• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystallization of calcium silicate at elevated temperatures in highly alkaline system of Na2O-CaO-SiO2-H2O☆

    2017-06-01 03:32:18GanyuZhuHuiquanLiShaopengLiXinjuanHouXingruiWang
    Chinese Journal of Chemical Engineering 2017年10期

    Ganyu Zhu ,Huiquan Li,2,*,Shaopeng Li,Xinjuan Hou ,2,Xingrui Wang

    1 Key Laboratory of Green Process and Engineering,National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2 School of Chemistry and Chemical Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    High-alumina fly ash(HAFA)is mainly generated in Northwest of China,which is regarded as one of the most important energy base.Its annual emissions of 30 Mt and comprehensive utilization of 20%lead to serious pollutions to soil,air,and water[1].Given the high alumina content of over 45 wt%and the total resource amount of 15 billion ton,HAFA is regarded as a novel,valuable,and renewable mineral resource to substitute bauxite for alumina production[2].Soda-lime sintering is an effective method for alumina extraction,and has been used to treat HAFA in Inner Mongolia in China with an annual amount of 200 kt.In order to improve the Al/Si ratio in solid HAFA and reduce residue level,a desilication process is used to dissolve silica in HAFA(about 40 wt%)with alkali before sintering process[3-6].In order to achieve alkali recycling,silicon removed from HAFA,which exists as silicate in the highly alkaline solution after desilication,is preferred to prepare calcium silicate[7](the diagram is shown in Supplementary material A).Therefore,preparation of calcium silicate in highly alkaline solutions is critical for reduction and economic utilization of HAFA.Silicon treatment in HAFA can also contribute to environment-friendly utilization of low-grade ores and other kinds of solid wastes containing high silicon contents.

    There are various amorphous and crystalline forms of calcium silicate.Previous researches mainly focused on CaO-SiO2-H2O system at different temperatures and Ca/Si(C/S)ratios,which are the most important effects on forming calcium silicate of different phases and morphologies[8-11].Some studies have also been performed in NaO-CaO-SiO2-H2O system to investigate the influence of sodium ion on composition,phase,and morphology of calcium silicate[12-14].Blakemanet al.[15]found that semi-crystalline calcium-silicate-hydrate(C-S-H),tobermorite,pectolite,and xonotlite phases could form at constant CaO:SiO2molar ratio 0.83 and varying NaOH:SiO2molar ratio 0.05-0.63.Nocuń-Wczelik[16]obtained the Ca-Na-containing phases at over 20%Na2O by weight and at SiO2content exceeding 50%by weight.In these studies,amorphous silica or quartz was used as SiO2componentin starting materials.The presentstudy aims to the utilization of desilication solution,which contains large amount of sodium and silicate ions(Na/Si molar ratio=2-12),from the HAFA treatment process.Silicate ions in the solution are quite different from solid starting materials in previous reports[17-20],and may affect the structure,phase transition,and crystal lattice of calcium silicate.In addition,influence of sodium to the optimization of calcium silicate was only considered at a relatively low concentration of sodium(Na/Si molar ratio less than 1)in previous researches[21-23].Sodium ions may be arranged into the structure to affect the C/S ratio of calcium silicate to form different phases.Therefore,the research on crystallization control to form amorphous and crystalline calcium silicate of different phases and morphologies in highly alkaline system is very necessary.

    In this work,the influences of temperature,C/S ratio,and NaOH concentration,which dominantly affect phase and morphology of calcium silicate,were investigated.In the highly alkaline system,the synthesis condition regions of specific phases were obtained through X-ray diffractometry(XRD).In addition,the morphologies of different phases were determined.In order to reveal the formation mechanism of specific morphology,high resolution transmission electron microscope(HRTEM)and selected-area electron diffraction(SAED)analysis combined with calculations of surface energy were conducted.Meanwhile,the effect of temperature on crystal orientation of calcium silicate was also investigated.Through these studies,the morphology and phase can be controlled in Na2O-CaO-SiO2-H2O system with high alkalinity.

    2.Materials and Methods

    Model solutions were used to obtain the fundamental rules of crystallization behavior in Na2O-CaO-SiO2-H2O system.CaO,Na2SiO3·9H2O,and NaOH used in this work,which are all supplied by Xilong Chemical Reagent Co.,were analytical grade and used without any further purification.In the experiments,mass of distilled water and crystallization water in Na2SiO3·9H2O was 150.0 g,and the total mass of CaO and calculated Na2SiO3was 10.7 g(L/S=14).C/S ratio was 0.5,0.8,1,1.5,and 2,respectively.All the reactants above were added into a rotational autoclave with the volume of 0.25 L.Then NaOH was added to make the initial concentration of NaOH ranged from 0 mol·L-1to 5 mol·L-1without consideration of sodium in Na2SiO3.Hydrothermal reaction was carried out in the closed autoclave,in which the influence of CO2can be neglected,at 453 K to 533 K under saturated pressure for 5 h,followed by cooling down to room temperature naturally.The obtained solid was filtrated,washed with distilled water,and dried at 353 K for 24 h.

