• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental measurement and thermodynamic modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by L-arabinose,D-xylose and water☆

    2017-06-01 03:31:54LeiGuoLianyingWuWeitaoZhangChenLiangYangdongHu
    Chinese Journal of Chemical Engineering 2017年10期

    Lei Guo,Lianying Wu,Weitao Zhang,Chen Liang,Yangdong Hu*

    College of Chemistry and Chemical Engineering,Ocean University of China,Qingdao 266100,China

    1.Introduction

    Research of hemicellulose is significant subject concerning the exploitation and the utilization of biomass resources.The hemicellulose can be used to produce several kinds of monosaccharide by dilute acid hydrolysis,enzymatic hydrolysis or other methods[1-3].Due to the huge quantity and wide distribution,agricultural straw has been well studied.The hemicellulose in agricultural straw is hydrolyzed,mainly generating xylose and arabinose.Xylose can be put into producing xylitol,furfural,and other chemical products[4,5],while arabinose can be used to produce pharmaceutical intermediates of antiviral drugs[6],as a result of which,the separation and the purification of xylose and arabinose are of cardinal significance.

    The method of crystallization separation is widely applied in the separation of the solid mixture.Crystallization separation is operated on account of solid-liquid equilibria data;therefore,the solid-liquid equilibria data of D-xylose-L-arabinose-water system is of great importance for the separation of D-xylose and L-arabinose.More studies about the ternary systems,formed by sugar and mixture solvent,have been reported in the literature[7,8];nevertheless,studies about the systems formed by two kinds of solid and water are common in water-salt system[9,10],and are rarely in water-sugar system as well.In this paper,the solubility of D-xylose and L-arabinose in water at different temperatures was determined by the refraction index method.The phase diagrams for D-xylose-L-arabinose-water are investigated by using the method of Schreinemakers'wet residue[11].The experimental data were correlated with NRTL model[12],Wilson model[13],as well as Xu model[14].

    2.Experimental

    2.1.Materials

    D-Xylose and L-arabinose were purchased from Shandong Longlive Bio-Technology Co.,Ltd.(China).Redistilled deionized water was produced in our lab.The information of materials is listed in Table 1 in detail.

    2.2.Apparatus and procedure of measurement

    The solubility of pure D-xylose and L-arabinose in water was determined respectively by the refraction index(RI)analysis with an Abbe Refractometer(WAY-2S)at 298.15 K which was purchased from Shanghai Precision&Scientific Instrument Co.,Ltd.China.The methodof isothermal saturation[17]was employed to control the ternary phase equilibria.Schreinemakers'wet residue method was employed to confirm the equilibrium composition of the solid.A standard digital refrigerated circulating bath(SD07R-20-A12E,Polyscience,America)was employed to keep the temperature of the system,which was offered by Polyscience Co.,Ltd.America.An analytical balance(BSA124S-CW)was employed to govern the mass of the solute,solvent,equilibrium liquid and equilibrium wet solid,which was purchased from Sartorius Scientific Instruments Co.,Ltd.China.

    Table 1Sources and purity of the materials employed

    For the binary systems of D-xylose-water and L-arabinose-water,the experimental saturated solutions were prepared in a three-necked flask by adding excess D-xylose or L-arabinose into water.The concentration of D-xylose or L-arabinose atequilibriumin water atthe different temperatures was controlled by the measurement of the refraction index(RI).The curve for D-xylose or L-arabinose mass percentas a function of the refraction index and D-xylose or L-arabinose solubility as a function of temperature was adjusted by the least square method[18].With regard to ternary system of D-xylose-L-arabinose-water,the initial solution was prepared as a mixture of an excessive D-xylose and L-arabinose in the water,and the relevant amounts were chosen by changing the D-xylose/L-arabinose ratio from 0 to 1,and from 1 to 0 respectively.The liquor was stirred by an electric stirring ata constant temperature for no less than 40 h.The solution was extracted from the three-necked flask at 2 h interval using a plastic syringe with a 0.22 μm pore syringe filter precooled in standard digital refrigerated circulating bath and then analyzed by an Abbe Refractometer.The system was considered to achieve balance when the RI of the upper liquor was constant.And the compositions of the upper liquor and the wet solid were analyzed by HPLC(L-2000,Hitachi Limited,Japan)with a refractive index detector using an Aminex HPX-87P column(300 mm×7.8 mm,Bio-Rad,America).The mobile phase was water,while the flow rate was 0.40 ml·min-1.The column temperature was 358.15 K,and the temperature of the refractive index detector was 308.15 K.Compositions of various equilibrium liquor and wet solid were acquired by changing the ratio of D-xylose and L-arabinose.In this work,every experimental point was measured at least three times,and it is expressed by the average value at the same time.The relative standard uncertainty of the measured values based on the error analysis was less than 2.0%in mass fraction.

    2.3.Melting properties of D-xylose and L-arabinose

    The fusion enthalpy(ΔHm)and the melting temperature(Tm)for D-xylose together with the L-arabinose,were determined with differential scanning calorimetry(Diamond DSC,PerkinElmer,America)under a nitrogen atmosphere[19,20].About 2.0 mg samples were put in a closed DSC pan.The temperature was ranging from 293.15 to 573.15 K,and the heating rate was 5 K·min-1.The standard uncertainty for melting temperature and fusion enthalpy is estimated to be 0.2 K and 2%,respectively.

