• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Toluene degradation by a water/silicone oil mixture for the design of two phase partitioning bioreactors

    2017-06-01 03:32:08MaximeGuillermAnnabelleCouvertAbdeltifAmraneEdithNorrantAudreyBretonricDumont
    Chinese Journal of Chemical Engineering 2017年10期

    Maxime Guillerm ,Annabelle Couvert,Abdeltif Amrane ,Edith Norrant,Audrey Breton ,éric Dumont*

    1 école Nationale Supérieure de Chimie de Rennes,UMR CNRS 6226,11 allée de Beaulieu,CS 50837,35708 Rennes Cedex 7,France

    2 UCB BioPharma sprl,Avenue de l'Industrie,B 1420 Braine l'Alleud,Belgium

    3 Total S.A.,CSTJF,Avenue Larribau,CA 374,64018 Pau Cedex,France

    4 UMR CNRS 6144 GEPEA,IMT-Atlantique,La Chantrerie,4 rue Alfred Kastler,B.P.20722,44307 Nantes Cedex 3,France

    1.Introduction

    Atmospheric emissions of volatile organic compounds(VOCs)represent an important environmental and human health issue.Biological treatment of VOC industrial emissions is particularly interesting due to its good performances obtained at low cost.However,traditional bioprocesses can be inadequate for removing hydrophobic VOCs as not only are such compounds usually poorly soluble in water,they can also be toxic for microorganisms.Toluene is a favorite hydrophobic model VOC among researchers because it is considered as an environmental priority pollutant and human carcinogen.Using a two-phase partitioning bioreactor(TPPB)could be an attractive alternative to remove such pollutants.A TPPB involves two immiscible liquid phases:an aqueous phase containing microorganisms and nutrients,and a nonaqueous phase liquid(NAPL)able to solubilize large amounts of hydrophobic VOCs.The targeted VOC is gradually transferred from the NAPL to the aqueous phase to be degraded by the microorganisms present in the TPPB,which thus enables the NAPL to be regenerated[1]while avoiding toxicity effects on the microorganisms.The VOCs can be removed from the air flux by absorption in a separate gas-liquid contactor before entering the TPPB(two-stage unit)or by direct blowing into the TPPB(one-stage unit).A hybrid system can also be considered[2].Several review papers have highlighted the pros and cons of this technology[3-7].Since the 2000s,some key scientific and technical limitations have gradually been solved.Thus,the selection of the most appropriate NAPL(i.e.immiscible with water,not biodegradable,not toxic for microorganisms and showing high affinity for hydrophobic VOCs)has been extensively studied[3,7,8].To date,silicone oils(polydimethylsiloxane,PDMS)with a viscosity ranging from 20 to 200 mPa·s,appear to be the only NAPLs with the desired characteristics[7].Once the best NAPL had been selected,efforts were focused on the determination ofthe gas/liquid partition coefficients between the target VOCs and silicone oils[1,9-15].Moreover,optimization of the volume fraction of silicone oil needed for an efficient mass transfer in the gasliquid contactor was considered[16,17]as well as the contactor hydrodynamics[2,18].Simultaneously,much research was centered on mathematical modeling to determine the most important parameters governing VOC mass transfer and kinetic biodegradation[19-25].Nevertheless,although significant data reported in the literature seem to demonstrate that TPPBs could be satisfactorily used at large-scale,no testin situin real conditions has yet been carried out because some design issues remain to be solved.Indeed,the design of a large-scale TPPB is still not possible because there is no sufficient reliable data concerning the VOCs'degradation performances in the presence of silicone oil.The results reported in the literature are extremely varied.Data can differ by one or two orders of magnitude for the same VOC.For instance,studying the treatment of toluene as representative VOC in the presence of silicone oil(PDMS 5 with a viscosity of 5 mPa·s),Darracqet al.[26]reported an elimination capacity(EC)of 0.95 g·m-3·h-1(25%v/v of PDMS 5 in the mixture)whereas Littlejohns and Daugulis[27]reported an EC of52 g·m-3·h-1(10%v/v ofPDMS 5 in the mixture).A toluene elimination capacity of 75 g·m-3·h-1(removal efficiency(RE)of 75%)was obtained by Volckaertet al.[28]in the case of the treatment of a mixture of dimethylsul fide,hexane and toluene by a mixture of water/PDMS 20(viscosity of 20 mPa·s)with a ratio of(75/25 v/v).The use of PDMS in stirred TPPBs has also been studied for the biodegradation of hexane,identified as a very hydrophobic pollutant.Elimination capacities of 21 g·m-3·h-1[29]and 60 g·m-3·h-1[30]were obtained using mixtures of water/PDMS 200(viscosity of 200 mPa·s)with ratios of(90/10 v/v)and(80/20 v/v),respectively.Using a(75/25 v/v)mixture of water/PDMS 20 for the treatment of hexane,Volckaertet al.[28]obtained elimination capacities up to 242 g·m-3·h-1(RE=69%).Such performances are lower than those reported by Monteset al.[31]for the biodegradation of α-pinene(a moderately hydrophobic VOC).Thus,using water/PDMS 200 mixtures with ratios of(98/2 v/v)and(95/5 v/v),these authors obtained RE=100%for loading rates up to around 100 g·m-3·h-1and reported a maximum elimination capacity of around 650 g·m-3·h-1(RE=55%).This short overview of data in the recent literature highlights that comparing results obtained for different VOCs is notreally relevant.Even if the comparison is informative,the hydrophobicity of the VOC as well as its toxicity towards microorganisms and the mass transfer limitations have to be taken into account.Consequently,with the final objective to implement a full TPPB for the treatment of air polluted with toluene under industrial conditions,there is a need to determine the ability of microorganisms contained in a water/PDMS mixture to degrade this VOC.The purpose of this study was therefore to obtain useful data from the determination of toluene degradation performances by activated sludge in order to design an industrial TPPB.On the basis of “dimensional analysis”,the experiments carried out in a semicontinuous stirred tank reactor at laboratory-scale will be used to design and build a large-scale apparatus.In this study,toluene was selected as targeted VOC because it is largely used and emitted by many industries.Moreover,toluene is considered by the Total Company,partner of this project,as a compound of interest for the development of TPPBs.