    Morphology and phase of the dried powders were detected by field emission scanning electron microscopy(FESEM,JEOL JSM 6700F)and XRD with CuKαdiffraction(PANalytical Empyrean),respectively.In addition,HRTEM and SAED were performed at 200 kV with FEI Tecnai G220S-TWIN to analyze the crystal structure.In order to certify the specific crystal orientation,surface energies of different crystal planes obtained by SAED were also calculated by density functional theory method.The calculation details are given in Supplementary material B.

    3.Results and Discussion

    In Table 1,all the experimental conditions are listed.The corresponding phases obtained at these conditions,which have been analyzed by XRD(typical figures are given in Supplementary material C),are also shown in the table.It needs to be specified that the mass of Na from Na2SiO3is not considered in the mentioned concentration below.Temperature,C/S ratio,and NaOH concentration have great influences on phases of C-S-H.Although many contributions have been made by the researchers to study the phase relation in CaO-SiO2-H2O or Na2O-CaO-SiO2-H2O system[13,14,24,25],interesting results have been obtained in our studies with the special system and a relatively short reaction time.

    3.1.Phase analysis

    The phases obtained at different concentrations of NaOH in Na2OCaO-SiO2-H2O system are shown in Fig.1.C-S-H,which is poorly ordered and crystallized,was obtained at 453 K due to the substitution of Na+in the structure to stabilize it against transformation to crystalline forms[23].

    In Fig.1(a),the main phases are foshagite,tobermorite,pectolite,and hillebrandite.It can be found that the compositions of the phases are different at different temperatures,while the C/S ratio is 0.5 to 1.5.It keeps stable at C/S ratio of 2.Hillebrandite is stable at hightemperature and will not transform to α-C2SH at the conditions,and this is contrary with previous results[25].Foshagite was obtained at C/S ratio of 1 and temperature of over 423 K in this work,compared with xonotlite as reported in previous work under the same conditions[25].Because the actual concentrations of sodium ions in these reactions were all about 0.8 mol·L-1without the addition of NaOH,the sodium ions brought with Na2SiO3are assumed to be the main reason to affect the phase.To illustrate the influence of alkali with small quantity on the phase change,the hydrothermal reactions were conducted with the C-S-H already synthesized(C/S ratio=1), filtered and completely washed to reach pH value of 9.The experiments have been performed for 5 h at different NaOH concentrations,L/S of 14,and 513 K.In Fig.2,the tiny excursions of the peak position may be caused by the different heights of the samples in the sampling process.It can be seen that xonotlite was obtained in nearly neutral system without the addition of NaOH.With the increasing of NaOH concentration,the enhancement of(210)reflection of foshagite and weakening of(-112)reflection of xonotlite indicates the mass increase of foshagite.Then,it becomes the only phase at NaOH concentration of 0.50 mol·L-1.It means that NaOH with a relatively low concentration in the system may affect the composition and combination during its crystallization process to form different phases.

    Table 1Phases obtained at different conditions

    Returning to Fig.1(b),pectolite and NaCaHSiO4that comprising sodium elements become the dominant phases at 533 K while NaOH concentration increases to 2 mol·L-1.It means that higher temperature is beneficial for the arrangement of Na into the structure of the compounds[16].With the further increasing of NaOH concentration to 4 mol·L-1and 5 mol·L-1in the system(Fig.1(c)and(d)),Na is easily to be combined into the structure.At the temperature of above 473 K,the main phases are Na2Ca3H8Si2O12in high C/S ratio region and NaCaHSiO4in low C/S ratio region,respectively.Meanwhile,the content of Na in the phase increases with C/S ratio and NaOH concentration.C/S ratios decrease and(Na+Ca)/Si ratio increases in the phases obtained at high NaOH concentration comparing with which at the same conditions of low NaOH concentration.

    Fig.1.Phases obtained at different conditions in Na2O-CaO-SiO2-H2Osystem.Extra concentration of NaO His(a)0 mol·L-1,(b)2 mol·L-1,(c)4 mol·L-1,and(d)5 mol·L-1,respectively.

    3.2.Morphology of different phases

    Through the investigations of the phase and morphology under different conditions in Na2O-CaO-SiO2-H2O system,the specific relations between phase and morphology are shown in Fig.3.Tobermorite obtained in this work is stacking and amorphous because of its poor crystallinity as reported in alkaline system[18].NaCaHSiO4is mainly cubic and well dispersed,and Na2Ca3H8Si2O12is plate-like.Only the morphologies of phases in wollastonite group[12],such as pectolite,foshagite,and hillebrandite are nanofibers.However,pectolite is the thinnest and flexible,which leads to the wrapping of the nanofibers.Foshagite is straighter,and mostly keeps separate from each other.Hillebrandite is the thickest in diameter,and the nanofibers grow together to form an aggregate.

    Fig.2.XRD patterns of calcium silicate hydrate at different NaOH concentrations and the temperature of 513 K.

