• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superhydrophobic modification of ceramic membranes for vacuum membrane distillation☆

    2017-06-01 03:31:34YanhuiYangQianqianLiuHaizhiWangFushengDingGuoshanJinChunxiLiHongMeng
    Chinese Journal of Chemical Engineering 2017年10期
    關(guān)鍵詞:新機(jī)制中共中央國(guó)務(wù)院

    Yanhui Yang,Qianqian Liu,Haizhi Wang,Fusheng Ding,Guoshan Jin,Chunxi Li,Hong Meng*

    College of Chemical Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    1.Introduction

    Membrane distillation(MD)is an emerging low-cost,energyefficient membrane separation technology,requiring a robust membrane with porosity and hydrophobicity[1,2].For the membrane materials used in MD process,generally polymeric membranes are easily fabricated,and have a high packing density in membrane module[3-7].However,these polymeric membranes perform poorly and are always restricted for use under some harsh conditions,because of their low mechanical strength,short lifespan and poor in heat resistibility.Inorganic membranes(i.e.,ceramic membrane)are always prepared from metal oxides such as Al2O3,TiO2,ZrO2,and SiO2,having many advantages over organic membranes,such as the high temperature resistance,high chemical stability,high mechanical strength,strong antimicrobial activity,adjustable pore structure and high separation efficiency[8-10].The inorganic membrane is always hydrophilic because of the hydroxyl groups existing on the surface,which is not conducive to the MD process[11].In order to improve the hydrophobicity of ceramic membranes made of metal oxides,it is necessary to modify membrane with organic groups such as fluoroalkylsilanes.Picard[12]fabricated a hydrophobic ceramic membrane with a high surface water contact angle of 145°.Similarly,Krajewski[2]obtained a membrane with a water contact angle close to 120°by surface modification using fluoroalkylsilanes.Khemakhem[13]performed experiments on grafting fluoroalkylsilanes onto a clay mineral membrane,and the obtained water contact angle on grafted membrane surface was 141°.The fabricated membrane had a flux of 17.0 kg·m-2·h-1and a retention ratio of 93%for desalination of a 0.1 mol·L-1NaCl solution.The group of Zhang[14]prepared silicon nitride hollow- fiber membranes with a water contact angle of 136°for seawater desalinationviaa direct contact membrane distillation experiment.Experimental results showed that the membrane flux was 27.77 kg·m-2·h-1,and its retention ratio was about 99%.Ren and coworkers[15]fabricated hydrophobic alumina planar membranes for water desalination.They found that the contact angle on their grafting membrane was 133°,the MD flux was 19.1 kg·m-2·h-1,and its retention ratio was about 99.5%for a 2 wt%NaCl solution.

    Fig.1.Reaction mechanism for the superhydrophobic modification of ceramic membrane.

    In this experiment,1H,1H,2H,2H-perfluorooctyltrichlorosilane(PFAS)and 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)were selected as modifiers.The modifier molecules are stable since their end groups contain fluorine,which has low surface energy and high hydrophobicity.The modifier grows perpendicular to the membrane[16].All of the above characteristics enable the construction of a rough surface.Molecules containing highly active groups such asˉˉCl andˉˉOCH2CH3easily undergo hydrolysis and substitution by hydroxyl groups and subsequent dehydration.The morphological and physicochemical changes of the resulting membranes were analyzed by scanning electron microscopy(SEM)and X-ray diffraction(XRD).Hydrophobicity was characterized by a contact angle analyzer.The resulting membrane was used for vacuum membrane distillation of 1 wt%NaCl solutions.The variations of VMD performance with modi fication conditions were intensively investigated.

    2.Experimental

    2.1.Materials

    Al2O3ceramic membranes(mean pore size:200 nm,thickness:2.5 mm,porosity:35%;water contact angle:46°)were kindly provided by the Materials Laboratory of Nanjing University of Technology(Nanjing,China).PFAS and PFDS were obtained from Sigma-Aldrich(Shanghai,China).NaCl,anhydrous ethanol,and benzophenone were obtained from Aladdin Chemistry Company(Shanghai,China).Deionized(DI)water was prepared by the Beijing University of Chemical Technology(Beijing,China).

