• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aluminum impregnated silica catalyst for Friedel-Crafts reaction:Influence of ordering mesostructure☆

    2017-06-01 03:32:16YiboHeQinghuaZhangXiaoliZhanDangguoChengFengqiuChen
    Chinese Journal of Chemical Engineering 2017年10期

    Yibo He,Qinghua Zhang*,Xiaoli Zhan,Dangguo Cheng,Fengqiu Chen

    College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    1.Introduction

    Linear alkyl benzene(LAB),which is a major feedstock for synthetic detergent,is synthesizedviaFriedel-Craft alkylation of benzene with linear chain olefin(C10-C14)[1-3].The alkylation of benzene with olefins proceeds through a carbonium ion mechanism[4].LAB is produced industrially over HF or AlCl3homogenous catalyst.Yet,the homogeneous catalyst is hydrolysed to produce aluminum oxide after reaction.Moreover,large amounts of acidic gas and toxic waste water are produced in catalyst separation,which makes the process problematic from an environmental point of view.The phenyl group position of LAB has an effect on the surface-active property and biodegradability of LAS[5].Among the isomers of LAB,2-LAB exhibits the most biodegradable,making it a dominant detergent intermediate[6].

    Notice that 2-LAB selectivity is a function of olefin conversion and zeolite type,but is not directly correlated with pore size.The molecular size of 2-,3-,4-,5-,6-LAB are in the range of 0.529 nm,and 2-LAB is the smallest one among the isomers.For mesoporous molecular sieve(pore size > 2 nm),“shape selective catalysis”is not as significant as all the isomers can pass through the pore channel.It can be concluded that 2-LAB selectivity is sensitive to the pore structure of zeolite[7-10].As research shown,diffusion limitation is the main influencing factors in Friedel-Craft alkylation of benzene.For molecular sieves,smaller pore size leads larger resistance of mass transport,extreme large pore may lead to decreasing of specific surface area which directly correlated with reactivity[11-13].There are some recent reports on catalytic activity over macroporous materials,they are not in such high demand for catalysis owing to the low surface area of nanoporous[14,15].Functionalized acid catalysts include AlCl3grafted MCM-41[13],mesoporous molecular sieves[16-18],mesoporous silica[19],cage type porous gallosilicate[20]and other catalysts[21-25]were reported.However,few reports have compared aluminum grafted silicate with different ordered or disordered channel network,to explore insight into mesostructure effect on reactivity and selectivity of grafted catalysts,from diffusion limitation perspective.The comparison is necessary for deeper understanding to how mesostructure affects reactivity and selectivity of catalysts.And it provided scientific basis for choosing apposite supporters for catalysts design in this reaction[26-34].

    In this work,four kinds of molecular sieves were synthesized,in order to optimize synthesis conditions for LAB,and deals with the relationship between pore channel structures and their catalytic activity.Catalysts with differentchannel structures,hexagonal packing channels(SBA-15,MCM-41),disordered channel network(SiO2,SiO2-Gel),were synthesized by impregnation.These catalysts were analyzed by nitrogen sorption,ICP,and were found to be highly reactive and give nearly 100%1-dodecene conversion with considerably high 2-LAB selectivity(about50%).The results show that aluminum impregnated silica molecular sieves with order channel network gives higher catalytic activity than that with disorder channel network.Larger pore size is favorable to catalytic activity.

    2.Experimental

    2.1.Catalysts preparation

    The support SiO2,which was purchased from QingDao Banke Separation Materials Co.,Ltd.,was dried at 400°C overnight and kept under dry argon.

    SBA-15 was synthesized in a typical method,4 g of Pluoronic P123,water and HCl 0.28 mol·L-1were stirred at 35 °C for 16 h[35].The appropriate amount(8.5 g)of tetraethylorthosilicate(TEOS)was then added dropwise to the surfactant solution,followed by stirring for 24 h.the resulting gel was introduced into a Te flon lined stainless steel autoclave and heated at 100°C for two days.The products were filtered,washed with warm distilled water and finally dried at 100°C,and followed by calcination in air at 500°C,then kept under dry argon[36].

    The reactants for the synthesis of MCM-41 at room temperature were TEOS,water,hexadecyltrimethylammonium bromide(CTAB)either NaOH or NH4OH can be used as a base source.Reactions were performed at room temperature,205 ml of NH4OH were mixed with 270 ml of distilled water,and 2.0 g of surfactant were added into the solution with stirring and heating.When the solution became homogenous,10 ml of TEOS was introduced,giving rise to a white filtered,washed with distilled water,dried at ambient temperature,and followed by calcination in air at 500°C,then kept under dry argon[37,38].

    10 ml of TEOS and 7 ml of CH3CH2OH were added into a flask,respectively.After the formation of clean and homogeneous liquid mixture,5 ml HCl(5 mol·L-1)was added and the mixture became coagulated gradually.After aged at 60°C for 12 h,the resulted solid mixture was dried in vacuum for 3 h at 150°C and kept under dry argon[39,40].

    Aluminum impregnated silica was prepared by reacting anhydrous AlCl3with the terminal Si-OH groups of silica[36].The method was as follows:5 g of silica was mixed with 200 ml CCl4and refluxed for 2 h.bubbled N2during refluxed to remove traces of moisture.About 2.0 g of anhydrous AlCl3was added to the mixture,and the mixture was refluxed for 6 h under N2.After that,the aluminum impregnated silica was filtered and washed with CCl4for several times.The resulting catalyst was dried under vacuum at 80°C and stored in N2.

    2.2.Catalytic reaction

    The reactions were carried out under an inert atmosphere due to the sensitivity of the catalyst toward moisture.All reactants and solvents were dried before use.The reactions were conducted in flask with a magnetic stirrer.Catalyst was added into the flask quantitatively,followed by benzene and 1-dodecene.Starting stirring to start the reaction.After the completing of the reaction,the organic layer containing the products and unreacted reactants was separated by decantation and centrifugation.The organic layer was washed with distilled water,dried over Na2SO4and analyzed by gas chromatography[41].