    3.3.Growth analysis of nanofiber

    As the structure similarity of the inosilicates between the nanofibers,foshagite was taken as an instance to investigate the crystal growth mechanism.HRTEM analysis was studied as shown in Fig.4,which is a typical image of foshagite and has been characterized by XRD.It is obvious that the axial direction is the growth orientation of foshagite.Through the calculation of SAED patterns of foshagite,crystal planes of axial and radial direction are determined as(314)and(311)respectively.The surface energies were predicated by theoretical calculations for(14)and(311)surfaces of foshagite,which are 0.057×104eV·nm-3and 0.027× 104eV·nm-3,respectively.The higher surface energy of(14)indicates that the stability of(314)is weaker than that of(311)surfaces,which means that the growth speed of nanofiber along(314)direction is much faster than that along(311)direction.Therefore,the phase of foshagite has the morphology of nanofiber.

    It is noticeable that the morphology of the nanofibers shows different variations with temperature.Morphologies of foshagite and pectolite keep stable at 513 K and 533 K,and only morphology of hillerbrandite changes(Fig.5).The nanofibers of hillerbrandite are well crystallized and have aggregates of radiolitic texture at the temperature of513 K.When the temperature increases to 533 K,the aggregates have been damaged and the alignment of nanofibers becomes parallel,and then they grow together to be larger in width.

    Fig.3.Morphologies of different phases.(a)Tobermorite,C/S=0.8,C NaOH=0 mol·L-1,513 K,(b)NaCaHSiO4,C/S=0.5,C NaOH=5 mol·L-1,533 K,(c)Na2Ca3H8Si2O12,C/S=2,C NaOH=5 mol·L-1,473 K,(d)pectolite,C/S=0.5,C NaOH=0 mol·L-1,533 K,(e)foshagite,C/S=1,C NaOH=2 mol·L-1,533 K,and(f)hillebrandite,C/S=1.5,C NaOH=2 mol·L-1,513 K.

    Therefore,a further study of XRD patterns of hillerbrandite obtained at different temperatures has been shown in Fig.6.While the temperature varies from 513 K to 533 K,maxima of XRD patterns of hillerbrandite moves from 30.45°to 18.43°,and the peak at 31.49°is also strengthened.According to JCPDS no.00-042-0538,the intensity of the peak at 31.49°is usually maximum.The enhancement of(202)and(403)reflections and the weakening of(311)reflection indicate that the crystal orientation has changed with the increase of the temperature,while the temperature varies from 513 K to 533 K.The change of the growth orientation with the conditions can also be seen in previous reports about the crystal growth of other materials[26,27].

    To correlate the morphology change and growth orientation,HRTEM study of hillebrandite obtained at 533 K is shown in Fig.7.In the image,it can be seen that the samples were severely damaged because of fast electron-irradiation[28].Through the calculation of the d-spacing in SAED patterns,the crystal plane reflections of different diffraction patterns and the orientations of different planes were determined.To hillebrandite,crystal planes of axial and radial direction are(310)and(604)respectively.Meanwhile,the plane of(403),which reflection is enhanced as shown in Fig.6,is nearly parallel with(604)of radial direction.The enhancement of(403)reflections means the optimal orientation,which leads the larger in width at the temperature of 533 K.

    Fig.4.XRD patterns,TEM image,and SAED patterns of foshagite.

    Fig.5.Morphologies of pectolite,foshagite,and hillerbrandite obtained without extra NaOH.(a)Pectolite,513 K,(b)pectolite,533 K,(c)foshagite,513 K,(d)foshagite,533 K,(e)hillebrandite,513 K,and(f)hillebrandite,533 K.

    Fig.6.XRD patterns of hillerbrandite obtained without extra NaOH.

    Fig.7.TEM image and SAED patterns of hillebrandite.

    4.Conclusions

    In this work,systematic investigation of C-S-H morphology and phase was conducted with the range of 453 K to 533 K,initial NaOH concentration of 0 mol·L-1to 5 mol·L-1,and C/S ratio of 0.5 to 2 in Na2O-CaO-SiO2-H2O system for the utilization of silicon in HAFA.The experimental results show that crystal growth is along radial direction at higher temperature.Tobermorite and nanofibers of wollastonite group are the main products at relatively low concentration of NaOH in the system,and Na is rearranged into the structure to form NaCaHSiO4and Na2Ca3H8Si2O12with different C/S ratio at high concentration of NaOH.Only the phases in wollastonite group such as pectolite,foshagite,and hillebrandite,have the morphology of nanofiber.In addition,the formation of morphology as nanofiber is due to the difference of surface energies between axial and radial direction with HRTEM analysis and surface energy calculations.Through these works,C-S-H of specific morphologies and phases can be controlled synthesized.The results can provide the guidance for the preparation of different C-S-H phases and morphologies in the solutions with high alkalinity,which is critical for the utilization of silicon resources in HAFA and other low-grade ore with high silicon content.

    Acknowledgments

    The theoretical calculation results described in this paper are obtained on the Deepcomp 7000 of Supercomputing Center in the Computer Network Information Center of the Chinese Academy of Sciences.

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2017.02.012.

    [1]S.Dai,L.Zhao,S.Peng,C.L.Chou,X.Wang,Y.Zhang,D.Li,Y.Sun,Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant,Inner Mongolia,China,Int.J.Coal Geol.81(2010)320-332.

