XUJing-Nan,ZHANGChun-Jie,ZHONGKe-Zhen,CHENGMing-Yang,TAOYa-Jun.
MedicalCollegeofDalianUniversity,Dalian116622,China
Objective:To explore the cooperation and clinical significance of HIF-1α,ALDH1 and Hedgehog signaling pathway in the activation of cancer stem cell(CSC) in triple negative breast cancer(TNBC).Methods: ALDH1+(Aldehyde dehydrogenase1)breast cancer stem cells and ALDH1-breast cancer cells were selected from MDA-MB-231 cells by magnetic activated cell sorting system(MACS),qRT-PCR method was employed to analyze the expression differences of HIF-1α and Hedgehog signaling molecules Sonic hedgehog(SHH),patched1(PTCH1),Smoothened(SMO) and Glioma-associated oncogene homoglog1(GLI1) in ALDH1+breast cancer stem cells and ALDH1-breast cancer cells.Immunohistochemical method was applied to study the expressions of HIF-1α and ALDH1 and the relationships among HIF-1α,ALDH1 and Hedgehog signaling molecules in TNBC.Results: The expressions of HIF-1α mRNA,SMO mRNA and GLI1 mRNA in ALDH1+breast cancer stem cell were higher than those in ALDH1-breast cancer cell(Pall<0.05).The positive expression rates of HIF-1α were 90.0% and 70.0%,and the positive rates of ALDH1 were 93.3 % and 66.7 % in TNBC and non-TNBC,respectively(Pall<0.05).Spearman rank correlation analysis showed that the expression of HIF-1α was positively related with that of ALDH1 in TNBC(r=0.53,P<0.01).HIF-1α expression was correlated with lymph node metastasis and TNM stage(Pall<0.05),ALDH1 expression was correlated with histological grade and TNM stage(Pall<0.05).In addition,the expression of HIF-1α was positively related with that of Hedgehog signaling molecules SHH(r=0.584,P<0.01),SMO(r=0.467,P<0.01) and GLI1(r=0.439,P<0.05),the expression of ALDH1 was positively related with that of SHH(r=0.426,P<0.05) and GLI1(r=0.394,P<0.05).Conclusion: HIF-1α and Hedgehog signaling pathway were activated in ALDH1+breast cancer stem cell.HIF-1α,ALDH1 and Hedgehog molecules may cooperate with each other to activate breast CSC to promote the malignant progression of TNBC.
Triple negative breast cancer;Cancer stem cell;HIF-1α;ALDH1;Hedgehog signaling
10.3969/j.issn.1000-484X.2017.05.013
黃 琳(1995年-),女,主要從事乳腺癌轉(zhuǎn)移機(jī)制方面的研究,E-mail:247403619@qq.com。
及指導(dǎo)教師:陶雅軍(1969年-),女,博士,副教授,主要從事腫瘤干細(xì)胞多向分化機(jī)制方面的研究,E-mail:sabrinatao@sina.com。
R737.9
A
1000-484X(2017)05-0697-06
①本文為遼寧省大學(xué)生創(chuàng)新訓(xùn)練項目(No.201511258052)。