    2.2.Preparation of hydrophobic membranes

    To improve the membrane performance in vacuum membrane distillation(VMD),PFAS and PFDS were used as reagents for hydrophobic modifications and absolute ethanol as solvent.An alkali-pretreated ceramic membrane was placed in a Petri dish and then combined with the hydrophobic modification reagent.The recommended immersion depth for the membrane was 0.5 mm.The culture dish was covered with a quartz plate,and the reaction was carried out under ultraviolet irradiation for 30 min to produce the grafted polymer membrane.The membrane was then washed with anhydrous ethanol and DI water to remove unreacted modification reagent and dried in a vacuum oven at 100°C for 45 min.The aforementioned grafting steps were done several times.After each grafting step,the modification regent was replenished for the next immersion.Finally,the dried grafted membrane was stored under a dry,clean atmosphere.

    2.3.Characterization

    The contact angle on the membrane samples was measured with a Data-Physics OCA-20 contact angle analyzer(DataPhysics Instruments GmbH,Stuttgart,Germany).Scanning electron microscope(SEM)imaging of the membrane was carried out on a Hitachi s-4300 scanning electron microscope(Hitachi Limited,Tokyo,Japan).X-ray photoelectron spectroscopy(XPS)of surface elements was done by using an ESCA250(Thermo Fisher Scientific,Shanghai,China)XPS system.

    Fig.2.Schematic of the experimental setup for vacuum membrane distillation:(1)thermostatic water bath;(2)material tank;(3)peristaltic pump;(4)membrane module;(5)condenser;(6)water collector;(7)vacuum pump;(8) flow meter;(9,10)thermometers;(11)vacuum gauge.

    2.4.VMD experiment

    The PFAS grafted planar ceramic membranes were used in the experiment on seawater VMD.Fig.2 shows the setup for the experiment.Ahydrophobic modified Al2O3ceramic membrane(effective membrane area=4.91×10-4m2)was placed and then fastened in the membrane module.The module was then connected to a material tank and peristaltic pump.Next,a coiled condenser and condensate water collector were connected.One end of the former was connected to the steam outlet of the membrane module,and the latter was connected to a vacuum pump.The feed solution was heated in a thermostatic water bath to the target temperature(75°C)and then held at that temperature.The peristaltic pump was then opened,and the feed solution was circulated between the thermostatic water bath and membrane module.Subsequently,the vacuum pump was switched on.The cold side of the membrane module,coiled condenser,and water collector form a stable vacuum:steam is forced from the hot side of the membrane to the cold side and then condensed by the condenser and collected into a water collector.The temperature of the cold side was kept at-10°C.

    2.5.Membrane characterizations

    The products were analyzed by ICS-900 Ion Chromatography.The experimental flux(J)could be calculated as follows[17]:

    Fig.3.SEM images of the membrane(A,C)before and(B,D)after modification.

    Fig.4.XPS spectra of the membrane surface.

    wherem,Aandtwere the mass of the permeate,membrane area and operation time,respectively.

    中共中央、國(guó)務(wù)院日前發(fā)布《關(guān)于建立更加有效的區(qū)域協(xié)調(diào)發(fā)展新機(jī)制的意見(jiàn)》(以下簡(jiǎn)稱《意見(jiàn)》),要求“加快形成統(tǒng)籌有力、競(jìng)爭(zhēng)有序、綠色協(xié)調(diào)、共享共贏的區(qū)域協(xié)調(diào)發(fā)展新機(jī)制”。

    The rejection rate(R)could be expressed by:

    wherecfwas the initial concentration of the component in the feed solution andcpwas the concentration of the component in the rejection.

    3.Results and Discussion

    3.1.Morphological and physicochemical changes

    SEM images of the original and grafted membranes are shown in Fig.3.As shown in Fig.3 A,C,the pore sizes and particle sizes on the surface of original Al2O3membrane were distributed uniformity.The contact angle on the original membrane was 46°because of the even distribution of hydroxyl groups.Fig.3 B,D showed that the grafted membrane had a polymer layer above a layer with prominent clusters,resulting in high surface roughness of the membrane.The contact angle of the grafted ceramic membranes was 159°,which was much higher than those without ultraviolet grafting and reached superhydro phobic range.It was clearly observed that they had a polymer layer formed by monomer dehydration condensation between PFAS and the ceramic membrane surface.In addition to the fluorocarbon chain itself having a good hydrophobic property,the formation of needle like and cluster structure was also an important factor in superhydrophobicity of the membrane.Before and after modification,the pore structure of the membrane changed little,and the range of the membrane was concentrated in 25%-32%by desorption of nitrogen method.