    2.3.Analysis

    Surface properties of catalysts were analyzed by physical adsorption of nitrogen in ASAP 2020.X-ray diffractometry(XRD)was done on a DMAX-RA.ICP test was carried out by Agilent 710 ICP.Materials and products of reaction were measured by GC.GC was equipped with HP-5 column(30 m).The initial column temperature was maintained at 110 °C for 3 min,raised at the rate of 15 °C·min-1and maintained at 300 °C for 9 min.The injection temperature was at 300 °C[42].

    3.Results and Discussion

    3.1.Catalyst characteristic

    Five catalysts were synthesized and analyzed,three of them were mesoporous materials with ordered pore structures.Two of them were based on SBA-15,with different pore sizes.SBA-15(A)and MCM-41 were synthesized in typical method,whereas SBA-15(B)was synthesized in double template method for expanding pore size.SBA-15(A)differed from MCM-41 not only because of larger mesoporous and irregular interconnections but also because of higher hydrothermal and thermal stability caused by its thicker mesoporous pore walls[43].SBA-15 with larger pore size was synthesized by adding second template F127 for pore expanding.The shape of the colloids formed from F127 remains spherical but their size increases,compared with that of P123[44].

    The XRD patterns for order channel network samples,SBA-15(A),SBA-15(B),MCM-41,before and after immobilization obtained in the present work are shown in Fig.1.It shows 3 well resolved peaks that can be indexed as(100),(110)and(200)diffraction.This is an indication of a good long-range hexagonal ordering.The XRD data shows that the mesoporous structure is preserved partly after the addition of aluminum species,indicating loss of structural order compared with untreated silica materials.The loss of structural order is a consequence of the surface modification by impregnation of aluminum species,and resulting loss of long-range order of mesoporous structure.Due to the addition of F127,the diffraction peaks declined,which is similar to SBA-16.The mesoporous materials synthesized above can be further confirmed by nitrogen sorption and TEM analysis(Table 1,Figs.2 and 3).

    The results of catalysts surface properties are given in Table 1.The specific surface areas of MCM-41 and other untreated catalysts are estimated as1058 m2·g-1and in the range of300-800 m2·g-1,respectively.Enlarging of pore sizes lead to the decreasing of specific surface areas.The immobilization of aluminum species on the surface of the support is believed to be due to covalent bonding between the aluminum atoms and the Si-OH.The main change observed on the support after impregnation with aluminum species was the decrease of the specific surface area,which can be explained by the obstruction of the pore,which resulted from the carriers by the aluminum species.Besides,the pore walls thickened after impregnation with aluminum species.In general,catalyst after impregnation exhibited large specific surface area(almost larger than 300 m2·g-1),which supplied enough contact area for acidic sites and reactants.ICP investigation showed that Al capacity of catalysts were in the range of 1.43 to 1.50 mmol·g-1.

    Fig.1.X-ray diffraction of order channel network samples.

    Table 1Textural properties of various catalyst samples

    Fig.2.TEM analysis of SBA-15 catalysts before(a)and after(b)immobilization.

    Fig.3.The pore size distribution and TEM analysis of catalyst samples.

    Fig.3 gives the pore size distribution of different catalyst samples before and after immobilization.The pore size distribution of disorder channel network SiO2was really wide because of the existing microporous,mesoporous and macroporous pores.The pore size distribution of order channel network SBA-15(B)was also wide,but almost belonged to mesoporous.The reason why the pore size distribution of SBA-15(B)was wider than SBA-15(A)was that adding F127 for pore expanding.The shapes of the colloids formed from P123 and F127 were different,P123 formed an elongated shape while F127 formed spherical.The differences of colloids shape made partly pore wall collapsing,pores connecting to others.It led to the pore size distribution becoming wider and long range order becoming weaker.

    Table 2Results of catalysis via various catalysts

    Fig.4.The product distribution of catalysis via various catalysts.

    3.2.Friedel-Crafts reaction

    The alkylation of benzene with 1-dodecene over aluminum impregnation silica molecular sieves was carried out,Table 2 and Fig.4 present the catalytic performance of the different catalysts in terms of 1-dodecene conversion,and 2-LAB selectivity.In general,2-LAB selectivity was about 40%with catalysts based on disorder channel network supports,while that were higher with catalysts based on order channel network supports as SBA-15(A),SBA-15(B)and MCM-41.It can be seen that a 49.0%conversion of 1-dodecene was realized within 12 h under relatively optimal condition over AlCl3@SBA-15(A)(as shown in Table 2).Catalysts based on different supports(AlCl3@SiO2and AlCl3@SBA-15(B))had properties of wide pore size distribution in common.Assuming that AlCl3on unit surface area was constant,catalysts with smaller pore might have more acidic sites in unit volume space due to higher specific surface area of smaller pore.It made reaction conduct faster and led to increasing of regional carbenium concentration.Isomerization was conducted faster due to diffusion limitation and high regional carbenium concentration,which led to decreasing of 2-LAB selectivity(as shown in Fig.5).Though,surface area in volume space decreased as pore size becoming larger.Larger size of pore contributed to more favorable mass transport.Small amount of large pore,even macro pore could not affect the reaction significantly.Thus,mesoporous catalysts with a narrow pore size distribution would be batter catalysts for their higher 2-LAB selectivity.

    SBA-15(A)and MCM-41 with high long-range order showed narrow pore distribution,which created similar mass transport condition.It led to decreasing of regional carbenium concentration.Although pore size distribution of SBA-15(B)was wide,little,small or micro pore which led to accumulation of carbenium concentration existed.