    3.Solid-Liquid Phase Equilibrium Modeling

    In different models,the assumption for the standard state has diverse definitions.In the Xu model,the assumption for the standard state is put forward considering the solute in water as molecules.Under the conditions that the concentration of the solute is close to solubility,activityai=mi× γi(miis molality,γiis activity coefficient)is close to 1[14].In the Wilson model and NRTL model,γitends to 1 when the concentration of the solute tends to 0.And the equation for solid-liquid phase equilibrium is expressed as Eq.(1)on the basis of the activity coefficient[21,22].

    whereΔHmis the molar melting enthalpy,Tmis the melting temperature.

    3.1.Xu model

    Xuet al.[14]brought forward a new model,considering the solute in water as molecules,which is described as Eq.(2).

    wherekiis the temperature parameter and which is taken as 0.5,pbi-j,pci-j,pdi-jandpei-jare solute-solute parameters,whilepai-1,pai-2andpai-3are water-solute parameters[14].

    3.2.Wilson model

    The Wilson model[13]described the activity coefficient as Eq.(6).

    where Λij,Λkjand Λkiare the Wilson parameters.viis the molar volume of the componenti.Δλijis the adjustable parameter which relates to the interaction energy.

    3.3.NRTL model

    The NRTL model[12]described the activity coefficient as Eq.(8).

    where τij≠ τji,τii=0,and Δgjiare constants which can be gained by regression from the experimental solubility data.No-random parameter αij=αjiis taken as 0.21.

    4.Results and Discussion

    4.1.Melting properties of D-xylose and L-arabinose

    The values ofTmand melting enthalpy(ΔHm)of D-xylose and L-arabinose are shown in Table 2.There is a little deviation in theTmand melting enthalpy with the literatures in Table 2.The different measurement methods,the purity of D-xylose and L-arabinose,the diverse experimental environment or other factors may lead to deviations[23].In this study,extrapolated onset value asTmwas adopted.

    Table 2The values of T m and melting enthalpy of D-xylose and L-arabinose

    4.2.Binary systems ofD-xylose-water and L-arabinose-water

    Experimental and calculated values of mass fraction solubility of pure D-xylose and L-arabinose in water are shown in Table 3.All the data points are average values belonging to three experimental measurements.The experimental mass fraction solubility of D-xylose in water at 298.05 K was 0.5523,while Gonget al.[27]found that the experimental mass fraction solubility of D-xylose in this same system at 298.2 K was 0.5680.The result is largely similar to the literature value.

    From Table 3,we can know that the solubilities of D-xylose and L-arabinose in water increase with the temperature increasing.The solubility ofD-xylose in water is larger than thatofL-arabinose.D-Xylose and L-arabinose are isomers.The solubility of binary systems of D-xylose-water and L-arabinose-water is not the same owing to the different molecular structure that is shown in Fig.1.The adjacent hydroxyl easily forms an intramolecular hydrogen bond.The ability to form intramolecular hydrogen bonds for L-arabinose is stronger than D-xylose,which is against the dissolution of L-arabinose in water.Furthermore,it is easier for D-xylose to form intermolecular hydrogen bonds with water than L-arabinose,which is conductive to the dissolution of D-xylose.

    Fig.1.Molecular structure of D-xylose and L-arabinose.

    4.3.Ternary system of D-xylose-L-arabinose-water

    According to the solubility of D-xylose and L-arabinose in water(Table 3),the higher the temperature,the greater the solubility.On the contrary,the lower the temperature,the smaller the solubility,so the more conducive to the crystallization of the material in solution.The study of the solid-liquid equilibrium system formed by D-xylose,L-arabinose and water at low temperatures(273.85,278.85 and 284.45 K)can provide the theoretical basis for the crystallization separation of D-xylose and L-arabinose.

    The solid-liquid phase equilibrium data at atmospheric pressure for the ternary system of D-xylose-L-arabinose-water at the temperatures of(273.85,278.85 and 284.45)K are presented in Tables 4-6,respectively.Ternary phase diagrams are constructed according to the compositions of the liquid phase and solid phase,shown in Figs.2-4 respectively.

    Sa,SbandScstand for the solubility of D-xylose in water at 273.85 K,278.85 K,284.45 K respectively.AndS*a,S*bandS*cstand for the solubility of L-arabinose in water at the different temperatures.What is more,the pointsCa,CbandCcstand for co-saturated ones of D-xylose and L-arabinose in the ternary system at different temperatures.

    At different temperatures,SaCa,SbCb,ScCc,S*aCa,S*bCbandS*cCcare the crystalline curves of pure solid of D-xylose,and L-arabinose in Figs.2-4,respectively.

    Composition points of equilibrium liquor,together with its corresponding equilibrium wet solid are connected along the curvesSaCa,SbCborScCc.Moreover,extend the lines towards to the vertical axis,the intersection point of these lines is approximately the pure solidphase componentfor D-xylose.Composition points of equilibrium liquor and its corresponding equilibrium wet solid are connected along the curvesS*aCa,S*bCborS*cCc.And then extend the lines towards to abscissa axis,the intersection point of these lines is approximately the pure solid-phase component for L-arabinose.

