李小燕, 曹 璇, 劉心悅, 葉海峰, 蘇 鐵, 鄭拓晨, 毛 自, 鄭月慧△
(1. 南昌大學醫(yī)學院實驗教學部, 2. 江西省生殖生理與病理重點實驗室, 南昌 330031)
殼寡糖對病理性卵巢衰退小鼠免疫功能和生殖功能的作用*
李小燕1, 曹 璇1, 劉心悅1, 葉海峰1, 蘇 鐵1, 鄭拓晨2, 毛 自2, 鄭月慧1△
(1. 南昌大學醫(yī)學院實驗教學部, 2. 江西省生殖生理與病理重點實驗室, 南昌 330031)
目的:探討殼寡糖促進病理性卵巢功能衰退小鼠生殖功能和免疫功能恢復的可能性。方法:選用43只生育旺盛期雌性小鼠,除正常對照組(n=8)外,其它通過白消安/環(huán)磷酰胺構建病理性卵巢功能衰退模型模擬卵巢功能早衰,隨機選取3只,卵巢切片HE染色觀察卵泡情況以判斷不孕模型。構建成功后將余下32只隨機平均分為4組(n=8),經不同劑量殼寡糖(0,100,200,300 mg/(kg·d))灌胃后,比較組間卵巢、脾臟、胸腺臟體比的變化,觀察卵泡情況、檢測腹腔巨噬細胞吞噬能力、外周血雌二醇(E2)及孕酮(P)水平,檢測卵巢生殖上皮細胞中生殖細胞標志物小鼠血管同源物(MVH)、干細胞標志物OCT-4以及卵巢中免疫因子腫瘤壞死因子α(TNF-α)、白介素-2(IL-2)、白介素-6(IL-6)表達量的變化,并分析生殖干細胞標記物表達水平變化與免疫因子表達水平變化的相關關系。結果:隨殼寡糖灌胃劑量的增加,卵巢、脾臟和胸腺臟體比同步增高;卵巢中總卵泡數及各級卵泡數都呈遞增趨勢;外周血E2水平遞增,P水平呈遞減趨勢;腹腔巨噬細胞吞噬功能隨劑量增高而增強;生殖干細胞標記物和免疫因子的表達水平均呈顯著遞增趨勢,表明生殖干細胞標記物的表達水平與免疫因子表達水平的變化呈顯著的正相關關系(P<0.05)。結論:殼寡糖可改善病理性卵巢功能早衰小鼠的免疫功能,促進雌性生殖干細胞增殖、分化,從而促進卵巢病理性早衰機體生殖功能在一定程度上的恢復。
殼寡糖;免疫;卵巢功能早衰;雌性生殖干細胞;卵巢功能重塑
【DOI】 10.12047/j.cnki.5457.2017.025
卵巢功能早衰(premature ovarian failure, POF)是指曾有自然月經周期的女性在40歲之前出現卵巢萎縮性持續(xù)閉經的一種疾病,其低雌激素水平可導致圍絕經期相關癥狀的出現,常并發(fā)無排卵性不孕,嚴重影響女性的身心健康[1]。近年來,POF的發(fā)病率呈逐年上升趨勢,并逐漸呈年輕化傾向[1, 2]。如何有效地預防及治療卵巢功能早衰已成為全球矚目的熱點問題。近年來的研究證實,雌性哺乳動物在出生后仍具備生產生殖細胞的能力,即在出生后的哺乳動物卵巢內存在一定數量的卵巢生殖干細胞(ovarian germline stem cells,OGSCs)或雌性生殖干細胞(female germline stem cells,FGSCs),并認為卵巢功能衰退是由于卵巢上皮(ovarian surface epithelia, OSE)產生的FGSCs未能增殖分化形成卵子以補充各種原因導致的卵泡衰減所致[3-5]。FGSCs增殖、分化調控的機理尚不明確。已有研究表明,機體免疫功能與卵巢功能息息相關。在人類妊娠中期,胎兒組織細胞的增殖、分化就已經受到機體自淋巴(免疫)系統(tǒng)的調控[6];先天胸腺缺陷小鼠由于原始卵泡數的減少,在兩月齡時卵泡缺失已非常明顯,且在四月齡就停止排卵[7]。近年來有研究者認為,免疫因子和免疫細胞能影響FGSCs和顆粒細胞的形成、增殖、分化及原始卵泡的發(fā)生[8]。由此推測,通過免疫增強劑增強機體免疫功能,增加相關免疫細胞的生成及免疫因子的分泌,能通過調控FGSCs增殖、分化,促進卵巢卵泡發(fā)生,使卵巢功能早衰患者恢復排卵,恢復生殖功能。殼寡糖(chitosan oligosaccharide,COS)是天然糖中唯一大量存在的堿性氨基寡糖,水溶性好、安全無毒、生物活性高、易被人體吸收,被廣泛認為是一種極具利用價值和利用可能的免疫增強劑[9,10]。