    Surface X-ray photoelectron spectra of the ungrafted and grafted ceramic membranes are shown in Fig.4.Characteristic O1s and Al2p peaks at 531.1 and 74.62 eV,respectively,were due to the ungrafted ceramic membrane.The F1s peak at 687.46 eV indicated an organic polymer membrane on the surface of the ceramic channels.The peaks at 860 and 833 eV were Auger peaks for F.Relaxation of fluorine upon irradiation of the membrane surface implied its presence on the membrane surface.The C1s absorption peak consisted of overlapping peaks at 285.5 and 290.5 eV.X-ray photoelectron spectra of the ungrafted and grafted ceramic membranes may be compared in Fig.4.The absorption peak of fluorine of the grafted ceramic surface was distinct,in contrast to that of the ungrafted membrane.The degree of absorption by the other major elements changed mainly because of grafting of PFAS onto the ceramic membrane surface through its fluorocarbon chain.

    3.2.Variations of hydrophobicity with modifier,photoinitiator and ultraviolet irradiation

    Ceramic membranes were grafted with PFAS and PFDS in alcohol solution at room temperature.The concentrations of both modifier solution and diphenylketone(BP)were 0.01 mol·L-1,and modification was done five times.Contact angles of the membranes modified with PFAS and PFDS(Fig.5)were both 143°.The molecular structures of fluorine-containing carbon chains of PFAS and PFDS were very similar.The results thus indicated that although the chain of the latter was longer than that of the former,the properties and surface morphology of the grafted membranes were very similar(Fig.5).

    The modifier concentration was a key factor affecting the modification.As shown in Fig.6,the contact angle first increases and then decreased with the increase in modifier concentration.When the modifier concentration was 0.0005 mol·L-1,the contact between monomers in solution and active sites on the membrane surface was influenced by shielding by solvent molecules and photosensitive molecules,which decreases the density,uniformity of grafted molecules on the membrane surface,and contact angle.When the modifier concentration increased from 0.0005 to 0.01 mol·L-1,the amount of monomers in the graft solution increased gradually and reached moderate density,which prevented self-polymerization and ensured maximum probability of contact between monomers and active sites.When the modifier concentration was 0.01 mol·L-1,the hydrophobicity increased,and the contact angle on the grafted membranes reached maximum.The largest contact angle on the grafted membranes was 159°.When the modifier concentration increased from 0.01 to 0.1 mol·L-1,the modifier concentration was too high.This excess led to selfpolymerization,forming polymerchains.F on the surface of the polymer chains buried the SiˉˉO bond in the middle of each polymer chain.Consequently,the probability of contact between monomers and active sites on the membrane surface increased drastically,thereby interfering with grafting.

    Fig.5.Effect of the surface modifiers(A)1H,1H,2H,2H-perfluorooctyltrichlorosilane and(B)1H,1H,2H,2H-perfluorodecyltriethoxysilane on the water contact angle;SEM images of membranes modified with(A)1H,1H,2H,2H-perfluorooctyltrichlorosilane and(B)1H,1H,2H,2H-perfluorodecyltriethoxysilane).

    Fig.6.Effect of modifier concentration on the contact angle.

    The effect of the modification cycles on membrane hydrophobicity was also investigated.As shown in Fig.7,the contact angle increased rapidly from 126°to a maximum of 159°as the number of cycles of modification increased from one to five,thereafter decreasing with increasing number of times.The contact angle decreased to 153°and 150°,respectively,after the eighth and tenth modification cycles.

    Fig.7.Effect of the number of cycles of modification on the contact angle.

    Ultraviolet photografting led to the formation of chemical bonds between modifier molecules andˉˉOH active sites on the membrane surface,thus forming a permanentand stable hydrophobic layer.Each PFAS molecule was anchored to the surfaceviareaction with at least one hydroxylgroup.The number of hydroxyl groups on the membrane surface and their uniformity was directly related to the modification effect.In the first modification,PFAS partially was bonded to surface hydroxyl groups.With the increasing number of modification cycles,modifier molecules were bonded to unreacted hydroxyl groups,thus increasing the hydrophobicity of the membrane.When all of the hydroxyl groups on the membrane surface had bound to modifier molecules,SiˉˉO bonds became incorporated into the membrane surface and long chains containing fluorine moved toward the exterior,thereby increasing the surface roughness.When the surface was covered with fluorinecontaining long chains,modifier molecules could not bond with the membrane surface.The contact angle therefore increased with increasing number of modifications.After five cycles of modification,a hydrophobic polymer layer completely covered the membrane surface,and further accumulation of the modifier decreased the surface roughness.Consequently,the contact angle no longer increased with increasing number of modifications,slightly decreasing instead.