    In Figs.2-4,Ia,IbandIcare crystallization regions of D-xylose.IIa,IIb,andIIcare crystallization regions of L-arabinose.IIIa,IIIbandIIIcare crystalline zones of D-xylose and L-arabinose mixture.IVa,IVbandIVcare unsaturated regions.

    Table 3Experimental and calculated values of mass fraction solubility for the binary systems of D-xylose-water and L-arabinose-water at different temperatures under atmospheric pressure①

    Table 4Experimental and calculated values of mass fraction solubility for the ternary system of D-xylose-L-arabinose-water at 273.85 K under atmospheric pressure①

    Table 5Experimental and calculated values of mass fraction solubility for the ternary system of D-xylose-L-arabinose-water at 278.85 K under atmospheric pressure①

    Table 6 Experimental and calculated values of mass fraction solubility for the ternary system of D-xylose-L-arabinose-water at 284.45 K under atmospheric pressure①

    From Figs.2-4 it can be seen that the unsaturated region increases along with temperature increasing(IVc>IVb>IVa).The solubility of D-xylose and L-arabinose of the co-saturated composition points increases with temperature increasing.At the same temperature,the crystallization regions of L-arabinose are larger than D-xylose.The crystalline fields of D-xylose and L-arabinose in the solid-liquid phase equilibrium increase as the temperature decreases.

    4.4.Correlations and calculations of solid-liquid phase equilibrium

    The Wilson model,NRTL model and Xu model are employed to correlate the binary solid-liquid phase equilibrium systems of D-xylose-water and L-arabinose-water,as well as the ternary solidliquid phase equilibrium system of D-xylose-L-arabinose-water at different temperatures.Binary interaction parameters of D-xylosewater and L-arabinose-water can be acquired by the regression method according to the measured solubility of binary systems formed by D-xylose+water or L-arabinose+water.

    Fig.3.Ternary phase diagram for system of D-xylose-L-arabinose-water at 278.85 K.I b,crystalline zone of D-xylose;II b,crystalline zone of L-arabinose;III b,crystalline zone of D-xylose and L-arabinose mixture;IV b,unsaturated zone;S b,solubility of D-xylose in water at 278.85 K;S*b,solubility of L-arabinose in water at 278.85 K;C b,co-saturated point of D-xylose and L-arabinose;■,composition of equilibrium liquor;▼,composition of equilibrium wet solid.

    Fig.4.Ternary phase diagram for system of D-xylose-L-arabinose-water at 284.45 K.I c,crystalline zone of D-xylose;II c,crystalline zone of L-arabinose;III c,crystalline zone of D-xylose and L-arabinose mixture;IV c,unsaturated zone;S c,solubility of D-xylose in water at 284.45 K;S*c,solubility of L-arabinose in water at 284.45 K;C c,co-saturated point of D-xylose and L-arabinose;■,composition of equilibrium liquor;▼,composition of equilibrium wet solid.

    The binary interaction parameters for the two binary systems are listed in Tables 7 and 8 together with the root-mean-square deviations(RMSD)which is described Eq.(11):

    whereNis the number of data points,wirepresents the experimental mass fraction solubility values,wcirepresents the mass fraction solubility calculated.

    The relative average deviation(RAD)is also applied to estimate the thermodynamic models,which is described as Eq.(12).

    The calculated solubility of D-xylose in water and L-arabinose in water at different temperatures according to the model parameters,and the RAD values are calculated and presented in Table 3.The values of RAD are not more than 0.0511.In general,the three models provide better results for the two binary systems.

    The values for binary interaction parameters of D-xylose-L-arabinose and the RMSD values are acquired and also shown in Tables 7 and 8 according to the binary interaction parameters of D-xylose-water and L-arabinose-water,and the solubility data of the ternary system of D-xylose-L-arabinose-water at different temperatures.The calculated mass fraction solubility of the ternary system of D-xylose-L-arabinosewater at different temperatures is shown in Tables 4-6.The values of RAD of mass fraction solubility calculated using the Xu model,Wilson model and NRTL model according to the experimental values of D-xylose-L-arabinose-water are all not more than 0.0405 at temperatures of 273.85 K,278.85 K and 284.45 K.In Tables 7 and 8,the RMSD values for the Wilson model,NRTL model and Xu model are 0.910×10-2,1.15×10-2and 0.241×10-2,respectively.In accordance with the analysis of RAD values and RMSD values of the three models,it can be seen that the three models all supply satisfying resultsfor the ternary system.As a consequence,the Wilson model,NRTL model and Xu model can all be employed to correlate and evaluate the ternary D-xylose-L-arabinose-water system at different temperatures.

    Table 7The regressed binary interaction parameters of the NRTL model and Wilson model for the ternary D-xylose-L-arabinose-water system

    Table 8The regressed binary interaction parameters of the Xu model for the ternary D-xylose+L-arabinose+water system

    5.Conclusions

    Solid-liquid equilibria data for binary(L-arabinose-water)system and(D-xylose-water)systems at temperatures from 269.85 to 298.05 K and ternary(L-arabinose-D-xylose-water)system at temperatures of 273.85 K,278.85 Kand 284.45 Kwere measured atatmospheric pressure.Based on the measured solubility,three ternary phase diagrams were constructed.For the ternary system of L-arabinose-D-xylose-water,the pure solids were determined by Schreinemakers'wet residue method.The solubility of D-xylose and L-arabinose in water increases along with the temperature increasing.The co-saturated composition points move upward with the temperature increasing.The crystallization region of L-arabinose was larger than that of D-xylose at each temperature.