    2.Material and Methods

    2.1.Chemicals

    Toluene(C7H8;CAS number:108-88-3;purity≥99.5%;molecular weight:92.14·10-3kg·mol-1;density:867 kg·m-3;Sigma Aldrich)was selected as the target VOC because it is widely used in various industries and is highly hydrophobic.The silicone oil Rhodorsil 47V50(PDMS 50;dynamic viscosity 46 mPa·s;density 959 kg·m-3),provided by the Bluestar Silicones Company,was selected based on characteristics such as its affinity for toluene(partition coefficient at 25°C:(2.9±0.3)Pa·m3·mol-1;[14]),non-biodegradability,biocompatibility and low aqueous solubility[1].As the partition coefficient of toluene between water and air is 680 Pa·m3·mol-1at 25 °C[32],it can be calculated that the affinity of toluene is 234 times higher for PDMS 50 than for water.

    2.2.Experiments

    Two sets of experiments were carried out in a semi-continuous stirred tank reactor(Fig.1).The tank was aerated by a gas sparger and stirred by a Rushton turbine(300 rpm).In the first set of experiments,the reactor was sequentially supplied with toluene(10 toluene injections)whereas in the second series,toluene was supplied continuously.Liquid toluene was injected into the mixture of water/PDMS 50 using a syringe driver.The operating conditions for all experiments are detailed in Table 1.Liquid temperature and pHwere regulated at25°Cand 7,respectively.The liquid phase(10 L)consisted of75%water and 25%silicone oil(PDMS 50)in volume corresponding to an optimum ratio for biodegradation performances[26].The volume of the gasphase(head-space)was2.3 L.Taking the stirring rate and the bubbling due to the aeration system into account,both the liquid and gas phases could be reasonably considered to be perfectly mixed.Activated sludge from the wastewater treatment plant of Beaurade(Rennes,France)was used at an initial concentration of 0.5 gdryweightL-1mixture(i.e.0.38 gdryweightL-1water).Nutrients were added to the reactor at the beginning of experiments(all concentrations in g·(water L)-1:KH2PO4:3.5;K2HPO4·3H2O:8;NH4Cl:5.5;MgSO4·7H2O:0.25;CaCl2·2H2O:0.07;ZnSO4·7H2O:0.02;CuSO4·5H2O:0.005;(NH4)2Mo7O24·6H2O:0.004;FeSO4·7H2O:0.1).Since it was not regulated,biomass accumulated in the reactor during experiments.According to[33],half of the toluene degraded by the biomass is converted to cellular mass(C7H8+4O2+→C5H7O2N+2CO2+2H2O+H+)and halfis oxidized for energy(C7H8+9O2→7CO2).Consequently,the amount of oxygen required to biodegrade 1 mol of toluene corresponds to 6.5 mol(i.e.4.5 mol for energy production and 2 mol for biomass production).Moreover,it was recently evidenced that the presence of silicone oil has no significant influence on the microbial community in terms of richness and diversity[34].

    Table 1Operating conditions for the two sets of experiments

    Fig.1.Semi-continuous 10 L stirred tank reactor for toluene biodegradation.

    2.3.Analytical methods

    Biomass concentration was measured by extracting suspended solids from samples of the water/PDMS mixture by centrifugation(at 4000 r·min-1for 20 min)and weighing the dry matter(dried in an oven at 105°C for 16 h).However,this measurement was difficult to make accurately because after centrifugation,on the one hand,a small part of the sludge was removed with the supernatant and,on the other hand,some traces of silicone oil remained “stuck”to the dry matter,distorting the weight values obtained(error of±20%).This issue is inherent to the use of water/NAPL mixtures.In fact,Ascon-Cabrera and Lebeault[35]observed that approximately half of the total biomass adhered to the water/NAPL interface.For the sequential experiments,biomass measurements were carried out daily,before toluene injection.For the continuous experiments,biomass measurements were carried out at the end of each experiment.

    The oxygen and carbon dioxide in the output gas were monitored simultaneously and continuously using an IPOS analyzer(Abiss,France).The dissolved oxygen in the aqueous phase was also monitored using a standard electrode SZ10T-PB(Consort,Belgium).

    The toluene phase concentration in the gas phase was measured using a gas chromatograph(GC)coupled with a flame ionization detector(FID)from Thermo Scientific(USA)as described by Darracqet al.[36].Assuming that gas-liquid equilibrium was reached in the reactor,the toluene concentration in the water/PDMS 50 mixture was then deduced from the partition coefficient value determined from the calculation procedure developed by Dumontet al.[12].For a liquid phase consisting of75%water and 25%PDMS 50 in volume,the partition coefficient value is 11.5 Pa·m3·mol-1,corresponding to a dimensionless value of 0.0046(=Cgas/Cmixture).

    2.4.Biodegradation rate

    For the sequential experiments,the toluene degradation rate(EC in g m-3h-1)was calculated using Eq.(1):

    The volume of the mixture(Vmixture)was 10 L and the amount of injected toluene was 10 ml.The overall toluene stripping in the gas output during the whole experiment was deduced by monitoring the toluene concentration in the gas phase over time.Moreover,the degradation time was calculated from normalized curves(n(t)/n(t=0))describing the decrease in the toluene content in the liquid phase over time,as well as from the oxygen concentration curves in the liquid and gas phases monitored during the course of experiments,respectively.

    For the continuous experiments,the toluene biodegradation rate was calculated based on the mass balance between the toluene flow rate,toluene stripping,toluene degradation and toluene accumulation,as described in Eq.(2)and Fig.2.

    The toluene flow rate(Qtoluenein g·h-1)was a controlled parameter in the experiment and toluene stripping(QairCgas)was monitored over time.The overall toluene stripping in the gas output during the whole experiment was thus obtained by the cumulative addition of the stripping measured between two time intervals(Eq.(3)).

    Fig.2.Calculation of the toluene degradation rate.

    In the same way,the accumulation term was deduced from Eq.(4),whereCmixtureover time was calculated assuming that gas-liquid equilibrium was reached in the reactor(which can be reasonably assumed because the air residence time in the reactor was long,13 min,and the toluene flow rate was very small compared to the volume of the mixture;Table 1).