    Alkylation experiments at different temperature(35 °C and 75 °C)are compared in Table 2.As the results shown,reaction temperature increased,2-LAB selectivity decreased.The isomerization is a parallel reaction to the alkylation and reaction temperature promotes isomerization more than alkylation.Further experiments were carried outwith AlCl3@SBA-15(A)in order to study the influence of different temperature(as shown in Table 3).As expected the 1-dodecene conversion increased with temperature,while the 2-LAB selectivity decreased slightly.The isomerization tended to conduct toward producing high substituent formation product.

    Table 3Results of catalysis at different reaction temperature

    Experiments with different usage of the catalyst were carried out in order to study the effect of the concentration of catalyst on the 1-dodecene conversion and 2-LAB selectivity.As the result shown in Table 4,the 1-dodecene conversion increased significantly when the catalyst usage increased from 1 wt%to 5 wt%,while 2-LAB decreased slightly.Going on adding the catalysts usage,the 1-dodecene conversion and 2-LAB were not influenced obviously.The reaction rate of alkylation was promoted,by increasing the acidic sites in the system,which resulted from increasing of the catalyst usage.However,increasing of the carbenium producing rate led to promoting of isomerization of carbenium,which resulted in the decreasing of 2-LAB selectivity.

    Fig.5.Schematic of the carbenium concentration profile(disregarding molecular adsorption).

    Table 4Results of catalysis at different catalyst amount

    The influences on LAB selectivity of benzene/1-dodecene(molar ratio)for the alkylation reaction were studied,results are showed in Fig.6.As the ratio ofbenzene/1-dodecene increased,2-LAB selectivity increased from~38%to 60%,besides that,3-,4-,5-and 6-LAB selectivity decreased at different degrees.Increasing of benzene/1-dodecene molar ratio indicated that the dilution of carbenium ion concentration,which inhibited the hydrogen shift reactions and isomerization significantly,resulting in increasing of 2-LAB selectivity and decreasing of high substituent formation selectivity.In comparison,benzene/1-dodecene ratio is as high as 30 in industrial“Detal?”process[45,46].However,higerbenzene/1-dodecene molar ratio causes highercostand harder operation,which is resulted from surplus benzene separation and recycle.Reducing benzene/1-dodecene ratio is an essential requirement in the development of catalysts for LAB synthesis.

    Fig.6.The product distribution of different benzene/1-dodecene molar ratio.

    4.Conclusions

    Aluminum impregnated silica molecular sieves proved to be active as catalysts for Friedel-Crafts alkylation of benzene with linear alkyl benzene.Results featured good conversion and high selectivity to 2-LAB.In this work,different kinds of catalysts with different channel structures,hexagonal packing channels(SBA-15,MCM-41),disordered channel network(SiO2,SiO2-Gel),were synthesized by impregnation.XRD and N2adsorption-desorption isotherms confirmed that the specific mesoporous structure was maintained for order channel network catalyst after impregnation.The pore size distribution of disorder channel network catalyst was proved to be wide due to the existing microporous,mesoporous and macroporous pores.Microporous pore may enforce the resistance of mass transport.In contract,catalyst with high order channel network did favor of mass transport.The results showed that aluminum impregnated catalysts with order channel network gave higher catalytic activity and selectivity than that with disorder channel network because diffusion limitation was an important influencing factor in the alkylation and isomerization.In this work,the influences of temperature,catalyst usage and benzene/1-dodecene molar ratio were investigated as well.The isomerization is a parallel reaction to the alkylation and reaction temperature promotes isomerization more than alkylation.The conversion increased when increasing the catalyst usage while 2-LAB selectivity decreased,it can be explained by carbenium concentration.Higher benzene/1-dodecene molar ratio is important for the product distribution.Higher benzene/1-dodecene resulted in higher 2-LAB selectivity.This study led to the development of LAB synthesis catalysts with deeper understanding of relationship between catalyst channel order and catalyst activity.

    [1]A.Aitani,J.Wang,I.Wang,S.Al-Khattaf,T.Tsai,Environmental benign catalysis for linear alkylbenzene synthesis:A review,Catal.Surv.Jpn.18(1)(2014)1-12.

    [2]G.D.Yadav,M.I.N.I.Siddiqui,UDCaT-5:a novel mesoporous superacid catalyst in the selective synthesis of linear phenyldodecanes by the alkylation of benzene with 1-dodecene,Ind.Eng.Chem.Res.48(24)(2009)10803-10809.

    [3]D.P.Fogliatti,S.A.Kemppainen,T.N.Kalnes,J.Fan,D.R.Shonnard,Life cycle carbon footprint of linear alkylbenzenesulfonate from coconut oil,palm kernel oil,and petroleum-based paraffins,ACS Sustain.Chem.Eng.2(7)(2014)1828-1834.

    [4]B.Wang,C.W.Lee,T.X.Cai,S.E.Park,Benzene alkylation with 1-dodecene over Y zeolite,Bull.Kor.Chem.Soc.22(9)(2001)1056-1058.

    [5]R.J.Larson,T.M.Rothgeb,R.J.Shimp,T.E.Ward,R.M.Ventullo,Kinetics and practical significance of biodegradation of linear alkylbenzene sulfonate in the environment,J.Am.Oil Chem.Soc.70(7)(1993)645-657.

    [6]A.M.Nielsen,L.N.Britton,C.E.Beall,T.P.McCormick,G.L.Russell,Biodegradation of coproducts of commercial linear alkylbenzene sulfonate,Environ.Sci.Technol.31(12)(1997)3397-3404.

    [7]J.Lin,J.Wang,J.Wang,I.Wang,R.J.Balasamy,A.Aitani,S.Al-Khattaf,T.Tsai,Catalysis of alkaline-modified Mordenite for benzene alkylation of diolefincontaining dodecene for linear alkylbenzene synthesis,J.Catal.300(2013)81-90.