    [2]J.M.Sun,P.Chen,Resourcing utilization of high alumina fly ash,Adv.Mater.Res.652-654(2013)2570-2575.

    [3]H.Q.Li,J.B.Hui,C.Y.Wang,W.J.Bao,Z.H.Sun,Extraction of alumina from coal fly ash by mixed-alkaline hydrothermalmethod,Hydrometallurgy147-148(2014)183-187.

    [4]G.H.Bai,T.Teng,A.G.Wang,J.G.Qin,P.Xu,P.C.Li,Alkali desilicated coal fly ash as substitute of bauxite in lime-soda sintering process for aluminum production,Trans.Nonferrous Met.Soc.20(2010)169-175.

    [5]X.B.Xu,Y.B.Zhu,S.Zhang,Z.K.Liang,X.X.Chen,Y.B.Gong,Research on optimizing process of pre-desilication of high-aluminum fly ash,Light Met.7(2013)18-21.

    [6]Z.H.Sun,W.J.Bao,H.Q.Li,J.B.Hui,C.Y.Wang,Q.Tang,Mineral phase change of highalumina fly ash during desilication and extraction of Al2O3by alkali dissolution process,Chin.J.Process.Eng.13(2013)403-407.

    [7]C.Feng,Y.Yao,Y.Li,X.M.Liu,H.H.Sun,Thermal activation on calcium silicate slag from high-alumina fly ash:A technical report,Clean Technol.Environ.Policy16(2014)667-672.

    [8]J.J.Chen,J.J.Thomas,H.F.W.Taylor,H.M.Jennings,Solubility and structure of calcium silicate hydrates,Cem.Concr.Res.34(2004)1499-1519.

    [9]D.R.Moorehead,E.R.Mccartney,Hydrothermal formation of calcium silicate hydrates,J.Am.Ceram.Soc.48(1965)565-569.

    [10]S.Garrault-Gauffinet,A.Nonat,Experimental investigation of calcium silicate hydrate(C-S-H)nucleation,J.Cryst.Growth200(1999)565-574.

    [11]N.Meller,C.Hall,J.S.Phipps,A new phase diagram for the CaO-Al2O3-SiO2-H2O hydro ceramic system at 200 degrees C,Mater.Res.Bull.40(2005)715-723.

    [12]E.B.Nelson,G.L.Kalousek,Effect of Na2O on calcium silicate hydrates at elevated temperature,Cem.Concr.Res.7(1977)687-694.

    [13]Y.Z.Xi,L.S.D.Glasser,Hydrothermal study in the system Na2O-CaO-SiO2-H2O at 300°C,Cem.Concr.Res.14(1984)741-748.

    [14]K.Baltakys,R.Siauciunas,The influence of γ-Al2O3and Na2O on the formation of gyrolite in the stirring suspension,J.Mater.Sci.41(2006)4799-4805.

    [15]E.A.Blakeman,J.A.Gard,C.G.Ramsay,H.F.W.Taylor,Studies on the system sodium oxide-calcium oxide-silica-water,J.Chem.Technol.Biotechnol.24(1974)239-245.

    [16]W.Nocuń-Wczelik,Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates,Cem.Concr.Res.29(1999)1759-1767.

    [17]I.G.Richardson,The calcium silicate hydrates,Cem.Concr.Res.38(2008)137-158.

    [18]X.L.Hu,K.Yanagisawa,A.Onda,K.Kajiyoshi,Stability and phase relations of dicalcium silicate hydrates under hydrothermal conditions,J.Ceram.Soc.Jpn.224(2006)174-179.

    [19]L.Black,K.Garbev,P.Stemmermann,K.R.Hallam,G.C.Allen,Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy,Cem.Concr.Res.33(2003)899-911.

    [20]J.A.Gard,H.F.W.Taylor,The crystal structure of foshagite,Acta Crystallogr.13(1960)785-793.

    [21]R.A.Rashid,R.Shamsudin,M.A.A.Habid,A.Jalar,In-vitro bioactivity of wollastonite materials derived from limestone and silica sand,Ceram.Int.40(2014)6847-6853.

    [22]W.Li,Z.L.Jin,Z.H.Zhang,Application and synthesis of inorganic whisker materials,Prog.Chem.15(2003)264-274.

    [23]M.Q.Li,Y.F.Chen,S.Q.Xia,J.H.Li,H.X.Liang,Microstructure and processing of ultralight calcium silicate insulation material,J.Chin.Ceram.Soc.28(2000)401-406.

    [24]G.O.Assarsson,Hydrothermal reactions between calcium hydroxide and amorphous silica:The reactions between 180°and 220°,J.Phys.Chem.61(1957)473-479.

    [25]S.Y.Hong,F.P.Glasser,Phase relations in the CaO-SiO2-H2O system to 200°C at saturated steam pressure,Cem.Concr.Res.34(2004)1529-1534.

    [26]F.Lu,B.Zhao,R.Li,W.D.Ruan,Crystal growth of barium nitrate on thiol-terminated self-assembled monolayers and a Raman spectroscopic investigation of the crystal facets,J.Cryst.Growth426(2015)33-37.