    3.Results and Discussion

    3.1.Sequential experiments

    Sequential experiment was carried out in duplicate in order to assess the reproducibility of degradation rates and biomass measurements.After the first toluene injection,corresponding to the first day of experiment(day 1),a lag phase due to an acclimation period of about 20 h was observed.After the acclimation period,biomass activity started immediately after each toluene injection.An example of the time-course of the normalized amount of toluene in the liquid phase(n(t)/n(t=0))recorded after the toluene injection(t=0)is shown in Fig.3.The beginning and the end of the degradation can be directly determined from the simultaneous and dramatic changes in the O2and CO2concentration curves in the gas phase,as well as O2dissolved in the aqueous phase.It should be noted that the real CO2level reached during experiments cannot be known due to the saturation of the analyzer(plateau at 3%CO2).As observed in Fig.3,the amount of oxygen dissolved in the liquid phase could not be considered a limiting factor.After each toluene injection,the biodegradation rate(accuracy±10%)was determined using the curves reported in Fig.3 and Eq.(1).It should be noted that for all experiments,the stripping of toluene in the air output was less than 10%of the total amount of toluene injected into the mixture.

    Fig.3.Sequential experiments:example of toluene biodegradation and parameters monitored in the gas phase and in the aqueous phase.

    Fig.4.Biodegradation rates and biomass concentrations determined during sequential experiments.

    The ten biodegradation rates determined during the sequential experiments are displayed in Fig.4,which also shows the biomass concentration measured before each toluene addition.After the acclimation period,the biodegradation rate was roughly constant(until day 7)at around 1 g·h-1,i.e.100 g·m-3·h-1.The amount of biomass increased daily.However,after day 7,the biodegradation rates dropped to 0.5 g h-1(i.e.50 g·m-3·h-1)while the biomass continued to increase.According to this figure,the biomass production can be correlated with the amount of degraded toluene.Taking into accountthe relative accuracy ofthe biomass concentration measurements due to the presence of PDMS,the yield was(0.055±0.011)biomass g·(toluene g)-1,which corresponds to data reported in the literature[37].The drop in the biodegradation rate is difficult to explain because(1)the dissolved oxygen concentration never became nil.As a result,the availability of O2also did not limit the degradation rate(a test carried out without aeration(not shown)highlighted that the concentration of dissolved O2could be nil,which limited biodegradation);(2)since the biomass increased continuously,the amount of available biomass did not limit the biodegradation;(3)since the nutrients were added in excess at the beginning of each experiment,they could not be considered as a limiting factor.As the supply of toluene was sequential,the drop in the biodegradation rate could be due to an irregular availability of toluene,which should not be observed in the series of continuous experiments.Moreover,the occurrence of inhibitory metabolites due to toluene degradation could be contemplated and should be investigated in future works.Compared with the literature data,it appears that the biodegradation rates obtained are of the same order of magnitude as performances usually reported for conventional bioreactors for air treatment,from 10 to 70 g·m-3·h-1[6,38,39].Studying toluene removal in laboratory-scale peat biofilters,álvarez-Hornoset al.[40]reported an elimination capacity of 93 g·m-3·h-1at an empty bed residence Time(EBRT)of 57 s.Moreover,it seems that higher performances could be reached using fungal strainsPaecilomyces variottiandExophiala oligosperma.Elimination capacity values as high as 164 g·m-3·h-1have been reported[41].Clearly,although the selection of a pure culture for VOC degradation leads to better removal efficiency,the use of a mixed culture,such as activated sludge,for industrial applications is preferable,owing to its robustness.

    3.2.Continuous experiments

    An example of the time-course of toluene changes during a continuous experiment is presented in Fig.5.This figure shows,in the upper part,the mass balance of the amountofinjected toluene between stripping,biodegradation and accumulation in the water/PDMS 50 mixture(Eq.(2))and,in the bottom part,the derivative curves corresponding to the stripping and biodegradation rates,respectively.As for sequential experiments,a lag phase was observed at the beginning of the experiment,due to the acclimation of the microorganisms to toluene.Hence,no degradation was observed during the first 20 h of culture and consequently toluene was predominantly accumulated in the liquid phase reactor.At the same time,a partoftoluene wasstripped from the reactor(between 5%and 10%).The greatest stripping rate was monitored for the maximum amount of toluene accumulated in the liquid phase.After the initial lag phase,the degradation began and a peak in the toluene removal rate was observed after 25 h of treatment(13.4 mmol·h-1).Once the toluene reserve was depleted,the microorganisms degraded toluene as soon as it was injected into the reactor,which is illustrated by the negligible residual gas-phase concentration from less than 45 h until the end of the experiment.Consequently,from this time,the toluene removal rate was equal to the injection rate(Fig.5(b)).Oxygen concentrations in the liquid and gas phases were monitored during the course of experiments(insert in Fig.5(b)).Concentrations in both phases followed the same trend.Roughly constant during the lag phase,the oxygen concentration dropped dramatically when toluene degradation started.The dramatic decrease in the oxygen concentration in both liquid and gas phases,down to values close to 50%for the former and 15%for the latter,corresponded to the high removal rate of toluene observed at the same time.It is noteworthy that even during this peak of consumption,oxygen remained not limiting.During toluene degradation at a constant rate(after 50 h),oxygen concentrations stabilized at values close to 70%and 16.5%for dissolved and gas phase oxygen,respectively.

    Toluene degradation was efficient(RE=100%)for toluene inputs ranging from 0.2 to 1.2 ml·h-1,(i.e.up to 11.3 mmol·h-1)which correspond to an elimination capacity of 104 g·m-3·h-1.It should be noted that this performance,which is consistent with the results recorded during the sequential experiments,corresponds to the degradation rate obtained at the end of the experiment,i.e.at steadystate(the biodegradation rate peak may be much higher as highlighted in Fig.5).This resultis two times higherthan data reported by[27]using an airlift TPPB(water/PDMS 5,90/10 v/v)to treat a mixture of BTEX(EC of 52 g·m-3·h-1corresponding to a toluene removal efficiency of 87.2%for a loading rate of 60 g·m-3·h-1).Using the oxygen measurements in the gas phase between the beginning and end of the experiments,it was possible to calculate the amount of oxygen transferred during the degradation of toluene at steady-state for these operating conditions.Results are ranged from 5.0 to 6.5 mol of oxygen per mole of toluene.Taken into account the part of toluene stripped during the experiment,such results are in agreement with the expected value.Indeed,as described in Section 2.2,it is usually assumed that half of the organic compound is converted to cellular mass and half oxidized for energy[33].With this assumption,the amount of oxygen required to biodegrade 1 mol of toluene is6.5 mol(i.e.4.5 mol for energy production and 2 molfor biomass production).The biomass production determined during the continuous experiments corresponded to that measured during the sequential experiments.Thus,at the end of the experiment displayed in Fig.5,the biomass concentration was 1.5 dry mass g·(mixture L)-1(toluene injection:0.4 ml·h-1),and values of 4.7 dry mass g·(mixture L)-1were recorded for a toluene injection of 1.2 ml·h-1.The trend of a linear increase in biomass concentration with elimination capacity is in agreement with the result reported by Littlejohns and Daugulis[27].Using an airlift TPPB to treat a mixture of BTEX(Benzene,Toluene,Ethylbenzene,o-Xylene),these authors obtained a linear correlation between the average EC and biomass concentration.However,this result was obtained using silicone rubber beads(10%v/v)as the non-aqueous phase.