    [8]R.Kumar,A.Kumar,A.Khanna,Synthesis,characterization and kinetics of AlCl3supported on silica superacid catalysts for the formation of linear alkylbenzenes,React.Kinet.Mech.Catal.106(1)(2012)141-155.

    [9]J.Kang,Y.Rao,M.Trudeau,D.Antonelli,Sulfated mesoporous tantalum oxides in the shape selective synthesis of linear alkyl benzene,Angew.Chem.Int.Ed.47(26)(2008)4896-4899.

    [10]N.Pal,A.Bhaumik,Mesoporous materials:Versatile supports in heterogeneous catalysis for liquid phase catalytic transformations,RSC Adv.5(31)(2015)24363-24391.

    [11]M.S.Holm,E.Taarning,K.Egeblad,C.H.Christensen,Catalysis with hierarchical zeolites,Catal.Today168(1)(2011)3-16.

    [12]M.Horňá?ek,P.Hudec,K.Velebná,P.Lovás,Positive effect of secondary structure creation in mordenites on alkylation of benzene with 1-tetradecene,Catal.Commun.64(2015)1-5.

    [13]X.Hu,M.L.Foo,G.K.Chuah,S.Jaenicke,Pore size engineering on MCM-41:Selectivity tuning of heterogenized AlCl3for the synthesis of linear alkyl benzenes,J.Catal.195(2)(2000)412-415.

    [14]D.Sengupta,J.Saha,G.De,B.Basu,Pd/Cu bimetallic nanoparticles embedded in macroporous ion-exchange resins:An excellent heterogeneous catalyst for the Sonogashira reaction,J.Mater.Chem.A2(11)(2014)3986.

    [15]C.M.A.Parlett,K.Wilson,A.F.Lee,Hierarchical porous materials:Catalytic applications,Chem.Soc.Rev.42(9)(2013)3876-3893.

    [16]D.Dubé,S.Royer,D.Trong On,F.Béland,S.Kaliaguine,Aluminum chloride grafted mesoporous molecular sieves as alkylation catalysts,Microporous Mesoporous Mater.79(1-3)(2005)137-144.

    [17]A.Bordoloi,B.M.Devassy,P.S.Niphadkar,P.N.Joshi,S.B.Halligudi,Shape selective synthesis of long-chain linear alkyl benzene(LAB)with AlMCM-41/beta zeolite composite catalyst,J.Mol.Catal.A Chem.253(1-2)(2006)239-244.

    [18]Y.Cao,R.Kessas,C.Naccache,Y.Ben Taarit,Alkylation of benzene with dodecene.The activity and selectivity of zeolite type catalysts as a function of the porous structure,Appl.Catal.A Gen.184(2)(1999)231-238.

    [19]J.Wang,H.O.Zhu,Alkylation of1-dodecene with benzene over H3PW12O40supported on mesoporous silica SBA-15,Catal.Lett.93(3-4)(2004)209-212.

    [20]C.Anand,B.Sathyaseelan,L.Samie,A.Beitollahi,R.Pradeep Kumar,M.Palanichamy,V.Murugesan,E.Kenawy,S.S.Al-Deyab,A.Vinu,Friedel-Crafts benzylation of benzene and other aromatics using 3D mesoporous gallosilicate with cage type porous structure,Microporous Mesoporous Mater.134(1-3)(2010)87-92.

    [21]S.Selvakumar,A.P.Singh,Benzoylation of anisole over silicotungstic acid modified mesoporous alumina,Catal.Lett.128(3-4)(2009)363-372.

    [22]J.Dou,H.C.Zeng,Preparation of Mo-embedded mesoporous carbon microspheres for Friedel-Crafts alkylation,J.Phys.Chem.C116(14)(2012)7767-7775.

    [23]Y.Rao,M.Trudeau,D.Antonelli,Sulfated and phosphated mesoporous Nb oxide in the benzylation of anisole and toluene by benzyl alcohol,J.Am.Chem.Soc.128(43)(2006)13996-13997.

    [24]X.Zhang,T.Lin,R.Li,T.Bai,G.Zhang,Properties and reactivity of Fe-P-O catalysts prepared by different methods for benzylation of benzene,Ind.Eng.Chem.Res.51(9)(2012)3541-3549.

    [25]B.Wang,C.W.Lee,T.Cai,S.Park,Benzene alkylation with 1-dodecene over H-mordenite zeolite,Catal.Lett.76(1)(2001)99-103.

    [26]Y.Sugi,H.Tamada,A.Kuriki,K.Komura,Y.Kubota,S.Joseph,A.Chokkalingam,M.E.Newehy,S.S.Al-Deyab,H.Jang,J.Kim,G.Seo,A.Vinu,Alkaline earth metal modified H-Mordenites.Their catalytic properties in the isopropylation of biphenyl,Ind.Eng.Chem.Res.54(49)(2015)12283-12292.

    [27]S.Huang,S.Zhang,L.Yu,Z.Liu,W.Xin,S.Xie,L.Xu,Transalkylation of phenol with cumene on zeolite catalysts,Ind.Eng.Chem.Res.52(32)(2013)10996-11000.

    [28]M.Osman,M.M.Hossain,S.Al-Khattaf,Kinetics study of ethylbenzene alkylation with ethanol over medium and large pore zeolites,Ind.Eng.Chem.Res.52(38)(2013)13613-13621.

    [29]K.Raveendranath Reddy,D.Venkanna,M.Lakshmi Kantam,S.K.Bhargava,P.Srinivasu,SnO2-SiO2mesoporous composite:A very active catalyst for regioselective synthesis of aromatic ketones with unusual catalytic behavior,Ind.Eng.Chem.Res.54(28)(2015)7005-7013.