本文以生育旺盛期小鼠受藥物環(huán)磷酰胺/白消安(cyclophosphamide/busulfan, C/B)影響形成病理性卵巢功能衰退模型為研究對象,以殼寡糖梯度劑量灌胃治療,觀察階段性治療后免疫器官臟體比、卵巢臟體比組間差異,卵巢卵泡生長發(fā)育情況,腹腔巨噬細胞吞噬功能,小鼠外周血雌、孕激素水平,OSE中生殖干細胞標記物及免疫因子表達水平,為探討殼寡糖是否能通過增強機體免疫力從而促進卵巢干細胞的增殖、分化繼而恢復病理性衰退卵巢功能提供實驗依據。
1.1 材料
1.1.1 實驗動物 2月齡生育旺盛期的昆明種雌性小鼠43只,體重約25~30 g,由南昌大學醫(yī)學院動科部提供。規(guī)律光照、恒溫恒濕、充足食物與水適應性喂養(yǎng)。
1.1.2 主要藥品及試劑 COS購自大連中科格萊克生物科技有限公司,純度>90%,聚合度2~6。白消安購自中國西亞試劑,環(huán)磷酰胺購自合肥博美生物科技有限責任公司,小鼠雌二醇、孕酮ELISA試劑盒均購自達科為生物技術有限公司,SDS-PAGE凝膠試劑盒購自普利萊基因技術有限公司,所用一抗均購自美國Abcam,二抗均購自Proteintech。
1.2 方法
1.2.1 模型制備及分組 環(huán)磷酰胺/白消安構建不孕不育模型法因其可操作性強、效果好等特點被廣泛用于不孕不育模型動物的制備[11]。C/B病理性卵巢功能衰退模型分別按照環(huán)磷酰胺120 mg/kg、白消安12 mg/kg劑量腹腔注射給藥構建,21 d后隨機選取3只小鼠,取卵巢切片做HE染色,卵巢卵泡極少或幾乎不可見表明不孕模型構建成功。將病理性卵巢功能衰退小鼠隨機分成4組(n=8):對照組(0 mg/(kg·d))、殼寡糖低劑量治療組(100 mg/(kg·d))、殼寡糖中劑量治療組(200 mg/(kg·d))、殼寡糖高劑量治療組(300 mg/(kg·d))。殼寡糖純水配制,根據小鼠體重及每只小鼠灌胃體積為0.3 ml/d確定配置濃度。連續(xù)灌胃21 d后處理。同時,選取一組兩月齡正常小鼠(n=8)每天灌胃0.3 ml純水作為正常對照。
1.2.2 小鼠血清、腹腔巨噬細胞及臟器的收取 處理前3 d腹腔注射胎牛血清(0.5 ml),處理當天稱重后取血,斷頸處死,75%酒精浸泡2 min,固定四肢,腹腔注射預冷的不含血清的RPMI-1640培養(yǎng)液5 ml,刺激腹腔巨噬細胞逸出,輕柔按摩小鼠腹部5 min后充分收集腹腔液。收取卵巢、脾臟及胸腺,剝離干凈,吸水紙吸去組織表面液體,稱重記錄。
1.2.3 卵巢組織的觀察 將收取好的卵巢組織置于4%多聚甲醛中固定過夜,梯度酒精脫水,50%、70%、80%、95% Ⅰ、95% Ⅱ、100% Ⅰ、100% Ⅱ各1 h,二甲苯Ⅰ、Ⅱ透明各30 min,二甲苯石蠟(V二甲苯∶V石蠟=1∶1)30 min,石蠟Ⅰ、Ⅱ各90 min,浸蠟完成后包埋。2 μm切片,切片37℃過夜,置于58℃ 2 h后開始染片。二甲苯Ⅰ、Ⅱ各5 min,梯度酒精各1 min,脫蠟后蘇木素滴染1.5 min,自來水沖洗1 min,鹽酸乙醇分化3~5 s,自來水沖洗返藍5~10 min,伊紅滴染30 s,自來水沖洗,95%乙醇調色10 s,100% Ⅰ、100% Ⅱ脫水各1 min,二甲苯Ⅰ、Ⅱ各2 min,中性樹脂封片,顯微鏡下觀察拍照。
1.2.4 ELISA檢測外周血E2、P水平 取血后室溫靜置2 h,4℃ 3 000 r/min離心10 min,分離血清,按試劑盒說明書操作測定小鼠外周血E2、P水平。
2.3 兩組患者治療前后tPSA、fPSA及睪酮水平比較 常規(guī)治療組患者治療前后tPSA、fPSA水平比較差異無統(tǒng)計學意義(P>0.05)。非那雄胺組患者治療后tPSA、fPSA水平均較治療前明顯降低,差異有統(tǒng)計學意義(P<0.05)。非那雄胺組患者治療后tPSA水平較常規(guī)治療組低,差異有統(tǒng)計學意義(P<0.05)。兩組患者治療后睪酮水平均較治療前降低,但差異無統(tǒng)計學意義(P>0.05),見表2。