    Fig.5.Continuous experiments:example of the determination of toluene biodegradation(toluene injection:0.4 ml·h-1,i.e.3.8 mmol·h-1).

    4.Conclusions

    Experiments were carried out in a semi-continuous stirred tank reactor to determine the ability of a mixture of water/silicone oil PDMS 50(75/25 v/v)to degrade toluene.The performances of biodegradation obtained from sequential and continuous experiments,up to 104 g·m-3·h-1(RE=100%),are thus of primary importance in designing the stirred tank reactor for large-scale applications.Based on this laboratory result,a pilot device coupling the absorption step of toluene by PDMS in a separate column with the biodegradation step in a TPPB can now be designed and tested on an industrial site to study the biodegradation performances on a real effluent loaded with toluene.The next work is to confirm over a long period the ability of a TPPB to degrade toluene and to study the impact of the possible accumulation of inhibitory metabolites due to biomass activity.The biodegradation performances will be studied for sequential and continuous operating conditions encountered in industrial companies.The transient-state conditions and shock-loads will be also investigated.

    Acknowledgments

    The authors would like to thank the French Environmentand Energy Management Agency(ADEME)for their support through a PhD fellowship for M.Guillerm.

    [1]G.Darracq,A.Couvert,C.Couriol,A.Amrane,D.Thomas,E.Dumont,Y.Andres,P.Le Cloirec,Silicone oil:An effective absorbent for the removal of hydrophobic volatile organic compounds,J.Chem.Technol.Biotechnol.85(2010)309-313.

    [2]E.Dumont,G.Darracq,A.Couvert,C.Couriol,A.Amrane,D.Thomas,Y.Andrès,P.Le Cloirec,Hydrophobic VOC absorption in two-phase partitioning bioreactors;influence of silicone oil volume fraction on absorber diameter,Chem.Eng.Sci.71(2012)146-152.

    [3]A.J.Daugulis,Two-phase partitioning bioreactors:A new technology platform for destroying xenobiotics,Trends Biotechnol.19(2001)457-462.

    [4]R.Mu?oz,S.Villaverde,B.Guieysse,S.Revah,Two-phase partitioning bioreactors for treatment of volatile organic compounds,Biotechnol.Adv.25(2007)410-422.

    [5]G.Quijano,M.Hernandez,F.Thalasso,R.Mu?oz,S.Villaverde,Two-phase partitioning bioreactors in environmental biotechnology,Appl.Microbiol.Biotechnol.84(2009)829-846.

    [6]C.Kennes,E.R.Rene,M.C.Veiga,Bioprocesses for air pollution control,J.Chem.Technol.Biotechnol.84(2009)1419-1436.

    [7]R.Mu?oz,A.J.Daugulis,M.Hernández,G.Quijano,Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds,Biotechnol.Adv.30(2012)1707-1720.

    [8]I.Béchohra,A.Couvert,A.Amrane,Absorption and biodegradation of toluene:Optimization of its initial concentration and the biodegradable non-aqueous phase liquid volume fraction,Int.Biodeterior.Biodegrad.104(2015)350-355.

    [9]R.Mu?oz,M.Chambaud,S.Bordel,S.Villaverde,A systematic selection of the nonaqueous phase in a bacterial two liquid phase bioreactor treating α-pinene,Appl.Microbiol.Biotechnol.79(2008)33-41.

    [10]L.Bailón,M.Nikolausz,M.K?stner,M.C.Veiga,C.Kennes,Removal of dichloromethane from waste gases in one-and two-liquid-phase stirred tank bioreactors and biotrickling filters,Water Res.43(2009)11-20.

    [11]M.Hernández,G.Quijano,F.Thalasso,A.J.Daugulis,S.Villaverde,R.Mu?oz,A comparative study of solid and liquid non-aqueous phases for the biodegradation of hexane in two-phase partitioning bioreactors,Biotechnol.Bioeng.106(2010)731-740.

    [12]E.Dumont,G.Darracq,A.Couvert,C.Couriol,A.Amrane,D.Thomas,Y.Andrès,P.Le Cloirec,Determination of partition coefficients of three volatile organic compounds(dimethylsulphide,dimethyldisulphide and toluene)in water/silicone oil mixtures,Chem.Eng.J.162(2010)927-934.

    [13]J.Rocha-Rios,G.Quijano,F.Thalasso,S.Revah,R.Mu?oz,Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation,J.Chem.Technol.Biotechnol.86(2011)353-360.

    [14]M.Guillerm,A.Couvert,A.Amrane,é.Dumont,E.Norrant,N.Lesage,C.Juery,Characterization and selection of PDMS solvents for the absorption and biodegradation of hydrophobic VOCs,J.Chem.Technol.Biotechnol.91(2016)1923-1927.

    [15]S.Tourani,A.Behvandi,F.Khorasheh,Prediction of Henry's constant in polymer solutions using PCOR equation of state coupled with an activity coefficient model,Chin.J.Chem.Eng.23(2015)528-535.

    [16]E.Dumont,G.Darracq,A.Couvert,C.Couriol,A.Amrane,D.Thomas,Y.Andrès,P.Le Cloirec,VOC absorption in a countercurrent packed-bed column using water/silicone oil mixtures:Influence of silicone oil volume fraction,Chem.Eng.J.168(2011)241-248.

    [17]Z.Zhang,T.Xu,W.Li,Z.Ji,G.Xu,Mass transfer enhancement of gas absorption by adding the dispersed organic phases,Chin.J.Chem.Eng.19(2011)1066-1068.

    [18]M.Guillerm,A.Couvert,A.Amrane,E.Norrant,N.Lesage,é.Dumont,Absorption of toluene in silicone oil:Effect of the solvent viscosity on hydrodynamics and mass transfer,Chem.Eng.Res.Des.109(2016)32-40.