    The obtained solubility data in water were correlated and evaluated using the NRTL model,Wilson model,and Xu model.The interaction parameters for L-arabinose-D-xylose were acquired.The calculated solubility using the three models agreed well with the experimental ones at given temperatures.

    [1]B.S.Dien,X.L.Li,L.B.Iten,D.B.Jordan,Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides,Enzym.Microb.Technol.39(2006)1137-1144.

    [2]K.Karimi,S.Kheradmandinia,M.J.Taherzadeh,Conversion of rice straw to sugars by dilute-acid hydrolysis,Biomass Bioenergy30(2006)247-253.

    [3]B.P.Lavarack,G.J.Griffin,D.Rodman,The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose,arabinose,glucose and other products,Biomass Bioenergy23(2002)367-380.

    [4]C.Moreau,R.Durand,D.Peyron,Selective preparation of furfural from xylose over microporous solid acid catalysts,Ind.Crop.Prod.7(1998)95-99.

    [5]V.Meyrial,J.P.Delgenes,R.Moletta,J.M.Navarro,Xylitol production from D-xylose byCandida guillermondii—Fermentation behavior,Biotechnol.Lett.13(1991)281-286.

    [6]Y.Chong,C.K.Chu,Efficient synthesis of 2-deoxy-L-erythro-pentose(2-deoxy-L-ribose)from L-arabinose,Carbohydr.Res.337(2002)397-402.

    [7]X.Gong,Solid-liquid equilibria of D-glucose,D-fructose and sucrose in the mixture of ethanol and water from 273.2 K to 293.2 K,Chin.J.Chem.Eng.19(2011)217-222.

    [8]A.M.Peres,E.A.Macedo,Phase equilibria of D-glucose and sucrose in mixed solvent mixtures:Comparison of UNIQUAC1-based models,Carbohydr.Res.303(1997)135-151.

    [9]F.Farelo,C.Fernandes,A.Avelino,Solubilities for six ternary systems:NaCl+NH4Cl+H2O,KCl+NH4Cl+H2O,NaCl+LiCl+H2O,KCl+LiCl+H2O,NaCl+AlCl3+H2O,and KCl+AlCl3+H2O atT=(298 to 333)K,ChemInform36(2005)1470-1477.

    [10]D.L.Gao,Q.Wang,Y.F.Guo,X.P.Yu,S.Q.Wang,T.L.Deng,Solid-liquid phase equilibria in the aqueous ternary system Li2SO4+LiBO2+H2O atT=288.15 and 298.15 K,Fluid Phase Equilib.371(2014)121-124.

    [11]T.L.Deng,H.J.Yin,D.C.Li,Metastable phase equilibrium in the aqueous ternary system(Li2SO4+MgSO4+H2O)at 348.15 K,J.Chem.Eng.Data54(2008)498-501.

    [12]H.Renon,J.M.Prausnitz,Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures,Ind.Eng.Chem.Process.Des.Dev.8(1969)413-419.

    [13]G.M.Wilson,Vapor-liquid equilibrium.XI.A new expression for the excess free energy of mixing,J.Am.Chem.Soc.86(1964)127-130.

    [14]X.Z.Xu,Y.D.Hu,L.Y.Wu,X.Chen,A new model in correlating and calculating the solid-liquid equilibrium of salt-water systems,Chin.J.Chem.Eng.8(2016)1056-1064.

    [15]Y.N.Chang,S.W.Yan,J.Y.Yu,N.P.Wo,Study on preparation of xylose from bamboo chips,Chem.Ind.For.Prod.2(2005)011.

    [16]D.C.Zhu,Z.F.Lv,X.R.Liu,C.F.Wang,Advance research on the application ofL-arabinose,Food Ferment.Ind.37(2011)125-129.

    [17]R.R.Li,G.B.Yao,H.Xu,H.K.Zhao,Solid-liquid equilibrium and phase diagram for the ternary 4-chlorophthalic anhydride+3-chlorophthalic anhydride+ethyl acetate system,J.Chem.Eng.Data59(2014)163-167.

    [18]L.A.Alves,J.B.Almeida e Silva,M.Giulietti,Solubility of D-glucose in water and ethanol/water mixtures,J.Chem.Eng.Data52(2007)2166-2170.

    [19]F.Zhang,L.Wang,Y.C.Tang,X.Q.Gao,L.Xu,G.J.Liu,Measurement and correlation of ternary solid-liquid equilibrium of 2-methyl-1,4-naphthoquinone+phthalic anhydride+acetone system,Fluid Phase Equilib.409(2016)98-104.

    [20]W.W.Tang,H.Dai,Y.Feng,S.G.Wu,Y.Bao,J.K.Wang,J.B.Gong,Solubility of tridecanedioic acid in pure solvent systems:an experimental and computational study,J.Chem.Thermodyn.90(2015)28-38.