    [27]R.Li,J.S.Gandhi,R.Pillai,R.Forrest,D.Starikov,A.Bensaoula,Epitaxial growth of(111)-oriented ZrxTi1-xN thin films onc-plane Al2O3substrates,J.Cryst.Growth404(2014)1-8.

    [28]H.F.Xu,P.R.Buseck,TEM investigation of the domain structure and superstructure in hillebrandite,Ca2SiO3(OH)2,Am.Mineral.81(1996)1371-1374.

    国产一区二区三区视频了| 国产亚洲av嫩草精品影院| 国产亚洲欧美98| 成人18禁高潮啪啪吃奶动态图| 岛国在线观看网站| 亚洲国产毛片av蜜桃av| 欧美激情高清一区二区三区| 性欧美人与动物交配| 看片在线看免费视频| 精品国产超薄肉色丝袜足j| 欧美在线黄色| 啪啪无遮挡十八禁网站| 日本在线视频免费播放| 手机成人av网站| 91成人精品电影| 精品久久久久久久毛片微露脸| 99riav亚洲国产免费| 国产亚洲欧美精品永久| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产乱码久久久久久男人| 在线观看免费午夜福利视频| 一级毛片高清免费大全| 大型黄色视频在线免费观看| or卡值多少钱| 极品人妻少妇av视频| 99精品在免费线老司机午夜| 老汉色∧v一级毛片| 欧美激情 高清一区二区三区| 国产精品久久视频播放| 伦理电影免费视频| 国产99白浆流出| 欧美激情 高清一区二区三区| 18美女黄网站色大片免费观看| 国产激情久久老熟女| 日韩国内少妇激情av| 午夜免费成人在线视频| 精品免费久久久久久久清纯| 亚洲国产精品久久男人天堂| 黄网站色视频无遮挡免费观看| 久久精品国产清高在天天线| 99riav亚洲国产免费| 国产片内射在线| 国产精品1区2区在线观看.| 精品国产一区二区三区四区第35| 午夜福利在线观看吧| 亚洲国产精品久久男人天堂| 精品国产超薄肉色丝袜足j| 精品乱码久久久久久99久播| 午夜免费激情av| 国产av一区在线观看免费| 国产精品99久久99久久久不卡| 日本 av在线| cao死你这个sao货| 欧美日韩亚洲国产一区二区在线观看| 国产乱人伦免费视频| 亚洲国产看品久久| 母亲3免费完整高清在线观看| 人妻久久中文字幕网| 不卡av一区二区三区| 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全电影3 | 一进一出抽搐gif免费好疼| 亚洲男人天堂网一区| 青草久久国产| 热re99久久国产66热| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站 | 午夜福利成人在线免费观看| 777久久人妻少妇嫩草av网站| 中文字幕人成人乱码亚洲影| 麻豆av在线久日| 正在播放国产对白刺激| 色哟哟哟哟哟哟| 欧美日本中文国产一区发布| 亚洲欧美激情综合另类| 757午夜福利合集在线观看| 欧美在线黄色| 一级片免费观看大全| svipshipincom国产片| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| bbb黄色大片| 精品高清国产在线一区| 国产成人系列免费观看| 满18在线观看网站| 伦理电影免费视频| 国产一区二区三区视频了| 变态另类丝袜制服| 亚洲欧美激情综合另类| 9热在线视频观看99| 久久婷婷人人爽人人干人人爱 | 午夜视频精品福利| 国产一区二区三区在线臀色熟女| 97超级碰碰碰精品色视频在线观看| 韩国av一区二区三区四区| 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 亚洲欧洲精品一区二区精品久久久| 女同久久另类99精品国产91| 久久香蕉国产精品| 91老司机精品| 不卡一级毛片| 国产主播在线观看一区二区| 精品乱码久久久久久99久播| 黄色毛片三级朝国网站| 午夜日韩欧美国产| 免费无遮挡裸体视频| 免费无遮挡裸体视频| 波多野结衣高清无吗| 久久婷婷人人爽人人干人人爱 | 黄色丝袜av网址大全| 欧美乱色亚洲激情| 亚洲成人久久性| 日韩欧美一区视频在线观看| 99久久综合精品五月天人人| 一级作爱视频免费观看| 国产亚洲欧美精品永久| 成人特级黄色片久久久久久久| 亚洲av成人av| 在线av久久热| 黑人巨大精品欧美一区二区mp4| 久久中文看片网| 波多野结衣一区麻豆| 国产成人精品久久二区二区免费| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 91老司机精品| 成人三级黄色视频| 桃红色精品国产亚洲av| 成人精品一区二区免费| avwww免费| 亚洲人成电影观看| 