    [19]M.H.Fazaelipoor,A model for treating polluted air streams in a continuous two liquid phase stirred tank bioreactor,J.Hazard.Mater.148(2007)453-458.

    [20]D.R.Nielsen,A.J.Daugulis,P.J.McLellan,Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber:Part I:Model development,parameter estimation,and parametric sensitivity,Biochem.Eng.J.36(2007)239-249.

    [21]D.R.Nielsen,A.J.Daugulis,P.J.McLellan,Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber:Part II:Model calibration,validation,and predictions,Biochem.Eng.J.36(2007)250-261.

    [22]M.Hernández,G.Quijano,R.Mu?oz,S.Bordel,Modeling of VOC mass transfer in two-liquid phase stirred tank,biotrickling filter and airlift reactors,Chem.Eng.J.172(2011)961-969.

    [23]A.D.Dorado,E.Dumont,R.Mu?oz,G.Quijano,A novel mathematical approach for the understanding and optimization of two-phase partitioning bioreactors devoted to air pollution control,Chem.Eng.J.263(2015)239-248.

    [24]S.Shen,Y.Ma,S.Lu,C.Zhu,An unsteady heterogeneous mass transfer model for gas absorption enhanced by dispersed third phase droplets,Chin.J.Chem.Eng.17(2009)602-607.

    [25]S.Shen,Y.Ma,W.Liu,S.Lu,C.Zhu,Mass transfer enhancement of propane absorption into dodecane-water emulsions,Chin.J.Chem.Eng.18(2010)217-222.

    [26]G.Darracq,A.Couvert,C.Couriol,D.Thomas,A.Amrane,E.Dumont,Y.Andres,P.Le Cloirec,Optimization of the volume fraction of the NAPL,silicone oil,and biodegradation kinetics of toluene and DMDS in a TPPB,Int.Biodeterior.Biodegrad.71(2012)9-14.

    [27]J.V.Littlejohns,A.J.Daugulis,A two-phase partitioning airlift bioreactor for the treatment of BTEX contaminated gases,Biotechnol.Bioeng.103(2009)1077-1086.

    [28]D.Volckaert,D.E.L.Ebude,H.Van Langenhove,SIFT-MS analysis of the removal of dimethyl sulphide,n-hexane and toluene from waste air by a two phase partitioning bioreactor,Chem.Eng.J.290(2016)346-352.

    [29]R.Mu?oz,E.I.H.H.Gan,M.Hernández,G.Quijano,Hexane biodegradation in twoliquid phase bioreactors:High-performance operation based on the use of hydrophobic biomass,Biochem.Eng.J.70(2013)9-16.

    [30]M.Hernández,G.Quijano,R.Mu?oz,Key role of microbial characteristics on the performance of VOC biodegradation in two-liquid phase bioreactors,Environ.Sci.Technol.46(2012)4059-4066.

    [31]M.Montes,M.C.Veiga,C.Kennes,Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors,J.Biotechnol.157(2012)554-563.

    [32]D.Mackay,W.-Y.Shiu,K.-C.Ma,S.C.Lee,Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals,second ed.CRC Press,2010.

    [33]L.K.Wang,N.K.Shammas,Y.-T.Hung,Advances in Hazardous Industrial Waste Treatment,CRC Press,2008.

    [34]R.Lebrero,E.Rodríguez,R.Pérez,P.A.García-Encina,R.Mu?oz,Abatement of odorant compounds in one-and two-phase biotrickling filters under steady and transient conditions,Appl.Microbiol.Biotechnol.97(2013)4627-4638.

    [35]M.Ascon-Cabrera,J.M.Lebeault,Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system,Appl.Environ.Microbiol.59(1993)1717-1724.

    [36]G.Darracq,A.Couvert,C.Couriol,A.Amrane,P.L.Cloirec,Removal of hydrophobic volatile organic compounds in an integrated process coupling absorption and biodegradation—selection of an organic liquid phase,Water Air Soil Pollut.223(2012)4969-4997.

    [37]P.J.J.Alvarez,P.J.Anid,T.M.Vogel,Kinetics of toluene degradation by denitrifying aquifer microorganisms,J.Environ.Eng.120(1994)1327-1336.

    [38]C.Kennes,F.Thalasso,Waste gas biotreatment technology,J.Chem.Technol.Biotechnol.72(1998)303-319.

    [39]C.Kennes,M.C.Veiga,Bioreactors for Waste Gas Treatment,Springer,Germay,2001.

    [40]F.J.álvarez-Hornos,C.Gabaldón,V.Martínez-Soria,P.Marzal,J.-M.Penya-roja,Biofiltration of toluene in the absence and the presence of ethyl acetate under continuous and intermittent loading,J.Chem.Technol.Biotechnol.83(2008)643-653.

    [41]E.Estévez,M.C.Veiga,C.Kennes,Bio filtration of waste gases with the fungiExophiala oligospermaandPaecilomyces variotii,Appl.Microbiol.Biotechnol.67(2005)563-568.