    [21]C.B.Du,S.Han,L.Meng,J.Xu,J.Wang,H.K.Zhao,Determination and modeling of solid-liquid equilibrium for ternary system of 3,4-dichloronitrobenzene+2,3-dichloronitrobenzene+methanol,Fluid Phase Equilib.410(2016)31-36.

    [22]S.Han,J.Xu,L.Meng,C.B.Du,R.J.Xu,J.Wang,H.K.Zhao,Determination and modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by adipic acid,urea and diethylene glycol,Fluid Phase Equilib.412(2016)1-8.

    [23]P.P.Zhu,Y.X.Chen,M.J.Zhang,Y.Bao,C.Xie,B.H.Hou,J.B.Gong,W.Chen,Measurement and correlation of solubility and solution thermodynamics of1,3-dimethylurea in different solvents fromT=(288.15 to 328.15)K,J.Chem.Thermodyn.97(2016)9-16.

    [24]Y.Roos,Melting and glass transitions of low molecular weight carbohydrates,Carbohydr.Res.238(1993)39-48.

    [25]A.Raemy,T.Schweizer,Thermal behaviour of carbohydrates studied by heat flow calorimetry,J.Therm.Anal.Calorim.28(1983)95-108.

    [26]Y.L.Hou,Thermal properties of Maillard reaction on L-arabinose/L-cysteine model system,Food Sci.Biotechnol.1(2010)015.

    [27]X.C.Gong,C.Wang,L.Zhang,H.B.Qu,Solubility of xylose,mannose,maltose monohydrate,and trehalose dihydrate in ethanol-water solutions,J.Chem.Eng.Data57(2012)3264-3269.