黄色毛片三级朝国网站| 亚洲国产精品sss在线观看| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看黄色视频的| 美国免费a级毛片| 日韩 欧美 亚洲 中文字幕| 在线观看午夜福利视频| 咕卡用的链子| 欧美激情 高清一区二区三区| 在线观看免费午夜福利视频| 欧美国产精品va在线观看不卡| 婷婷六月久久综合丁香| 18禁黄网站禁片午夜丰满| 熟妇人妻久久中文字幕3abv| 精品国产美女av久久久久小说| 成年人黄色毛片网站| 麻豆一二三区av精品| 在线视频色国产色| 如日韩欧美国产精品一区二区三区| 色播在线永久视频| 宅男免费午夜| 女人精品久久久久毛片| 激情视频va一区二区三区| 国产精品九九99| www国产在线视频色| 国产亚洲av高清不卡| 啦啦啦 在线观看视频| 97超级碰碰碰精品色视频在线观看| 亚洲av五月六月丁香网| 久热爱精品视频在线9| 亚洲久久久国产精品| 日韩有码中文字幕| 岛国在线观看网站| 久久久国产精品麻豆| 少妇的丰满在线观看| 又紧又爽又黄一区二区| 黑丝袜美女国产一区| 一卡2卡三卡四卡精品乱码亚洲| 久久香蕉精品热| 久久香蕉国产精品| 亚洲第一电影网av| 精品人妻1区二区| 亚洲精华国产精华精| 亚洲精品av麻豆狂野| 亚洲成人精品中文字幕电影| 69精品国产乱码久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一青青草原| 婷婷丁香在线五月| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 亚洲av电影不卡..在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久久久久久大奶| 中文字幕av电影在线播放| 波多野结衣av一区二区av| 一边摸一边抽搐一进一小说| 亚洲一区二区三区不卡视频| 变态另类丝袜制服| www国产在线视频色| 成人特级黄色片久久久久久久| or卡值多少钱| 级片在线观看| 成人三级黄色视频| 别揉我奶头~嗯~啊~动态视频| 超碰成人久久| 亚洲精品美女久久av网站| 老司机午夜福利在线观看视频| 国产亚洲av高清不卡| 黑丝袜美女国产一区| 亚洲天堂国产精品一区在线| 午夜影院日韩av| 这个男人来自地球电影免费观看| 99国产精品一区二区三区| 亚洲男人天堂网一区| 女人被狂操c到高潮| 精品国产超薄肉色丝袜足j| 香蕉丝袜av| 国产成人欧美在线观看| 国产精品综合久久久久久久免费 | 亚洲av片天天在线观看| 亚洲片人在线观看| 欧美丝袜亚洲另类 | 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 午夜a级毛片| 亚洲人成电影免费在线| 在线观看66精品国产| 成人亚洲精品一区在线观看| 欧美一级a爱片免费观看看 | 久久国产乱子伦精品免费另类| 免费看十八禁软件| 欧美国产精品va在线观看不卡| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码| 亚洲av片天天在线观看| 久久久久亚洲av毛片大全| 亚洲第一青青草原| 亚洲av熟女| 给我免费播放毛片高清在线观看| 熟女少妇亚洲综合色aaa.| 成人精品一区二区免费| 免费少妇av软件| 后天国语完整版免费观看| 亚洲自偷自拍图片 自拍| 男女床上黄色一级片免费看| 午夜久久久在线观看| 亚洲 国产 在线| 又大又爽又粗| 激情在线观看视频在线高清| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区在线不卡| 美女午夜性视频免费| 99riav亚洲国产免费| xxx96com| 国产乱人伦免费视频| 欧美日本亚洲视频在线播放| 老汉色av国产亚洲站长工具| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 国产av又大| 欧美激情久久久久久爽电影 | 又黄又粗又硬又大视频| 欧美日韩中文字幕国产精品一区二区三区 | 好看av亚洲va欧美ⅴa在| 宅男免费午夜| 精品午夜福利视频在线观看一区| av天堂在线播放| 制服诱惑二区| 女同久久另类99精品国产91| 久久亚洲真实| 超碰成人久久| 国内毛片毛片毛片毛片毛片| 一区二区三区国产精品乱码| 在线天堂中文资源库| www.