    免费少妇av软件| 国产高清videossex| 国产熟女xx| 国产午夜精品久久久久久| 韩国av一区二区三区四区| 免费少妇av软件| 12—13女人毛片做爰片一| 久久中文字幕一级| 亚洲 欧美一区二区三区| 在线观看一区二区三区激情| 亚洲成国产人片在线观看| 亚洲国产精品合色在线| 久久婷婷成人综合色麻豆| 夜夜躁狠狠躁天天躁| 精品第一国产精品| 怎么达到女性高潮| 一区二区三区激情视频| 亚洲欧美日韩无卡精品| 亚洲激情在线av| 国产精品二区激情视频| 欧美日韩亚洲综合一区二区三区_| 黄频高清免费视频| 久久中文字幕一级| av片东京热男人的天堂| 久久午夜综合久久蜜桃| 国产亚洲精品综合一区在线观看 | 久久精品亚洲精品国产色婷小说| 手机成人av网站| 变态另类成人亚洲欧美熟女 | 亚洲专区中文字幕在线| 亚洲 国产 在线| 亚洲国产毛片av蜜桃av| 久久婷婷成人综合色麻豆| 日韩中文字幕欧美一区二区| 新久久久久国产一级毛片| 波多野结衣av一区二区av| 亚洲欧美日韩无卡精品| 亚洲精品一二三| 99热只有精品国产| 夜夜躁狠狠躁天天躁| 日韩精品中文字幕看吧| 宅男免费午夜| 国产亚洲精品一区二区www| 国产主播在线观看一区二区| www国产在线视频色| 一区二区日韩欧美中文字幕| 国产成人av激情在线播放| 最近最新免费中文字幕在线| 亚洲一区中文字幕在线| 成在线人永久免费视频| 91精品国产国语对白视频| 午夜福利在线免费观看网站| 免费在线观看视频国产中文字幕亚洲| 又大又爽又粗| 亚洲情色 制服丝袜| 亚洲性夜色夜夜综合| 动漫黄色视频在线观看| 在线播放国产精品三级| 人人妻人人爽人人添夜夜欢视频| 亚洲成人免费av在线播放| 老司机午夜福利在线观看视频| 嫁个100分男人电影在线观看| 日本精品一区二区三区蜜桃| 成人特级黄色片久久久久久久| 国产精品99久久99久久久不卡| 欧美日韩瑟瑟在线播放| 不卡av一区二区三区| 韩国av一区二区三区四区| 人妻丰满熟妇av一区二区三区| 日韩人妻精品一区2区三区| 无限看片的www在线观看| 成人黄色视频免费在线看| 国产黄色免费在线视频| 99精国产麻豆久久婷婷| 天天影视国产精品| 国产精品久久久久成人av| 国内久久婷婷六月综合欲色啪| 十八禁人妻一区二区| 精品乱码久久久久久99久播| 午夜免费成人在线视频| 色哟哟哟哟哟哟| 超碰成人久久| 黄色丝袜av网址大全| 99久久精品国产亚洲精品| 首页视频小说图片口味搜索| 正在播放国产对白刺激| 欧美性长视频在线观看| 侵犯人妻中文字幕一二三四区| 老司机靠b影院| 午夜福利影视在线免费观看| 精品一区二区三区av网在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲一码二码三码区别大吗| 午夜影院日韩av| 韩国av一区二区三区四区| 性欧美人与动物交配| 免费人成视频x8x8入口观看| 国产真人三级小视频在线观看| 级片在线观看| 久久中文字幕人妻熟女| 久久欧美精品欧美久久欧美| √禁漫天堂资源中文www| 国产午夜精品久久久久久| 不卡av一区二区三区| 久久久久久亚洲精品国产蜜桃av| www.www免费av| 亚洲精品中文字幕一二三四区| 国产精品九九99| 搡老岳熟女国产| 日韩免费av在线播放| 一进一出抽搐gif免费好疼 | 韩国精品一区二区三区| 男人舔女人下体高潮全视频| 色综合站精品国产| 免费搜索国产男女视频| 香蕉国产在线看| 成人亚洲精品av一区二区 | 欧美日韩精品网址| 日韩国内少妇激情av| 免费在线观看完整版高清| 妹子高潮喷水视频| 亚洲免费av在线视频| 亚洲人成伊人成综合网2020| 日韩有码中文字幕| 99riav亚洲国产免费| 视频区欧美日本亚洲| 精品国产乱码久久久久久男人| 香蕉丝袜av| 亚洲精品中文字幕一二三四区| 亚洲精华国产精华精| 国产av又大| 99在线视频只有这里精品首页| 中文字幕人妻熟女乱码| 亚洲免费av在线视频| 欧美人与性动交α欧美精品济南到| 国产一区二区三区在线臀色熟女 | 18禁裸乳无遮挡免费网站照片 | 久久久久久久久中文| 国产亚洲精品一区二区www| 亚洲自偷自拍图片 自拍| 久久人人爽av亚洲精品天堂| 99久久综合精品五月天人人| 久久99一区二区三区| 黄频高清免费视频| 国产亚洲精品久久久久5区| 免费人成视频x8x8入口观看| 超色免费av| 亚洲人成电影观看| 免费看十八禁软件| 国产黄色免费在线视频| 久9热在线精品视频| 成年人黄色毛片网站| 嫁个100分男人电影在线观看| 欧美日韩视频精品一区| 黄色片一级片一级黄色片| 国产极品粉嫩免费观看在线| 亚洲人成伊人成综合网2020| 91麻豆av在线| 无人区码免费观看不卡| 国产国语露脸激情在线看| 国产精品美女特级片免费视频播放器 | 天堂中文最新版在线下载| 国产精品久久久久久人妻精品电影| av在线天堂中文字幕 | 午夜福利一区二区在线看| 国产又爽黄色视频| 亚洲精品一二三| 亚洲第一青青草原| 免费少妇av软件| 国产一卡二卡三卡精品| 黄片小视频在线播放| 男女床上黄色一级片免费看| 亚洲精品美女久久av网站| 91成人精品电影| 在线观看一区二区三区激情| 香蕉久久夜色| 成人影院久久| 高清av免费在线| 男女高潮啪啪啪动态图| 成人18禁在线播放| 人妻丰满熟妇av一区二区三区| 免费观看精品视频网站| 国产精品一区二区免费欧美| 99国产精品99久久久久| 欧美性长视频在线观看| 色老头精品视频在线观看| 午夜成年电影在线免费观看| 校园春色视频在线观看| svipshipincom国产片| 精品久久久久久久久久免费视频 | 成年女人毛片免费观看观看9| 99香蕉大伊视频| 精品久久久久久成人av| 99国产精品99久久久久| 亚洲欧美精品综合一区二区三区| 久久欧美精品欧美久久欧美| 老司机靠b影院| 在线观看一区二区三区激情| 精品乱码久久久久久99久播| 久久久国产精品麻豆| 亚洲熟妇中文字幕五十中出 | 亚洲成a人片在线一区二区| 国产av一区在线观看免费| 一级毛片高清免费大全| 精品福利观看| 国产视频一区二区在线看| 黑人巨大精品欧美一区二区蜜桃| 91成人精品电影| 日韩精品免费视频一区二区三区| 美女高潮喷水抽搐中文字幕| 在线天堂中文资源库| 亚洲精品美女久久av网站| 国产亚洲精品久久久久5区| 99精品欧美一区二区三区四区| 久久国产亚洲av麻豆专区| 日本wwww免费看| 国产精品一区二区在线不卡| 免费一级毛片在线播放高清视频 | 亚洲专区中文字幕在线| 国产99白浆流出| 亚洲欧美精品综合一区二区三区| 精品一区二区三区视频在线观看免费 | 亚洲精品粉嫩美女一区| 国产三级黄色录像| 国产一卡二卡三卡精品| 国产主播在线观看一区二区| 少妇被粗大的猛进出69影院| 免费在线观看完整版高清| 午夜福利免费观看在线| 99精国产麻豆久久婷婷| 国产有黄有色有爽视频| 亚洲精品中文字幕在线视频| 国产无遮挡羞羞视频在线观看| 黄色毛片三级朝国网站| 一区二区三区精品91| www国产在线视频色| 一区二区三区国产精品乱码| 欧美性长视频在线观看| www.