    久久精品国产鲁丝片午夜精品| 青青草视频在线视频观看| 精品久久久久久久末码| 免费看av在线观看网站| 内射极品少妇av片p| 成人毛片a级毛片在线播放| 亚洲怡红院男人天堂| 天美传媒精品一区二区| 国产麻豆成人av免费视频| 别揉我奶头 嗯啊视频| 国产精品久久电影中文字幕| 国产伦理片在线播放av一区| 国产精品一区二区在线观看99 | 久久欧美精品欧美久久欧美| 我要看日韩黄色一级片| 色视频www国产| 亚洲人成网站在线观看播放| 永久网站在线| 精品久久久久久久久av| 午夜激情福利司机影院| 91精品一卡2卡3卡4卡| 精品人妻偷拍中文字幕| 欧美性猛交黑人性爽| 国产精品嫩草影院av在线观看| 天堂影院成人在线观看| 欧美三级亚洲精品| 亚洲精品色激情综合| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久久免| 99久久九九国产精品国产免费| 美女大奶头视频| 一级二级三级毛片免费看| 亚洲欧美一区二区三区国产| 免费一级毛片在线播放高清视频| 日韩精品青青久久久久久| 国产一区二区亚洲精品在线观看| 热99re8久久精品国产| 日韩视频在线欧美| 日韩av在线免费看完整版不卡| 又粗又硬又长又爽又黄的视频| 午夜免费激情av| 国产在线一区二区三区精 | 成人漫画全彩无遮挡| 国产一区亚洲一区在线观看| 亚洲va在线va天堂va国产| 亚洲国产精品国产精品| .国产精品久久| 久久精品夜夜夜夜夜久久蜜豆| 久久精品久久精品一区二区三区| 亚洲不卡免费看| 国产精品一区二区三区四区免费观看| 久久这里只有精品中国| 春色校园在线视频观看| 中文字幕久久专区| 亚洲精品亚洲一区二区| 一个人免费在线观看电影| 欧美丝袜亚洲另类| 亚洲国产精品合色在线| 色噜噜av男人的天堂激情| 精品免费久久久久久久清纯| 亚洲美女搞黄在线观看| 人人妻人人澡人人爽人人夜夜 | 国产成人福利小说| 国产乱来视频区| 欧美高清成人免费视频www| 中文字幕av成人在线电影| 国产成人福利小说| 亚洲欧美一区二区三区国产| 国产探花极品一区二区| 日本色播在线视频| 美女内射精品一级片tv| 天堂网av新在线| 亚洲中文字幕一区二区三区有码在线看| 七月丁香在线播放| 亚洲av免费高清在线观看| 亚洲人成网站高清观看| 边亲边吃奶的免费视频| 国产精品女同一区二区软件| 99热全是精品| 久久鲁丝午夜福利片| 男人舔女人下体高潮全视频| 男人的好看免费观看在线视频| 午夜久久久久精精品| 美女脱内裤让男人舔精品视频| 国产成人91sexporn| 免费观看性生交大片5| 国产一级毛片在线| 女人久久www免费人成看片 | 色5月婷婷丁香| 亚洲精品,欧美精品| 视频中文字幕在线观看| 亚洲精品乱码久久久v下载方式| .国产精品久久| 国产精品,欧美在线| 大香蕉97超碰在线| 91精品一卡2卡3卡4卡| 亚洲成人精品中文字幕电影| av在线播放精品| 精品久久久久久成人av| 午夜福利在线观看免费完整高清在| 又粗又硬又长又爽又黄的视频| 国产成人aa在线观看| 久久久欧美国产精品| 久久99精品国语久久久| 搡老妇女老女人老熟妇| 内地一区二区视频在线| .国产精品久久| 97超视频在线观看视频| 亚洲成人久久爱视频| 看黄色毛片网站| av在线观看视频网站免费| 国产精品女同一区二区软件| 99久久成人亚洲精品观看| 欧美区成人在线视频| 日日撸夜夜添| 久久人人爽人人片av| av在线亚洲专区| 亚洲欧美日韩无卡精品| 欧美成人一区二区免费高清观看| 国产免费又黄又爽又色| av播播在线观看一区| 久久99热这里只频精品6学生 | 国产三级在线视频| 最近中文字幕高清免费大全6| 亚洲精品乱码久久久v下载方式| 亚洲中文字幕日韩| 男女边吃奶边做爰视频| 女人被狂操c到高潮| 国内精品一区二区在线观看| 五月玫瑰六月丁香| 婷婷色av中文字幕| 色综合色国产| 亚洲一级一片aⅴ在线观看| 午夜爱爱视频在线播放| 黄色配什么色好看| 欧美精品国产亚洲| 一级av片app| av福利片在线观看| 麻豆国产97在线/欧美| 午夜激情欧美在线| 看十八女毛片水多多多| 少妇的逼好多水| 色视频www国产| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 国产视频内射| 高清午夜精品一区二区三区| 欧美一区二区国产精品久久精品| 成人鲁丝片一二三区免费| 精品酒店卫生间| 亚洲精品乱久久久久久| 99热全是精品| 日本免费在线观看一区| 18禁在线播放成人免费| 久久久a久久爽久久v久久| 亚洲精品自拍成人| 一边摸一边抽搐一进一小说| 国产精品不卡视频一区二区| 久久这里只有精品中国| 麻豆乱淫一区二区| 九草在线视频观看| 久久久久久久午夜电影| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版 | 六月丁香七月| 国产成人午夜福利电影在线观看| 亚洲综合色惰| 免费看av在线观看网站| 免费观看在线日韩| 亚洲av熟女| 真实男女啪啪啪动态图| 日日啪夜夜撸| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 亚洲国产精品sss在线观看| videossex国产| 国产伦精品一区二区三区四那| 国产精品无大码| 国产精品久久视频播放| 国产免费又黄又爽又色| 国内揄拍国产精品人妻在线| 午夜激情欧美在线| 欧美日韩综合久久久久久| 有码 亚洲区| 一级av片app| 中文亚洲av片在线观看爽| 91久久精品国产一区二区三区| 亚洲av不卡在线观看| 国产免费福利视频在线观看| 免费大片18禁| 乱码一卡2卡4卡精品| 天天躁夜夜躁狠狠久久av| 两个人视频免费观看高清| 最近最新中文字幕大全电影3| 男女啪啪激烈高潮av片| 美女内射精品一级片tv| 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| 日韩欧美国产在线观看| 五月伊人婷婷丁香| av女优亚洲男人天堂| 黄色配什么色好看| 中文字幕熟女人妻在线| 欧美97在线视频| 少妇人妻一区二区三区视频| 国产淫片久久久久久久久| 