    [30]P.V.Naumkin,T.N.Nesterova,I.A.Nesterov,A.M.Toikka,V.A.Shakun,Theory and practice of alkyl aromatic hydrocarbon synthesis.1.Branched alkylbenzenes,Ind.Eng.Chem.Res.54(35)(2015)8629-8639.

    [31]S.Liu,F.Chen,S.Xie,P.Zeng,X.Du,L.Xu,Highly selective ethylbenzene production through alkylation of dilute ethylene with gas phase-liquid phase benzene and transalkylation feed,J.Nat.Gas Chem.18(1)(2009)21-24.

    [32]H.Wu,M.Liu,W.Tan,K.Hou,A.Zhang,Y.Wang,X.Guo,Effect of ZSM-5 zeolite morphology on the catalytic performance of the alkylation of toluene with methanol,J.Energy Chem.23(4)(2014)491-497.

    [33]H.Liu,H.Wei,W.Xin,C.Song,S.Xie,Z.Liu,S.Liu,L.Xu,Differences between Zn/HZSM-5 and Zn/HZSM-11 zeolite catalysts in alkylation of benzene with dimethyl ether,J.Energy Chem.23(5)(2014)617-624.

    [34]Bokade,Deshpande,Patil,Jain,Yadav,Toluene alkylation with methanol top-xylene over heteropoly acids supported by clay,J.Nat.Gas Chem.16(1)(2007)42-45.

    [35]D.Y.Zhao,J.L.Feng,Q.S.Huo,N.Melosh,G.H.Fredrickson,B.F.Chmelka,G.D.Stucky,Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,Science279(5350)(1998)548-552.

    [36]V.R.Choudhary,K.Mantri,AlCl3-grafted Si-MCM-41:Influence of thermal treatment conditions on surface properties and incorporation of Al in the structure of MCM-41,J.Catal.205(1)(2002)221-225.

    [37]D.Kim,D.Lim,D.Cho,J.Koh,D.Park,Production of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquids on MCM-41,Catal.Today164(1)(2011)556-560.

    [38]W.Chen,S.Huang,Q.Zhao,H.Lin,C.Mou,S.Liu,On the confinement effect during catalytic reaction over Al-MCM-41,Top.Catal.52(1-2)(2009)2-11.

    [39]D.Li,F.Shi,S.Guo,Y.Deng,One-pot synthesis of silica gel confined functional ionic liquids:Effective catalysts for deoximation under mild conditions,Tetrahedron Lett.45(2)(2004)265-268.

    [40]D.Li,F.Shi,Y.Deng,One-step CN,CO bonds cleavage and CO,CN bonds formation over supported ionic liquid in water,Tetrahedron Lett.45(36)(2004)6791-6794.

    [41]H.Xin,Q.Wu,M.Han,D.Wang,Y.Jin,Alkylation ofbenzene with 1-dodecene in ionic liquids[Rmim]+Al2Cl6X-(R=butyl,octyland dodecyl;X=chlorine,bromine and iodine),Appl.Catal.A Gen.292(2005)354-361.

    [42]G.Qi,F.Jiang,X.Sun,S.Zhao,Alkylation mechanism of benzene with 1-dodecene catalyzed by Et3NHCl-AlCl3,Sci.China Chem.53(5)(2010)1102-1107.

    [43]R.M.Grudzien,B.E.Grabicka,M.Jaroniec,Adsorption and structural properties of channel-like and cage-like organosilicas,Adsorption12(5-6)(2006)293-308.

    [44]T.Kim,R.Ryoo,M.Kruk,K.P.Gierszal,M.Jaroniec,S.Kamiya,O.Terasaki,Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time,J.Phys.Chem.B108(31)(2004)11480-11489.

    [45]G.Peterson,UOP Technology and More Newsletter,UOP LLC,Des Plaines,sept 2011.

    [46]J.Carrazza,M.Cleveland,B.Vora,Presented at the Middle East Petrotech,May 2012.