自偷自拍.com| 午夜免费观看网址| 国产有黄有色有爽视频| 欧美成狂野欧美在线观看| 亚洲精品国产色婷婷电影| 免费日韩欧美在线观看| 成人永久免费在线观看视频| 久久人人97超碰香蕉20202| 他把我摸到了高潮在线观看| 国产一区二区三区在线臀色熟女 | 午夜福利一区二区在线看| 午夜福利在线免费观看网站| 久久人妻熟女aⅴ| 久久午夜亚洲精品久久| 国产精品偷伦视频观看了| 极品人妻少妇av视频| 50天的宝宝边吃奶边哭怎么回事| 国产激情久久老熟女| 国产亚洲精品一区二区www| 变态另类成人亚洲欧美熟女 | 18美女黄网站色大片免费观看| 国产精品九九99| 国产野战对白在线观看| 欧美av亚洲av综合av国产av| 亚洲片人在线观看| 欧美激情极品国产一区二区三区| 免费高清在线观看日韩| 69av精品久久久久久| 国产蜜桃级精品一区二区三区| 老司机亚洲免费影院| 一边摸一边抽搐一进一出视频| 在线观看66精品国产| 神马国产精品三级电影在线观看 | 麻豆av在线久日| 成人影院久久| 精品电影一区二区在线| 成人免费观看视频高清| 久久精品国产99精品国产亚洲性色 | 18美女黄网站色大片免费观看| 热99re8久久精品国产| 女警被强在线播放| 欧美久久黑人一区二区| 午夜激情av网站| 亚洲精品一区av在线观看| 亚洲成人国产一区在线观看| 高清黄色对白视频在线免费看| av福利片在线| 级片在线观看| 777久久人妻少妇嫩草av网站| 波多野结衣高清无吗| 国产精品免费一区二区三区在线| 18禁美女被吸乳视频| 首页视频小说图片口味搜索| 亚洲精品成人av观看孕妇| 国产精品一区二区三区四区久久 | 精品久久久久久久久久免费视频 | 成年人免费黄色播放视频| 欧美日韩福利视频一区二区| 9191精品国产免费久久| 国产高清激情床上av| 一区二区三区精品91| 可以在线观看毛片的网站| 丁香欧美五月| av超薄肉色丝袜交足视频| x7x7x7水蜜桃| 国产乱人伦免费视频| 精品乱码久久久久久99久播| 美女 人体艺术 gogo| 欧美日韩瑟瑟在线播放| 91麻豆精品激情在线观看国产 | 国产麻豆69| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 一边摸一边抽搐一进一小说| 精品卡一卡二卡四卡免费| 99久久99久久久精品蜜桃| 日本欧美视频一区| 日韩大码丰满熟妇| 可以在线观看毛片的网站| 欧美av亚洲av综合av国产av| 国产精品久久视频播放| 国产99久久九九免费精品| 99国产极品粉嫩在线观看| 大型av网站在线播放| 精品久久久久久电影网| 不卡av一区二区三区| 精品电影一区二区在线| 国产真人三级小视频在线观看| 午夜福利在线免费观看网站| 精品熟女少妇八av免费久了| 亚洲国产中文字幕在线视频| 99国产精品一区二区三区| 精品一区二区三卡| 成在线人永久免费视频| 亚洲国产精品一区二区三区在线| 国内毛片毛片毛片毛片毛片| 亚洲欧美一区二区三区黑人| 中国美女看黄片| 十分钟在线观看高清视频www| 欧美日韩亚洲国产一区二区在线观看| 免费一级毛片在线播放高清视频 | 欧美激情 高清一区二区三区| 露出奶头的视频| 免费搜索国产男女视频| 99精品久久久久人妻精品| 国产片内射在线| 9热在线视频观看99| 欧美日韩亚洲高清精品| 天堂√8在线中文| 操出白浆在线播放| 91av网站免费观看| 国产成人欧美| 88av欧美| 一二三四社区在线视频社区8| 亚洲熟妇中文字幕五十中出 | 欧美乱妇无乱码| 9色porny在线观看| 黄色 视频免费看| 久久狼人影院| 国产av精品麻豆| 日本wwww免费看| 色婷婷av一区二区三区视频| 亚洲一区二区三区不卡视频| 天天躁狠狠躁夜夜躁狠狠躁| 90打野战视频偷拍视频| 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| 国产成人系列免费观看| 51午夜福利影视在线观看| 麻豆国产av国片精品| 女人被狂操c到高潮| 国产日韩一区二区三区精品不卡| 国产精品国产高清国产av| 欧美亚洲日本最大视频资源| 亚洲精品国产精品久久久不卡| 久久香蕉激情| 国产99久久九九免费精品| 国产一区二区三区视频了| 欧美激情 高清一区二区三区| 日韩人妻精品一区2区三区| 很黄的视频免费| 老司机午夜福利在线观看视频| netflix在线观看网站| 天堂俺去俺来也www色官网| 99re在线观看精品视频| 啪啪无遮挡十八禁网站| 欧美人与性动交α欧美精品济南到| 国产日韩一区二区三区精品不卡| 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频| 久久精品人人爽人人爽视色| 高清毛片免费观看视频网站 | 国产一区二区三区在线臀色熟女 | 正在播放国产对白刺激| а√天堂www在线а√下载| 国产乱人伦免费视频| 亚洲熟妇中文字幕五十中出 | 欧美性长视频在线观看| 欧美老熟妇乱子伦牲交| 精品日产1卡2卡| 欧美+亚洲+日韩+国产| av网站免费在线观看视频| 美国免费a级毛片| 亚洲精品国产精品久久久不卡| 夜夜夜夜夜久久久久| 精品少妇一区二区三区视频日本电影| 黑丝袜美女国产一区| 日韩欧美在线二视频| 九色亚洲精品在线播放| 日韩欧美免费精品| 丁香六月欧美| 一区二区日韩欧美中文字幕| 国产精品美女特级片免费视频播放器 | 国产在线观看jvid| 麻豆av在线久日| av电影中文网址| 国产成人精品在线电影| 人人妻人人澡人人看| 777久久人妻少妇嫩草av网站| 成人免费观看视频高清| www国产在线视频色| 好男人电影高清在线观看| 日韩高清综合在线| 欧美乱码精品一区二区三区| 亚洲,欧美精品.