1.2.5 腹腔巨噬細胞吞噬功能檢測 用不含血清的RPMI-1640培養(yǎng)液將收集到的腹腔液洗滌2次,臺盼藍染色計數活細胞> 95%后用含10%胎牛血清的RPMI-1640培養(yǎng)液調整細胞濃度至1×106cells/ml,以每孔100 μl接種于96孔培養(yǎng)板,5% CO237℃培養(yǎng)2 h后,洗去未貼壁細胞( D-Hanks液洗3次),培養(yǎng)8 h后,每孔加入0.1%中性紅溶液(空白對照孔加等量生理鹽水),繼續(xù)培養(yǎng)30 min后棄去上清液,D-Hanks洗3次,每孔加入細胞溶解液(V冰醋酸∶V乙醇=1∶1)100 μl,室溫下放置2 h,待細胞溶解后測550 nm吸光度。
1.2.6 Western blot檢測OSE中生殖干細胞因子及免疫因子蛋白表達變化 用Trizol法提取卵巢組織蛋白,測定蛋白濃度,樣品經10%SDS-PAGE凝膠泳分離后轉移至PVDF膜(Millipore Corp.,Bedford,MA)上,封閉1 h后孵育一抗GAPDH (1∶2 500,ab8245,Abcam)、OCT-4 (1∶1 000,ab18976,Abcam)、MVH (1∶500,ab27591,Abcam)、TNF-α(1∶1 000,ab1793, Abcam)、IL-2(1∶2 500,ab11510,Abcam)、IL-6(1∶200,ab7737,Abcam),一抗4℃過夜后孵育相應二抗(1∶5 000),凝膠成像系統(tǒng)觀察條帶并拍照,Gelscan軟件分析條帶,結果至少重復3次。
1.3 統(tǒng)計分析
2.1 殼寡糖對藥物不孕小鼠卵巢及主要免疫器官臟體比的影響
不孕對照組與正常對照相比,卵巢與胸腺臟體比明顯降低,而脾臟臟體比有所升高;殼寡糖灌胃組與不孕對照組相比,卵巢、胸腺臟體比明顯提高,而脾臟臟體比有所降低。不同劑量組間比較,灌胃劑量越大,卵巢、脾臟、胸腺臟體比均越大。200 mg/(kg·d)治療組的脾臟體比最接近正常對照組,而卵巢臟體比及胸腺臟體比最接近正常對照組的均是300 mg/(kg·d)治療組(圖1)。
2.2 殼寡糖對藥物不孕小鼠腹腔巨噬細胞吞噬功能的影響
2.3 殼寡糖對藥物不孕小鼠外周血E2、P水平的影響
ELISA檢測小鼠外周血雌、孕激素水平結果顯示,不孕對照組和各處理組的外周血雌二醇水平均低于正常對照組(P<0.05)。各劑量殼寡糖灌胃治療組外周血雌二醇水平高于不孕對照組(P<0.05),孕酮水平則均顯著低于不孕對照組。殼寡糖治療組組間相比,隨著灌胃劑量增加,E2水平呈遞增趨勢,高劑量組P水平則低于低劑量及中劑量組(P<0.01, 表1)。
2.4 殼寡糖對藥物不孕小鼠卵巢卵泡發(fā)育、生長情況的影響
環(huán)磷酰胺/白消安對機體生殖功能的破壞作用導致小鼠卵巢卵泡閉鎖,與正常對照組相比,不孕對照組小鼠卵巢中,卵泡數明顯減少至狀態(tài)良好的卵泡幾乎不可見,大部分為閉鎖的黃體;低劑量治療組卵巢可見少許正在生長的卵泡;中劑量組卵巢卵泡數明顯增多,且明顯可見各級卵泡;高劑量組卵巢卵泡數增加最為顯著,且原始卵泡較其他處理組明顯增多(圖3)。
2.5 不同劑量組OSE中免疫因子蛋白表達情況
對蛋白條帶統(tǒng)計分析可知,TNF-α、IL-2、IL-6表達量,不孕對照組及各處理組均低于正常對照組(P<0.05),各COS治療組則均高于不孕對照組(P<0.05,圖4)。在藥物處理組間,各蛋白表達量均與治療劑量呈顯著的正相關關系。
*P<0.05,**P<0.01vsC/B+0 group
Fig. 3 Effect of different dosages of COS on the mice ovaries showing by HE staining (×40) A: Ovary of two-month-old normal mice; B: Ovarytreated with 0 mg/(kg·d) of COS(control); C: Ovary treated with 100 mg/(kg·d) of COS; D: Ovarytreated with 200 mg/(kg·d) of COS; E: Ovarytreated with 300 mg/(kg·d) of COS
2.6 不同劑量組OSE中生殖干細胞因子蛋白表達情況