国产免费男女视频| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 欧美激情在线99| 国产色婷婷99| 亚洲欧美精品专区久久| 99在线视频只有这里精品首页| 内射极品少妇av片p| 爱豆传媒免费全集在线观看| 精品久久久久久成人av| 亚洲精品aⅴ在线观看| 中文精品一卡2卡3卡4更新| 亚洲av免费高清在线观看| 天堂av国产一区二区熟女人妻| 国产女主播在线喷水免费视频网站 | 最近中文字幕2019免费版| 成人国产麻豆网| 精品久久久久久久久av| 免费不卡的大黄色大毛片视频在线观看 | 爱豆传媒免费全集在线观看| 亚洲四区av| av在线亚洲专区| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 国产老妇女一区| 国产亚洲5aaaaa淫片| 嫩草影院精品99| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 男人舔奶头视频| 免费观看性生交大片5| 亚洲精品乱码久久久v下载方式| av.在线天堂| 国产黄a三级三级三级人| 热99re8久久精品国产| 国内精品一区二区在线观看| 九九久久精品国产亚洲av麻豆| 91精品伊人久久大香线蕉| 少妇熟女欧美另类| 尾随美女入室| 91av网一区二区| 国产免费视频播放在线视频 | 99久久人妻综合| 全区人妻精品视频| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| 欧美高清成人免费视频www| 亚洲国产精品sss在线观看| 一个人观看的视频www高清免费观看| 蜜桃久久精品国产亚洲av| 最近中文字幕2019免费版| АⅤ资源中文在线天堂| 免费在线观看成人毛片| 国产探花极品一区二区| 最新中文字幕久久久久| 美女内射精品一级片tv| 99热这里只有是精品50| 日本免费在线观看一区| 久久99热这里只有精品18| 91精品伊人久久大香线蕉| 欧美成人免费av一区二区三区| 岛国毛片在线播放| 99久久精品热视频| 毛片女人毛片| 啦啦啦韩国在线观看视频| 亚洲精品久久久久久婷婷小说 | 如何舔出高潮| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天天一区二区日本电影三级| 久久久久精品久久久久真实原创| 丝袜美腿在线中文| 欧美成人免费av一区二区三区| 内射极品少妇av片p| 亚洲欧美日韩无卡精品| av卡一久久| 国产亚洲av片在线观看秒播厂 | 麻豆成人av视频| 亚洲美女视频黄频| 久久久色成人| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看| 欧美成人a在线观看| 国产免费又黄又爽又色| 亚洲乱码一区二区免费版| 丝袜美腿在线中文| 亚洲在线观看片| 婷婷色麻豆天堂久久 | 内射极品少妇av片p| 国产不卡一卡二| 国产精品久久久久久av不卡| 又爽又黄a免费视频| 高清午夜精品一区二区三区| 亚州av有码| 亚洲精品456在线播放app| 日韩一本色道免费dvd| 国内精品宾馆在线| 国产熟女欧美一区二区| 我要看日韩黄色一级片| 18禁动态无遮挡网站| 国产老妇女一区| 欧美精品国产亚洲| 韩国高清视频一区二区三区| 欧美+日韩+精品| 美女大奶头视频| 少妇猛男粗大的猛烈进出视频 | 少妇的逼好多水| 久久精品久久久久久久性| 一级黄色大片毛片| 国产精品三级大全| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 搡老妇女老女人老熟妇| 十八禁国产超污无遮挡网站| 亚洲av中文av极速乱| 午夜亚洲福利在线播放| 丝袜喷水一区| 神马国产精品三级电影在线观看| 91精品伊人久久大香线蕉| 国产探花在线观看一区二区| 精品人妻视频免费看| 男人的好看免费观看在线视频| 91精品一卡2卡3卡4卡| 国产成人91sexporn| 国产中年淑女户外野战色| 色综合色国产| 成年女人永久免费观看视频| 韩国高清视频一区二区三区| 亚洲最大成人中文| 少妇被粗大猛烈的视频| 偷拍熟女少妇极品色| 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 午夜亚洲福利在线播放| 国产精品麻豆人妻色哟哟久久 | 国产精品av视频在线免费观看| 在现免费观看毛片| 91狼人影院| 色吧在线观看| 成年免费大片在线观看| 在线观看66精品国产| 乱人视频在线观看| 亚洲精品乱码久久久v下载方式| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验| 亚洲怡红院男人天堂| 亚洲成人久久爱视频| 欧美不卡视频在线免费观看| 国产一区二区在线观看日韩| 六月丁香七月| 又黄又爽又刺激的免费视频.| 亚洲精品乱码久久久久久按摩| 一区二区三区四区激情视频| 99热这里只有是精品50| 久久国产乱子免费精品| 2021少妇久久久久久久久久久| 亚洲国产日韩欧美精品在线观看| 亚洲怡红院男人天堂| 免费在线观看成人毛片| 最近中文字幕2019免费版| 欧美性感艳星| 天堂影院成人在线观看| 国产精品福利在线免费观看| 免费观看的影片在线观看| 特级一级黄色大片| 日韩三级伦理在线观看| 亚洲精品456在线播放app| 你懂的网址亚洲精品在线观看 | 在线播放国产精品三级| 国产午夜福利久久久久久| 观看美女的网站| 免费观看精品视频网站| 久久精品久久久久久噜噜老黄 | 22中文网久久字幕| 色播亚洲综合网| 麻豆一二三区av精品| 99久久精品热视频| 国产乱来视频区| 天堂中文最新版在线下载 | 91狼人影院| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 国产老妇女一区| 久久久精品94久久精品| 久热久热在线精品观看| 欧美区成人在线视频| 99九九线精品视频在线观看视频| 老女人水多毛片| 少妇人妻一区二区三区视频| 亚洲欧美日韩高清专用| 看十八女毛片水多多多| 狂野欧美激情性xxxx在线观看| 久久久a久久爽久久v久久| 成人三级黄色视频| 国产人妻一区二区三区在| 