    91精品一卡2卡3卡4卡| 欧美最黄视频在线播放免费| 日韩欧美在线乱码| 三级国产精品欧美在线观看| 99在线人妻在线中文字幕| 一个人观看的视频www高清免费观看| 在线免费观看不下载黄p国产| 国产精品永久免费网站| 国产毛片a区久久久久| 男人舔奶头视频| 亚洲18禁久久av| 亚洲欧美日韩卡通动漫| 精品欧美国产一区二区三| 日本三级黄在线观看| 日韩成人伦理影院| 2022亚洲国产成人精品| 综合色av麻豆| 国产精品美女特级片免费视频播放器| 少妇的逼水好多| av在线蜜桃| 久久中文看片网| 亚洲五月天丁香| 如何舔出高潮| h日本视频在线播放| 免费观看a级毛片全部| 国国产精品蜜臀av免费| 少妇人妻精品综合一区二区 | 2022亚洲国产成人精品| 舔av片在线| 国产黄色视频一区二区在线观看 | 不卡一级毛片| 久久人人爽人人爽人人片va| 三级毛片av免费| 欧美潮喷喷水| av在线观看视频网站免费| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 99久久精品一区二区三区| 国产免费一级a男人的天堂| 久久久久久久久久黄片| 国产老妇伦熟女老妇高清| 最近最新中文字幕大全电影3| h日本视频在线播放| 搡女人真爽免费视频火全软件| 狠狠狠狠99中文字幕| 久久久国产成人精品二区| 亚洲欧美成人精品一区二区| 深夜a级毛片| 国产精品精品国产色婷婷| 午夜激情欧美在线| 不卡视频在线观看欧美| 91aial.com中文字幕在线观看| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色| 国产精品人妻久久久久久| 中文字幕av成人在线电影| 国产精品三级大全| 秋霞在线观看毛片| 国产伦理片在线播放av一区 | 国产精品嫩草影院av在线观看| 中文在线观看免费www的网站| .国产精品久久| 久久婷婷人人爽人人干人人爱| 性插视频无遮挡在线免费观看| 成人二区视频| 国产精品一区二区在线观看99 | 亚洲经典国产精华液单| 黑人高潮一二区| 亚洲四区av| 亚洲av成人精品一区久久| 免费观看在线日韩| 亚洲精品色激情综合| 春色校园在线视频观看| a级一级毛片免费在线观看| 国产女主播在线喷水免费视频网站 | 精品99又大又爽又粗少妇毛片| 成人高潮视频无遮挡免费网站| 边亲边吃奶的免费视频| 美女大奶头视频| 久久这里只有精品中国| 99热网站在线观看| 91久久精品国产一区二区三区| 有码 亚洲区| av在线天堂中文字幕| 日韩高清综合在线| 久久99热6这里只有精品| 天堂影院成人在线观看| 国产伦一二天堂av在线观看| 日本-黄色视频高清免费观看| 91aial.com中文字幕在线观看| 国产成年人精品一区二区| 日本爱情动作片www.在线观看| 麻豆国产av国片精品| 啦啦啦啦在线视频资源| 亚洲三级黄色毛片| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 久久99热6这里只有精品| 一个人看视频在线观看www免费| 亚洲欧美日韩无卡精品| 亚洲高清免费不卡视频| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 日韩三级伦理在线观看| 99热全是精品| 伦理电影大哥的女人| 热99在线观看视频| 久久久色成人| 日韩欧美在线乱码| 草草在线视频免费看| 久久久久九九精品影院| 一级毛片aaaaaa免费看小| 91午夜精品亚洲一区二区三区| 热99在线观看视频| 男人和女人高潮做爰伦理| 给我免费播放毛片高清在线观看| 校园春色视频在线观看| 国产高潮美女av| 日韩制服骚丝袜av| 久久精品夜色国产| 少妇高潮的动态图| 熟女人妻精品中文字幕| 久久久久久久久中文| 国产一区二区三区av在线 | 人体艺术视频欧美日本| 淫秽高清视频在线观看| 成熟少妇高潮喷水视频| 两个人的视频大全免费| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 看十八女毛片水多多多| 久久久久久国产a免费观看| 日本黄色片子视频| 老熟妇乱子伦视频在线观看| 国产国拍精品亚洲av在线观看| 国产黄色视频一区二区在线观看 | 国产 一区精品| 欧美在线一区亚洲| 精品国内亚洲2022精品成人| 五月伊人婷婷丁香| 在现免费观看毛片| 国产毛片a区久久久久| 美女黄网站色视频| 国产黄色视频一区二区在线观看 | 日韩中字成人| 最后的刺客免费高清国语| 亚洲欧美日韩高清在线视频| 亚洲激情五月婷婷啪啪| 嫩草影院入口| 午夜免费男女啪啪视频观看| 3wmmmm亚洲av在线观看| 精品一区二区三区视频在线| 久久鲁丝午夜福利片| www.色视频.com| 在现免费观看毛片| 少妇高潮的动态图| 91久久精品国产一区二区三区| 欧美成人精品欧美一级黄| 高清午夜精品一区二区三区 | 大香蕉久久网| 有码 亚洲区| 久久精品国产99精品国产亚洲性色| av天堂中文字幕网| 久久久精品欧美日韩精品| 成年av动漫网址| 寂寞人妻少妇视频99o| 中文字幕熟女人妻在线| 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| 色播亚洲综合网| 十八禁国产超污无遮挡网站| 亚洲成人精品中文字幕电影| 一本久久中文字幕| 久久精品国产亚洲av涩爱 | 亚洲丝袜综合中文字幕| 久久这里只有精品中国| 99热6这里只有精品| 久久精品国产亚洲av涩爱 | 18+在线观看网站| 免费观看a级毛片全部| 美女cb高潮喷水在线观看| 18+在线观看网站| 婷婷六月久久综合丁香| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 久久久久久久午夜电影| 国产综合懂色| 日韩欧美精品v在线| 插阴视频在线观看视频| 国产探花极品一区二区| 色吧在线观看| 91精品国产九色| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 国产乱人偷精品视频| 在线观看av片永久免费下载| 一边摸一边抽搐一进一小说| 亚洲在久久综合| 国产私拍福利视频在线观看| 亚洲国产精品成人久久小说 | 国产精华一区二区三区| 国产精品.