    Different amounts of the photoinitiator BP,which aids reaction were added to the modifier solution(0.01 mol·L-1).The ceramic membrane was immersed in the hydrophobic modifier solution at room temperature and then irradiated with ultraviolet light for 30 min.Afterward,it was cleaned and dried at 100°C for 45 min.Contact angles at various BP concentrations are listed in Table 1.

    Table 1Variations in contact angle with the BP concentration

    The experimental data indicated that at certain BP concentrations(0-0.01 mol·L-1),the contact angle increased with increasing concentration.However,it decreased with increasing BP concentration when the BP concentration was higher than 0.01 mol·L-1.The maximum contact angle was 159°,which was obtained at 0.01 mol·L-1.

    The effect of BP was greater at low concentration,activating hydroxyl groups on the membrane surface and improving reactivity.However,when the BP concentration was too high,BP slowed the grafting reaction and decreased reactivity,thus decreasing the grafting efficiency.

    In the experiment,the solutions of the modifiers PFAS and BP alcohol at three different concentrations were used.The concentrations of PFAS were 0.0005,0.005,and 0.01 mol·L-1and BP was 0.01 mol·L-1.The effect of ultraviolet irradiation on the contact angle at different concentrations is depicted in Fig.8.At the three concentrations,contact angles on the surface of the grafted membrane under ultraviolet irradiation were 143°,145°,and 159°respectively,and those on the membrane without ultraviolet irradiation were 137°,140°,and 152°.The number of hydroxyl groups and the grafting density of modifier monomers on the membrane were high.Treatment of the ultraviolet-irradiated membrane with BP solution generated surface free radicals and transferred ungrafted modifier monomers and hydroxyl group to the surface of membrane,thereby increasing the reaction rate.Increasing the grafting density increased coverage of the membrane surface by the grafting molecules.The grafting efficiency improved because of the increase in reaction rate.

    Fig.8.The influence of ultraviolet irradiation on the contact angle.

    3.3.Saline-water desalination by VMD

    The fluxes of the MD process were related to the temperature difference and average temperature of the feed side and permeate side.A high average temperature difference between the feed side and permeate side led to greater permeate flux in the MD process.The relationships between the flux through the ceramic membrane,rejection rate,and temperature in the desalination process are depicted in Fig.9.The permeate flux in the VMD desalination process increased exponentially with the increase in temperature(Fig.9).This trend was due to the exponential relationship between the equilibrium vapor pressure of solution and the temperature:increasing the temperature caused an increase in equilibrium vapor pressure difference across the membrane,that is,the driving force.For PFAS modified ceramic Al2O3ceramic membrane(the contact angle of 159 °),at feed temperatures of 35 °C and 75°C,the VMD fluxes in the desalination process were 2.5 and 23.22 kg·m-2·h-1,as indicated in Fig.9.There were slight differences between the experimental data and the theoretical linear relationship probably because of the effect of the temperature difference and concentration polarization.

    Fig.9.Dependence of the permeate flux and rejection rate on the feed temperature.

    Theoretically,water in the gas phase permeated through pores during VMD desalination,whereas NaCl,which was nonvolatile,cannot.Thus,the rejection rate of the experimental study(99.9%)may be the result of minimal defects in the membrane.

    Fig.10 depicts the effect of the feed concentration on the flux and on the interception rate.The feed temperature was 75°C,and the initial water flux was 33.0 kg·m-2·h-1.When the feed concentration was 3 wt%,the water flux decreased to 10.39 kg·m-2·h-1.This was because the higher concentration NaCl solution caused the concentration polarization on the feed side.With the increase of feed concentration on membrane surface,the activity of water reduced.Therefore,both the membrane surface temperature and saturated steam pressure decreased.However,this effect was relatively weak.Although the increase in concentration led to a decrease in flux,the flux remained high.The reason for the effect of concentration polarization was the decrease in the transfer rate due to the existence of the boundary layer in the membrane[18].