經不同劑量殼寡糖灌胃治療后OSE中生殖細胞標志物MVH及干細胞標志物OCT-4共表達情況,對蛋白表達條帶灰度值的統(tǒng)計分析顯示,各組小鼠OSE都明顯表達MVH及OCT-4,正常對照組高于不孕對照組及各處理組(P<0.05,圖5)。藥物處理組間比較,MVH及OCT-4表達量的變化趨勢一致,均與治療劑量呈顯著的正相關關系。
殼寡糖是一種堿性氨基寡糖,水溶性好、安全無毒、生物活性高、易被人體吸收。其被報道的增強機體免疫功能的機制包括:促進淋巴細胞增殖,增大免疫器官使其加強免疫作用[9],增強T細胞表面表達IL-2受體,進而進一步刺激T細胞成熟并釋放更多的IL-2,活化T細胞,刺激分泌IL-6[12],增強巨噬細胞吞噬功能并誘導其分泌TNF-α[13, 14]。
卵巢干細胞衰老后停止增殖、分化,使卵巢卵泡池無法得以補充,從而導致卵巢功能衰退停止排卵[3, 5, 15]??梢?,卵巢干細胞衰老可能是卵巢功能衰退的根本原因。諸多研究表明[16-18],卵巢干細胞增殖、分化受機體免疫因素(免疫細胞、免疫因子)的調控。本實驗中,經殼寡糖灌胃治療后,高、中、低劑量組與對照組相比,免疫器官指數增大、免疫因子(TNF-α、IL-2、IL-6)蛋白表達量明顯較高及巨噬細胞功能增強的同時,FGSCs的標志物(MVH、OCT-4)的蛋白表達量梯度增加、卵巢卵泡數同步增多,驗證了免疫功能調控生殖功能的同時,表明殼寡糖具有增強雌性生殖功能的作用。
殼寡糖灌胃治療在增加了小鼠外周血雌激素水平的同時降低了孕激素水平。Gaytan等[19]在不同動情周期小鼠卵巢上檢測雌、孕激素水平并檢測OSE增殖情況的結果表明,雌激素促OSE增殖、分化,而孕激素抑OSE增殖、分化。
綜上,殼寡糖可改善病理性卵巢功能早衰小鼠的免疫功能,促進雌性省直干細胞增殖、分化,從而促進卵巢病理性早衰集體生殖功能在一定程度上的恢復。
[1] Kovanci E, Schutt AK. Premature ovarian failure: clinical presentation and treatment[J].ObstetGynecolClinNorthAm, 2015, 42(1): 153-161.
[2] Kawamura K, Kawamura N, Hsueh AJ. Activation of dormant follicles: a new treatment for premature ovarian failure[J].CurrOpinObstetGynecol, 2016, 28(3): 217-222.
[3] Xiong J, Lu Z, Wu M,etal. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries[J].PloSOne, 2015, 10(10): e0139824.
[4] Ozakpinar OB, Maurer AM, Ozsavci D. Ovarian stem cells: From basic to clinical applications[J].WorldJStemCells, 2015, 7(4): 757-768.
[5] Smith JA, Daniel R. Stem cells and aging: a chicken-or-the-egg issue[J].AgingDis, 2012, 3(3): 260-268.
[6] Klein J. Immunology: The science of self-nonself discrimination[M].NewYork:JohnWileyandSons, Inc: 1982.
[7] Lintern-Moore S, Pantelouris EM. Ovarian development in athymic nude mice. The size and composition of the follicle population[J].MechAgeingDev, 1975, 4(5-6): 385-390.
[8] Bukovsky A, Caudle MR. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial[J].ReprodBiolEndocrinol, 2012, 10: 97.