久久久| 少妇的逼好多水| 成人亚洲精品av一区二区| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 成人一区二区视频在线观看| 色综合亚洲欧美另类图片| 久99久视频精品免费| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 国产av一区在线观看免费| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| 欧美人与善性xxx| 色吧在线观看| 老司机福利观看| 丝袜美腿在线中文| 日韩三级伦理在线观看| 午夜福利在线观看吧| 国产v大片淫在线免费观看| 国产精品1区2区在线观看.| 亚洲久久久久久中文字幕| 一级毛片aaaaaa免费看小| 一区二区三区高清视频在线| 99热只有精品国产| 欧美xxxx黑人xx丫x性爽| 精品99又大又爽又粗少妇毛片| 国产毛片a区久久久久| 久久这里只有精品中国| 一个人观看的视频www高清免费观看| 欧美成人免费av一区二区三区| 国产黄片美女视频| 我的女老师完整版在线观看| 毛片一级片免费看久久久久| 欧美成人精品欧美一级黄| 99久久九九国产精品国产免费| 国产蜜桃级精品一区二区三区| 一级毛片我不卡| 日韩成人伦理影院| 国产一区二区激情短视频| 亚洲人成网站在线播| 大型黄色视频在线免费观看| 老司机影院成人| 看免费成人av毛片| 国产精品女同一区二区软件| av专区在线播放| 99久久精品热视频| 免费看av在线观看网站| 我的老师免费观看完整版| 亚洲国产精品成人综合色| 久久这里有精品视频免费| www.色视频.com| 久久精品久久久久久久性| av.在线天堂| 久久久久久国产a免费观看| 国产乱人偷精品视频| 国产一区二区三区av在线 | 白带黄色成豆腐渣| 国产视频首页在线观看| 联通29元200g的流量卡| 国产高清激情床上av| 国产亚洲欧美98| 国产高潮美女av| 在线观看午夜福利视频| 99久久九九国产精品国产免费| 综合色av麻豆| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 精品人妻一区二区三区麻豆| avwww免费| 韩国av在线不卡| 亚洲中文字幕一区二区三区有码在线看| 日日干狠狠操夜夜爽| 日韩欧美在线乱码| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 97人妻精品一区二区三区麻豆| 久久久久网色| 九九在线视频观看精品| 国产精品久久久久久av不卡| 少妇高潮的动态图| 女人十人毛片免费观看3o分钟| 小蜜桃在线观看免费完整版高清| 国产成人精品婷婷| 久久久久久久久久久丰满| 国产真实伦视频高清在线观看| av女优亚洲男人天堂| 九九在线视频观看精品| 日韩av在线大香蕉| 国产精品一区二区三区四区免费观看| 乱人视频在线观看| 99精品在免费线老司机午夜| 又粗又硬又长又爽又黄的视频 | 欧美日本亚洲视频在线播放| 麻豆乱淫一区二区| 欧美+亚洲+日韩+国产| 久久午夜亚洲精品久久| 精品熟女少妇av免费看| 免费人成视频x8x8入口观看| 伊人久久精品亚洲午夜| 亚洲av第一区精品v没综合| 久久久欧美国产精品| 亚洲国产欧美在线一区| 国产在视频线在精品| 少妇被粗大猛烈的视频| 免费看日本二区| 国产精品久久久久久亚洲av鲁大| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕一区二区三区有码在线看| 18禁在线无遮挡免费观看视频| 亚洲最大成人中文| 欧美性感艳星| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 麻豆成人av视频| 91久久精品国产一区二区三区| 联通29元200g的流量卡| 九色成人免费人妻av| 精品久久久久久久久久免费视频| 免费不卡的大黄色大毛片视频在线观看 | 成人漫画全彩无遮挡| 亚洲av中文字字幕乱码综合| 丰满乱子伦码专区| 美女被艹到高潮喷水动态| av又黄又爽大尺度在线免费看 | 久久久欧美国产精品| 国产一区二区在线av高清观看| 国产又黄又爽又无遮挡在线| 久久久久久久久久黄片| 欧美一级a爱片免费观看看| 丰满的人妻完整版| 国产乱人偷精品视频| 热99在线观看视频| 99久久成人亚洲精品观看| 美女大奶头视频| 美女高潮的动态| 久久久午夜欧美精品| 欧美xxxx性猛交bbbb| 男的添女的下面高潮视频| 在现免费观看毛片| 成人毛片a级毛片在线播放| 亚洲精品久久国产高清桃花| 看十八女毛片水多多多| videossex国产| 色综合色国产| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频| 免费观看人在逋| 赤兔流量卡办理| 欧美一区二区国产精品久久精品| 免费一级毛片在线播放高清视频| 国产视频首页在线观看| av在线亚洲专区| 美女xxoo啪啪120秒动态图| 亚洲国产日韩欧美精品在线观看| 青青草视频在线视频观看| 国产精品不卡视频一区二区| 综合色丁香网| 久久久久免费精品人妻一区二区| 欧美日韩乱码在线| 中文资源天堂在线| 亚洲av一区综合| 伦精品一区二区三区| 18禁在线播放成人免费| 伊人久久精品亚洲午夜| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 亚洲四区av| 国产成人精品久久久久久| 国产亚洲av嫩草精品影院| 插逼视频在线观看| 国产精华一区二区三区| 12—13女人毛片做爰片一| 在线免费十八禁| 成人毛片60女人毛片免费| 好男人在线观看高清免费视频| 国产午夜福利久久久久久| 亚洲av免费高清在线观看| 在线天堂最新版资源| 午夜免费激情av| 夜夜看夜夜爽夜夜摸| 亚洲精品国产av成人精品| 久久精品91蜜桃| 亚洲va在线va天堂va国产| 国产亚洲精品久久久久久毛片| 97热精品久久久久久| 精品不卡国产一区二区三区| 一本一本综合久久| 亚洲精品亚洲一区二区| 又爽又黄无遮挡网站| 深夜a级毛片| 欧美成人免费av一区二区三区| 在线观看一区二区三区| 国产综合懂色| 亚洲精品粉嫩美女一区| 精品人妻偷拍中文字幕| 最近2019中文字幕mv第一页| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| 