在线观看66精品国产| 在线观看美女被高潮喷水网站| 亚洲在线观看片| 免费播放大片免费观看视频在线观看 | 禁无遮挡网站| 人妻制服诱惑在线中文字幕| av又黄又爽大尺度在线免费看 | 18+在线观看网站| 午夜a级毛片| 精品无人区乱码1区二区| 在线a可以看的网站| 中国国产av一级| 成人综合一区亚洲| 久久婷婷人人爽人人干人人爱| 啦啦啦啦在线视频资源| 国产精品综合久久久久久久免费| 性插视频无遮挡在线免费观看| 国产免费又黄又爽又色| 国产欧美日韩精品一区二区| 国产伦理片在线播放av一区| 男女边吃奶边做爰视频| 国产久久久一区二区三区| 免费观看在线日韩| 18禁裸乳无遮挡免费网站照片| 国产探花极品一区二区| 亚洲精品,欧美精品| 精品国产一区二区三区久久久樱花 | 免费观看精品视频网站| av国产免费在线观看| 精品人妻熟女av久视频| 免费观看在线日韩| 亚洲欧美中文字幕日韩二区| 只有这里有精品99| 亚洲国产成人一精品久久久| 最近最新中文字幕免费大全7| 精品国内亚洲2022精品成人| 中文字幕熟女人妻在线| 色综合色国产| 午夜精品在线福利| 在线天堂最新版资源| 色播亚洲综合网| 国产精品不卡视频一区二区| 99久久精品热视频| 久久精品国产亚洲网站| 色综合色国产| 床上黄色一级片| 国产免费又黄又爽又色| 国产高清国产精品国产三级 | videossex国产| 国内精品美女久久久久久| 最近2019中文字幕mv第一页| 国产精品福利在线免费观看| 亚洲国产精品久久男人天堂| 天堂√8在线中文| 看黄色毛片网站| 综合色av麻豆| 中文字幕久久专区| 成人国产麻豆网| 麻豆精品久久久久久蜜桃| 一级黄色大片毛片| 中文字幕熟女人妻在线| 久久精品国产亚洲av涩爱| 久久午夜福利片| 午夜福利网站1000一区二区三区| 国产美女午夜福利| 看非洲黑人一级黄片| 天堂影院成人在线观看| a级毛片免费高清观看在线播放| 国产探花极品一区二区| 男插女下体视频免费在线播放| 日韩av不卡免费在线播放| 国产一级毛片在线| 久久久久久久久久黄片| 欧美高清成人免费视频www| 欧美一区二区亚洲| 中国美白少妇内射xxxbb| 成年女人永久免费观看视频| 日本三级黄在线观看| 亚洲精品,欧美精品| 亚洲综合精品二区| 久久久久国产网址| 国产精华一区二区三区| 国产极品天堂在线| 国产在线一区二区三区精 | 高清毛片免费看| 亚洲av福利一区| 免费一级毛片在线播放高清视频| 国产男人的电影天堂91| 老司机福利观看| 蜜臀久久99精品久久宅男| 晚上一个人看的免费电影| 国产一区二区在线观看日韩| 欧美丝袜亚洲另类| 寂寞人妻少妇视频99o| 美女内射精品一级片tv| 国产伦一二天堂av在线观看| 丰满乱子伦码专区| a级毛色黄片| 亚洲欧美精品自产自拍| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区av在线| 国产在线一区二区三区精 | 亚洲精品乱码久久久v下载方式| 亚州av有码| 免费观看精品视频网站| 久久精品影院6| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 桃色一区二区三区在线观看| 中文亚洲av片在线观看爽| 国产黄片视频在线免费观看| av天堂中文字幕网| 国产黄色视频一区二区在线观看 | av黄色大香蕉| 最近视频中文字幕2019在线8| av福利片在线观看| 久久人人爽人人片av| 日韩制服骚丝袜av| 久久久欧美国产精品| 美女内射精品一级片tv| 午夜日本视频在线| 亚洲精品一区蜜桃| 一级毛片电影观看 | 亚洲内射少妇av| 亚洲在线自拍视频| 亚洲美女视频黄频| 亚洲av不卡在线观看| 国产精品无大码| 国产乱来视频区| 欧美又色又爽又黄视频| 51国产日韩欧美| 婷婷色麻豆天堂久久 | 日韩一本色道免费dvd| 中文字幕精品亚洲无线码一区| 亚洲精品亚洲一区二区| 韩国av在线不卡| 亚洲美女视频黄频| 国产精品人妻久久久久久| 91精品伊人久久大香线蕉| 国产乱人视频| 欧美成人午夜免费资源| 亚洲伊人久久精品综合 | 三级经典国产精品| 国产精品精品国产色婷婷| 日韩一区二区视频免费看| 国产精品,欧美在线| 中文在线观看免费www的网站| 久久这里只有精品中国| 国产在视频线在精品| 黑人高潮一二区| 夜夜爽夜夜爽视频| 亚洲国产欧美人成| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 国产精品乱码一区二三区的特点| 日日干狠狠操夜夜爽| 三级国产精品欧美在线观看| 一级av片app| 久久精品久久久久久噜噜老黄 | 少妇被粗大猛烈的视频| 国产v大片淫在线免费观看| 国产极品天堂在线| 免费在线观看成人毛片| 国产成人精品久久久久久| a级毛色黄片| 国产成年人精品一区二区| 日韩,欧美,国产一区二区三区 | 日韩欧美精品v在线| 亚洲图色成人| 亚洲精品色激情综合| 青春草视频在线免费观看| 长腿黑丝高跟| 欧美高清成人免费视频www| 亚洲va在线va天堂va国产| 成人三级黄色视频| 国产伦精品一区二区三区四那| 久久99热这里只频精品6学生 | 七月丁香在线播放| 国产在视频线在精品| 日韩欧美三级三区| 夜夜爽夜夜爽视频| 亚洲美女视频黄频| av线在线观看网站| 亚洲av福利一区| 国产午夜精品论理片| 国产成人a∨麻豆精品| 欧美日韩一区二区视频在线观看视频在线 | 国产精品无大码| 一级黄片播放器| 少妇丰满av| 国产又黄又爽又无遮挡在线| 少妇的逼好多水| 小蜜桃在线观看免费完整版高清| 国国产精品蜜臀av免费| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 亚洲色图av天堂| 天天躁日日操中文字幕| 国产伦在线观看视频一区| 欧美xxxx黑人xx丫x性爽| 天天躁夜夜躁狠狠久久av| 中文字幕亚洲精品专区| 丰满人妻一区二区三区视频av| 99久久精品一区二区三区| av在线播放精品| 亚洲av日韩在线播放| 超碰97精品在线观看| 久久久久久伊人网av| av专区在线播放| 狠狠狠狠99中文字幕| 国产免费福利视频在线观看| 青春草国产在线视频|