精华液| 亚洲少妇的诱惑av| 一进一出抽搐动态| 女人被躁到高潮嗷嗷叫费观| 国产精华一区二区三区| 国产精品亚洲一级av第二区| 老鸭窝网址在线观看| 黑人操中国人逼视频| 欧美黑人欧美精品刺激| 91大片在线观看| 日韩 欧美 亚洲 中文字幕| 国产麻豆69| 老汉色∧v一级毛片| 18美女黄网站色大片免费观看| 欧美乱色亚洲激情| 叶爱在线成人免费视频播放| 中文字幕高清在线视频| 亚洲av成人av| 日韩大尺度精品在线看网址 | 日日摸夜夜添夜夜添小说| 黄色女人牲交| 国产精品久久电影中文字幕| 亚洲国产看品久久| 欧美成人免费av一区二区三区| 大型黄色视频在线免费观看| av福利片在线| 国产精品综合久久久久久久免费 | 一区二区三区国产精品乱码| 搡老岳熟女国产| 欧美激情高清一区二区三区| 性欧美人与动物交配| 一级a爱视频在线免费观看| 久久狼人影院| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 99热只有精品国产| 久9热在线精品视频| 99国产精品99久久久久| 亚洲国产毛片av蜜桃av| 中国美女看黄片| 欧美大码av| av电影中文网址| 精品一品国产午夜福利视频| 午夜免费激情av| 国产精品电影一区二区三区| 亚洲少妇的诱惑av| 一个人观看的视频www高清免费观看 | av网站免费在线观看视频| 精品第一国产精品| 久久婷婷人人爽人人干人人爱 | 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 深夜精品福利| 精品一区二区三区av网在线观看| 亚洲av美国av| 人人澡人人妻人| 国产精品久久久人人做人人爽| 久久草成人影院| 91成人精品电影| 老司机午夜十八禁免费视频| 此物有八面人人有两片| x7x7x7水蜜桃| 国产三级在线视频| 国产亚洲欧美98| 亚洲精品在线观看二区| 国产亚洲欧美98| 亚洲精品在线观看二区| 夜夜夜夜夜久久久久| 97碰自拍视频| av片东京热男人的天堂| 最好的美女福利视频网| 桃色一区二区三区在线观看| 精品久久久久久,| 桃色一区二区三区在线观看| 欧美av亚洲av综合av国产av| 91麻豆av在线| 精品国产一区二区三区四区第35| 欧美中文综合在线视频| 精品人妻在线不人妻| 欧美一级毛片孕妇| 日韩 欧美 亚洲 中文字幕| 亚洲第一欧美日韩一区二区三区| 国产成人系列免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一av免费看| 美女扒开内裤让男人捅视频| 亚洲精品久久成人aⅴ小说| 精品久久蜜臀av无| 国产一区在线观看成人免费| 亚洲国产中文字幕在线视频| 男女做爰动态图高潮gif福利片 | 男人舔女人下体高潮全视频| 国产亚洲欧美精品永久| 亚洲片人在线观看| 级片在线观看| 国产精品二区激情视频| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 国产精品电影一区二区三区| 成人亚洲精品一区在线观看| 女人爽到高潮嗷嗷叫在线视频| 90打野战视频偷拍视频| 国产熟女xx| 免费看美女性在线毛片视频| 久久精品亚洲精品国产色婷小说| 满18在线观看网站| 变态另类成人亚洲欧美熟女 | 亚洲国产欧美日韩在线播放| 国产av又大| 老司机靠b影院| 欧美色视频一区免费| 亚洲精品国产区一区二| 别揉我奶头~嗯~啊~动态视频| 亚洲三区欧美一区| 最近最新中文字幕大全免费视频| 99国产精品99久久久久| 法律面前人人平等表现在哪些方面| 亚洲一区中文字幕在线| 欧美日本中文国产一区发布| 午夜福利成人在线免费观看| 午夜精品国产一区二区电影| av网站免费在线观看视频| 国产亚洲精品av在线| 精品乱码久久久久久99久播| 欧美另类亚洲清纯唯美| 黄网站色视频无遮挡免费观看| 叶爱在线成人免费视频播放| 精品高清国产在线一区| 宅男免费午夜| 国产精品美女特级片免费视频播放器 | 99国产精品免费福利视频| 最近最新中文字幕大全电影3 | 久久人妻福利社区极品人妻图片| 日韩国内少妇激情av| 亚洲av熟女| 国产精品免费视频内射| 国产av又大| 午夜精品国产一区二区电影| 国产97色在线日韩免费| 亚洲精品久久成人aⅴ小说| 久久久久精品国产欧美久久久| 国产91精品成人一区二区三区| 久久国产精品人妻蜜桃| 亚洲中文av在线| 精品国产国语对白av| 日韩欧美免费精品| 亚洲av五月六月丁香网| 禁无遮挡网站| 日韩欧美国产一区二区入口| 欧美成人免费av一区二区三区| 美女大奶头视频| 人妻久久中文字幕网| 在线永久观看黄色视频| 50天的宝宝边吃奶边哭怎么回事| 露出奶头的视频| 中文字幕精品免费在线观看视频| av超薄肉色丝袜交足视频| 在线观看免费视频日本深夜| 久9热在线精品视频| 国产精品久久久久久亚洲av鲁大| 精品欧美一区二区三区在线| 国产免费av片在线观看野外av| 国产精品一区二区免费欧美| 淫秽高清视频在线观看| 女性被躁到高潮视频| 视频在线观看一区二区三区| 亚洲成人久久性| 老司机午夜十八禁免费视频| 在线观看一区二区三区| 精品第一国产精品| 淫秽高清视频在线观看| 日韩精品中文字幕看吧| 国产亚洲av嫩草精品影院| 天天躁夜夜躁狠狠躁躁| 国产精品亚洲av一区麻豆| 国产成人av教育| 午夜两性在线视频| 无人区码免费观看不卡| 亚洲美女黄片视频| 法律面前人人平等表现在哪些方面| 国产精品免费一区二区三区在线| 真人做人爱边吃奶动态| 两个人视频免费观看高清| 