午夜福利在线在线| 如何舔出高潮| 免费av毛片视频| 内地一区二区视频在线| 久久久久久久久久黄片| 精品久久久久久久人妻蜜臀av| 欧美性猛交黑人性爽| 亚洲精华国产精华液的使用体验 | 欧美激情久久久久久爽电影| 毛片一级片免费看久久久久| 日本黄色视频三级网站网址| 国产片特级美女逼逼视频| 色综合色国产| 校园人妻丝袜中文字幕| 成人永久免费在线观看视频| 亚洲av熟女| h日本视频在线播放| 国产成人影院久久av| 久久久久久久久久久免费av| 免费观看人在逋| 91精品一卡2卡3卡4卡| 少妇裸体淫交视频免费看高清| 成人美女网站在线观看视频| 久久精品国产清高在天天线| 久久人妻av系列| 又粗又硬又长又爽又黄的视频 | 国产精品一区二区三区四区久久| 小蜜桃在线观看免费完整版高清| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 国产淫片久久久久久久久| 久久热精品热| 国产69精品久久久久777片| 美女大奶头视频| 亚洲美女搞黄在线观看| 亚洲国产欧美在线一区| 91精品一卡2卡3卡4卡| 亚洲av第一区精品v没综合| 三级经典国产精品| 亚洲四区av| 日韩av不卡免费在线播放| 性欧美人与动物交配| 久久亚洲精品不卡| 亚洲在线观看片| 国产精品三级大全| 久久精品国产亚洲av涩爱 | 国产乱人视频| 干丝袜人妻中文字幕| 久久久成人免费电影| 国产在视频线在精品| 久久人人爽人人爽人人片va| 在线播放无遮挡| 一区二区三区四区激情视频 | 最近2019中文字幕mv第一页| 哪个播放器可以免费观看大片| 亚洲人成网站在线播| 国产精品国产三级国产av玫瑰| 美女被艹到高潮喷水动态| 欧美性猛交╳xxx乱大交人| 国产伦在线观看视频一区| 夜夜爽天天搞| av在线蜜桃| 99热全是精品| 精品国产三级普通话版| 黄色欧美视频在线观看| or卡值多少钱| 亚洲av二区三区四区| 老司机影院成人| 蜜臀久久99精品久久宅男| 日韩成人伦理影院| 少妇猛男粗大的猛烈进出视频 | 夜夜夜夜夜久久久久| 男女下面进入的视频免费午夜| 国产av一区在线观看免费| 草草在线视频免费看| 99久久人妻综合| 久久99热这里只有精品18| 欧洲精品卡2卡3卡4卡5卡区| 1000部很黄的大片| 婷婷六月久久综合丁香| 精品日产1卡2卡| 人人妻人人看人人澡| 久久综合国产亚洲精品| 美女被艹到高潮喷水动态| 久久精品综合一区二区三区| 国产精品野战在线观看| avwww免费| 天堂影院成人在线观看| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| 国产精品人妻久久久影院| 欧美潮喷喷水| or卡值多少钱| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线观看播放| 国产黄a三级三级三级人| 国产在线精品亚洲第一网站| 亚洲综合色惰| 日本在线视频免费播放| 中文欧美无线码| 国产日本99.免费观看| 精品人妻偷拍中文字幕| 99在线视频只有这里精品首页| 免费av不卡在线播放| 一个人观看的视频www高清免费观看| 亚洲国产精品合色在线| 嫩草影院新地址| 亚洲在久久综合| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 亚洲无线在线观看| 欧美潮喷喷水| 久久人人爽人人爽人人片va| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| av在线老鸭窝| 日韩三级伦理在线观看| 丝袜喷水一区| 亚洲自偷自拍三级| 国内精品久久久久精免费| 99久久中文字幕三级久久日本| 亚洲国产精品久久男人天堂| 亚洲欧美成人综合另类久久久 | 免费看av在线观看网站| 色吧在线观看| 国产成人一区二区在线| 国产亚洲精品久久久com| 中文欧美无线码| 国产色爽女视频免费观看| 成人漫画全彩无遮挡| 亚洲人成网站在线播放欧美日韩| a级毛色黄片| 久久久久久伊人网av| 在线播放无遮挡| 亚洲va在线va天堂va国产| 亚洲真实伦在线观看| av黄色大香蕉| 18禁在线播放成人免费| 亚洲第一区二区三区不卡| 女人被狂操c到高潮| 久久精品国产清高在天天线| 色5月婷婷丁香| 久久久久九九精品影院| 亚洲成人精品中文字幕电影| 精品久久久久久久久久免费视频| 日本爱情动作片www.在线观看| 欧美三级亚洲精品| 欧美丝袜亚洲另类| 久久99热这里只有精品18| 免费av观看视频| 高清毛片免费观看视频网站| 欧美日本亚洲视频在线播放| 精品久久久久久久久久免费视频| 91在线精品国自产拍蜜月| 我的老师免费观看完整版| 欧美极品一区二区三区四区| 亚洲内射少妇av| 亚洲色图av天堂| 亚洲人与动物交配视频| 菩萨蛮人人尽说江南好唐韦庄 | 欧美最新免费一区二区三区| 中文字幕精品亚洲无线码一区| 久久亚洲精品不卡| 亚洲欧美成人精品一区二区| 一边摸一边抽搐一进一小说| 久久人人精品亚洲av| 亚洲在线自拍视频| 99国产精品一区二区蜜桃av| 国产精品综合久久久久久久免费| 亚洲国产精品久久男人天堂| 中国国产av一级| 国产熟女欧美一区二区| 蜜桃亚洲精品一区二区三区| 色哟哟·www| 三级男女做爰猛烈吃奶摸视频| 人妻系列 视频| 深夜精品福利| 白带黄色成豆腐渣| 人妻系列 视频| 五月玫瑰六月丁香| 白带黄色成豆腐渣| 麻豆乱淫一区二区| 精品午夜福利在线看| 欧美激情久久久久久爽电影| 欧美极品一区二区三区四区| 综合色av麻豆| 亚洲第一区二区三区不卡| 人妻久久中文字幕网| 91久久精品国产一区二区三区| 全区人妻精品视频| 欧美成人免费av一区二区三区| 欧美性猛交黑人性爽| 夜夜看夜夜爽夜夜摸| 精品日产1卡2卡| 国产精品爽爽va在线观看网站| 欧美三级亚洲精品| 国产91av在线免费观看| 乱人视频在线观看| 三级国产精品欧美在线观看| 日本三级黄在线观看| 中国国产av一级| 人妻夜夜爽99麻豆av| 亚洲第一电影网av| 校园人妻丝袜中文字幕| 日韩av不卡免费在线播放| 丝袜喷水一区| 卡戴珊不雅视频在线播放| 午夜福利在线在线| 啦啦啦观看免费观看视频高清| 美女内射精品一级片tv| 国产一区二区三区av在线 | 女人十人毛片免费观看3o分钟| 国产精品久久久久久亚洲av鲁大| 亚洲av成人精品一区久久|