| av网站在线播放免费| 神马国产精品三级电影在线观看 | 欧美色视频一区免费| 多毛熟女@视频| 欧美日韩亚洲高清精品| 欧美日韩亚洲高清精品| 中亚洲国语对白在线视频| 午夜福利影视在线免费观看| 久久精品aⅴ一区二区三区四区| 国产成人一区二区三区免费视频网站| 日韩中文字幕欧美一区二区| 午夜亚洲福利在线播放| 免费在线观看黄色视频的| 无人区码免费观看不卡| 欧美成人午夜精品| 一级,二级,三级黄色视频| 国产精品久久久久成人av| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 欧美黑人精品巨大| 国产国语露脸激情在线看| 变态另类成人亚洲欧美熟女 | 狠狠狠狠99中文字幕| av电影中文网址| 久久中文字幕一级| 欧美乱码精品一区二区三区| 精品久久久久久久毛片微露脸| 热re99久久国产66热| 日韩三级视频一区二区三区| √禁漫天堂资源中文www| 亚洲国产看品久久| 一进一出抽搐动态| 亚洲精品成人av观看孕妇| 一个人观看的视频www高清免费观看 | 18禁裸乳无遮挡免费网站照片 | 人成视频在线观看免费观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文av在线| 亚洲在线自拍视频| 免费在线观看完整版高清| 91老司机精品| 亚洲av美国av| 最新美女视频免费是黄的| 99国产极品粉嫩在线观看| bbb黄色大片| 日本黄色视频三级网站网址| 亚洲黑人精品在线| 91在线观看av| 国产精品九九99| 老司机福利观看| 国产av在哪里看| 一级作爱视频免费观看| 动漫黄色视频在线观看| 高清黄色对白视频在线免费看| 免费观看精品视频网站| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 国产高清国产精品国产三级| 亚洲 国产 在线| 日韩视频一区二区在线观看| 多毛熟女@视频| 热re99久久精品国产66热6| 51午夜福利影视在线观看| 亚洲欧美日韩高清在线视频| 久久久国产欧美日韩av| 久久久久九九精品影院| av电影中文网址| 午夜福利,免费看| 久久精品国产99精品国产亚洲性色 | 日本 av在线| av福利片在线| 老司机亚洲免费影院| 成年人免费黄色播放视频| 国产亚洲欧美精品永久| 欧美日韩精品网址| 亚洲狠狠婷婷综合久久图片| 久久热在线av| 免费少妇av软件| 99热国产这里只有精品6| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| 色婷婷av一区二区三区视频| 亚洲国产精品合色在线| 天堂动漫精品| 中文字幕色久视频| 亚洲精品中文字幕在线视频| 国产av又大| 老司机靠b影院| 久久香蕉激情| 好男人电影高清在线观看| 欧美精品一区二区免费开放| 在线观看66精品国产| 久久精品国产亚洲av高清一级| 香蕉久久夜色| 亚洲人成77777在线视频| 免费观看精品视频网站| 免费高清视频大片| 伦理电影免费视频| avwww免费| 亚洲精品国产一区二区精华液| 精品一品国产午夜福利视频| 天堂影院成人在线观看| 亚洲男人天堂网一区| www.www免费av| 大码成人一级视频| 日韩欧美国产一区二区入口| 国产精品秋霞免费鲁丝片| 久久久久亚洲av毛片大全| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼 | 好看av亚洲va欧美ⅴa在| 成在线人永久免费视频| 色播在线永久视频| 天天添夜夜摸| 亚洲一区二区三区不卡视频| 日韩欧美免费精品| 欧美性长视频在线观看| 久久香蕉国产精品| 免费一级毛片在线播放高清视频 | 少妇裸体淫交视频免费看高清 | 免费日韩欧美在线观看| 欧美成人性av电影在线观看| 一边摸一边抽搐一进一出视频| 免费人成视频x8x8入口观看| 女性被躁到高潮视频| 大型av网站在线播放| 久久久久国产精品人妻aⅴ院| 久9热在线精品视频| 一a级毛片在线观看| 免费一级毛片在线播放高清视频 | 黑人猛操日本美女一级片| 19禁男女啪啪无遮挡网站| 亚洲av五月六月丁香网| 热99re8久久精品国产| 日韩欧美一区二区三区在线观看| 热re99久久国产66热| 久久精品91无色码中文字幕| 免费看a级黄色片| 两个人看的免费小视频| 亚洲av第一区精品v没综合| 亚洲国产欧美日韩在线播放| 亚洲欧美精品综合久久99| 亚洲熟妇中文字幕五十中出 | 成人黄色视频免费在线看| 日韩 欧美 亚洲 中文字幕| 丁香六月欧美| 一边摸一边抽搐一进一小说| 午夜影院日韩av| 欧美久久黑人一区二区| 狠狠狠狠99中文字幕| ponron亚洲| 高清在线国产一区| 国内毛片毛片毛片毛片毛片| 国产无遮挡羞羞视频在线观看| 成熟少妇高潮喷水视频| 国产免费现黄频在线看| 日韩中文字幕欧美一区二区| 久久久久国产一级毛片高清牌| 老汉色av国产亚洲站长工具| 精品福利观看| 性少妇av在线| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区三区| 在线观看日韩欧美| 久久亚洲精品不卡| 真人做人爱边吃奶动态| 超色免费av| 欧美在线黄色| 久久 成人 亚洲| 麻豆av在线久日| 亚洲国产精品sss在线观看 | av欧美777| 麻豆一二三区av精品| 久久精品91无色码中文字幕| 村上凉子中文字幕在线| 久久人妻av系列| 18禁美女被吸乳视频| 亚洲全国av大片| 国产片内射在线| 一夜夜www| 自线自在国产av| 黄色丝袜av网址大全| 黄频高清免费视频| 国产精品综合久久久久久久免费 | 国内久久婷婷六月综合欲色啪| 久久中文字幕人妻熟女| 热re99久久精品国产66热6| 国产激情久久老熟女| 露出奶头的视频| 色哟哟哟哟哟哟| 丰满人妻熟妇乱又伦精品不卡| 国产av精品麻豆|