侵犯人妻中文字幕一二三四区| 国产亚洲av嫩草精品影院| 亚洲 国产 在线| 国产单亲对白刺激| 久久天堂一区二区三区四区| 波多野结衣巨乳人妻| 日韩视频一区二区在线观看| 日日夜夜操网爽| 亚洲精品美女久久av网站| 男女之事视频高清在线观看| 中文字幕色久视频| 国产片内射在线| 欧美+亚洲+日韩+国产| a在线观看视频网站| 免费无遮挡裸体视频| 国产伦人伦偷精品视频| 亚洲国产日韩欧美精品在线观看 | 一区二区三区激情视频| 1024视频免费在线观看| 国产精品一区二区精品视频观看| 亚洲av第一区精品v没综合| 一本综合久久免费| 天天添夜夜摸| 精品高清国产在线一区| 欧美激情极品国产一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 欧美激情 高清一区二区三区| 中文字幕最新亚洲高清| 亚洲片人在线观看| 国产成人啪精品午夜网站| 男女下面进入的视频免费午夜 | 三级毛片av免费| 97碰自拍视频| 日本三级黄在线观看| 变态另类丝袜制服| 欧美国产精品va在线观看不卡| 亚洲人成电影观看| 国产av在哪里看| svipshipincom国产片| 19禁男女啪啪无遮挡网站| 99国产精品一区二区三区| 男人的好看免费观看在线视频 | 欧美亚洲日本最大视频资源| 国产成人欧美在线观看| 亚洲av美国av| 亚洲专区字幕在线| 成人手机av| 人人妻,人人澡人人爽秒播| √禁漫天堂资源中文www| 老汉色av国产亚洲站长工具| 国产精品乱码一区二三区的特点 | 午夜福利18| 亚洲第一电影网av| 国产精品爽爽va在线观看网站 | www.自偷自拍.com| 欧洲精品卡2卡3卡4卡5卡区| 国产精品九九99| 亚洲一区中文字幕在线| 99精品久久久久人妻精品| 国产真人三级小视频在线观看| 9色porny在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人免费电影在线观看| 桃色一区二区三区在线观看| 亚洲第一青青草原| 一本大道久久a久久精品| 日韩大码丰满熟妇| 91成人精品电影| 九色国产91popny在线| 叶爱在线成人免费视频播放| 亚洲电影在线观看av| 夜夜夜夜夜久久久久| 国产精品,欧美在线| 国产亚洲精品av在线| www.www免费av| 日本五十路高清| 久久久久精品国产欧美久久久| 91成年电影在线观看| 国产精品免费视频内射| 老司机午夜十八禁免费视频| 亚洲成人国产一区在线观看| 亚洲专区字幕在线| 真人一进一出gif抽搐免费| 日韩成人在线观看一区二区三区| 黄色a级毛片大全视频| 亚洲七黄色美女视频| 妹子高潮喷水视频| 精品日产1卡2卡| 长腿黑丝高跟| 美女国产高潮福利片在线看| 18禁黄网站禁片午夜丰满| 黄色女人牲交| 精品久久久精品久久久| a在线观看视频网站| 午夜福利18| 黄色a级毛片大全视频| 最近最新中文字幕大全免费视频| 纯流量卡能插随身wifi吗| 亚洲男人的天堂狠狠| 亚洲熟妇中文字幕五十中出| 亚洲最大成人中文| 国产欧美日韩综合在线一区二区| 国产蜜桃级精品一区二区三区| 精品国产国语对白av| 禁无遮挡网站| 欧美在线黄色| 男男h啪啪无遮挡| 久久天躁狠狠躁夜夜2o2o| 精品人妻1区二区| 欧美久久黑人一区二区| 免费女性裸体啪啪无遮挡网站| 在线观看免费视频日本深夜| 久久久国产成人精品二区| 深夜精品福利| 亚洲午夜精品一区,二区,三区| 国产极品粉嫩免费观看在线| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 黄色视频,在线免费观看| 国产精品久久电影中文字幕| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 黑人巨大精品欧美一区二区mp4| 一级作爱视频免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产高清videossex| 成人免费观看视频高清| 又黄又爽又免费观看的视频| 男人的好看免费观看在线视频 | 热99re8久久精品国产| 亚洲精品国产区一区二| 欧美日韩一级在线毛片| 久久欧美精品欧美久久欧美| 亚洲成国产人片在线观看| 日本 av在线| 制服人妻中文乱码| 免费高清视频大片| 精品久久久久久久人妻蜜臀av | svipshipincom国产片| 91精品三级在线观看| 欧美日本视频| 电影成人av| 亚洲精品中文字幕在线视频| 精品一区二区三区四区五区乱码| 久久狼人影院| 欧美一级a爱片免费观看看 | 乱人伦中国视频| 午夜福利成人在线免费观看| 日本精品一区二区三区蜜桃| 色播在线永久视频| 一级片免费观看大全| 妹子高潮喷水视频| 国产亚洲欧美98| 久久精品国产清高在天天线| 一级毛片高清免费大全| 亚洲av熟女| 亚洲一区二区三区色噜噜| 日本vs欧美在线观看视频| 国产av一区二区精品久久| 看片在线看免费视频| 男女下面插进去视频免费观看|