[9] Synowiecki J, Al-Khateeb NA. Production, properties, and some new applications of chitin and its derivatives[J].CritRevFoodSciNutr, 2003, 43(2): 145-171.
[10]杜昱光, 白雪芳, 金宗濂, 等. 殼寡糖抑制腫瘤作用的研究[J]. 中國海洋藥物, 2002, 86(2): 18-21.
[11]Johnson J, Bagley J, Skaznik-Wikiel M,etal. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood [J].Cell, 2005, 122(2): 303-315.
[12]Suzuki K, Mikami T, Okawa Y,etal. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose[J].CarbohydrRes, 1986, 151: 403-408.
[13]Feng J, Zhao L, Yu Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages[J].BiochemBiophysResCommun, 2004, 317(2): 414-420.
[14]Han Y, Zhao L, Yu Z,etal. Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function[J].IntImmunopharmacol, 2005, 5(10): 1533-1542.
[15]Ozakpinar OB, Maurer AM, Ozsavci D. Ovarian stem cells: From basic to clinical applications[J].WorldJStemCells, 2015, 7(4): 757-768.
[16]Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals[J].Anatomicalrecord(Hoboken), 2011, 294(8): 1284-1306.
[17]Pate JL, Toyokawa K, Walusimbi S,etal. The interface of the immune and reproductive systems in the ovary: lessons learned from the corpus luteum of domestic animal models[J].AmJReprodImmunol, 2010, 64(4): 275-286.
[18]Havran WL, Jameson JM, Witherden DA. Epithelial cells and their neighbors. III. Interactions between intraepithelial lymphocytes and neighboring epithelial cells[J].AmJPhysiolGastrointestLiverPhysiol, 2005, 289(4): G627-630.
[19]Gaytan M, Sanchez MA, Morales C,etal. Cyclic changes of the ovarian surface epithelium in the rat[J].Reproduction, 2005, 129(3): 311-321.
Effects of COS on promoting the pathological ovarian aging mice ovarian function by regulating immune function
LI Xiao-yan1, CAO Xuan1, LIU Xin-yue1, YE Hai-feng1, SU Tie1, ZHENG Tuo-chen2, MAO Zi2, ZHENG Yue-hui1△
(1. Department of Experimental Medicine Teaching,2. Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330031, China)
Objective: To determine whether the immunopotentiator chitosan oligosaccharide(COS)can recover the reproductive functions of pathological ovarian recession mice and improvetheir immunity. Methods: Forty-three fertile female mice (at around 2 months),in addition to a normal control group (n=8), injected intraperitoneally with busulfan and cyclophosphamide to construct premature ovarian failure models. Three of them were used to test whether the infertility model was constructed successfully by HE staining.Then the models were randomly divided into four groups (n=8) and treated with different dosages of COS by gavage, after which compared different groups’ organ ratios (the weight of immune organs and ovary/ body weight), ovarian follicles and peritoneal macrophages’ phagocytosis as well as estragon(E2) and progesterone(P) levels in peripheral blood. In addition, we measured the expression dynamics of the ovarian protein reproductive cell marker mouse vasa homolog(MVH), germ stem cell marker OCT-4 in ovarian surface epithelium (OSE) and part of immune factors including tumor necrosis factor (TNF-α),interleukin-2(IL-2)as well as IL-6 to analyze the correlativity between germline stem cells marker dynamics and immune factors expression changes. Results: With increasing dosages of COS, organ ratios of ovaries, thymus and spleen both went up synchronously; The whole number of follicles and every stages of follicles are all presenting with progressive tendency; E2level in peripheral blood ascends, however, progesterone level declined relatively; Neutral red experiment revealed the phagocytosis ability of peritoneal macrophages became stronger with increasing dosages of COS; the results of Western blot had shown that no matter the expression level of germ stem cells marker or immune factors were all presenting increasing tendency, which means that the expression level dynamics of germ stem cell marker has a positive correlation with immune factors expression changes. The results were statistically significant. Conclusion: COS could improve the immunity of mice with pathological ovarian recession and at the same time it would promote the proliferation and differentiation of female germ line stem cells (FGSCs), and then helped saving ovarian functionsto some extent.
COS; immunity; POF; FGSCs; restoration of ovarian function
國家自然科學基金項目(81360100);江西省自然科學基金項目(20152ACB20023);江西省贛鄱英才555工程項目
2016-05-19
2016-11-22
R339.2
A
1000-6834(2017)02-097-06
△【通訊作者】Tel: 0791-83827148; E-mail: yuehuizheng@163.com