    The interception rate did not decrease with the increase in feed concentration,staying at>99.95%.This result suggested that the membrane pore sizes were distributed uniformly,which led to stable performance.

    Fig.10.Dependence of the permeate flux and rejection rate on the feed concentration.

    The dependence of the VMD flux and rejection rate on the vacuum pressure is described in Fig.11.When the vacuum pressure in the experiment was less than 0.09 MPa,the flux was too small to cause condensate to accumulate on the cold side,preventing us from obtaining any data.When the vacuum pressure was 0.098 MPa,the flux was 23.22 kg·m-2·h-1at a feed temperature of 75 °C.When the vacuum pressure was 0.090 MPa,the flux decreased by 32.8% to 15.6 kg·m-2·h-1.In contrast to other MD processes,negative pressure on the permeate side in the VMD process was produced by applying a vacuum,and steam was removed from the membrane module under negative pressure.The higher vacuum degree in the permeate side would cause the higher the steam pressure difference,which was the mass transfer driving force through the membrane,subsequently led to the higher the flux[19].Energy loss due to heat transfer without the heat-transfer medium,which decreased the effect of temperature polarization and energy loss,could be neglected.

    Fig.11.Dependence of the permeate flux and rejection rate on the vacuum pressure.

    We therefore examined the effect of vacuum pressure on the process under the operating conditions.Upon analysis of the factors in the experiment,such as feed temperature,feed velocity,and cold vacuum pressure,we found that the optimal vacuum pressure is 0.098 MPa.

    The feed flow rate affected the extent of mixing of the feed flow in the membrane module in the VMD process.With increasing feed flow rate,the heat-transfer coefficient increased and the thickness of the boundary layer decreased,thereby inhibited temperature polarization and concentration polarization.Under the experimental conditions,crystals on the membrane surface formed when the feed flow rate was below 16 L·h-1.The highest flux in the saline-water desalination experiment was 27.28 kg·m-2·h-1when the feed flow rate was 24 L·h-1.With increasing feed flow rate,a few crystals appeared on the membrane surface(Fig.12).Their appearance may be due to a difference in the boundary layers formed at high and low concentration and concentration polarization,with the effect being more significant at high concentration.This was consistent with the conclusions of a study by Tunet al.[20]on membrane fouling with NaCl solutions at high concentrations.They found that the flux decreased slowly before the point of the desired supersaturation.Using ion chromatography to transform Cl-of the condensate,they found that the Cl-content was(1-3)×10-6and that the membranes'retention rate was>99.8%.Although the retention rate decreased slightly with the increase in feeding rate,the decrease was small.

    Fig.12.Images of the membrane used in vacuum membrane distillation.

    4.Conclusions

    The membrane surface hydrophobicity was one of the most important factors influencing the membrane distillation.In this work,we applied the ultraviolet irradiation to the fluoroalkylsilane modification and tune the ceramic surface to superhydrophobicity.It was noted that water contact angle could dramatically increase from 46°to 159°after ultraviolet grafting with fluoroalkylsilane.The effects of modification conditions on membrane performance,such as modifier,photoinitiator and ultraviolet irradiation were intensively investigated.The optimum concentration of modifier was 0.01 mol·L-1and the optimum number of modification cycles for the membrane was five.Moreover,the uses of this superhydrophobic ceramic membrane for membrane distillation were systematically evaluated under various operating conditions.It was noted that the superhydrophobic membrane exhibited an acceptable selectivity and high flux.For the 1%NaCl solution(75°C),the flux reached a maximum of 27.28 kg·m-2·h-1,and the retention rate was>99.8%(maximum of 99.99%).Therefore,the ultraviolet grafting with fluoroalkylsilane is proven to be a facile approach to tune the ceramic surface to superhydrophobicity,which opens a new way to achieve high performance membrane for saline-water distillation.

    [1]M.S.El-Bourawi,Z.Ding,R.Ma,M.Khayet,A framework for better understanding membrane distillation separation process,J.Membr.Sci.285(2006)4-29.

    [2]S.R.Krajewski,W.Kujawski,M.Bukowska,C.Picard,A.Larbot,Application of fluoroalkylsilanes(FAS)grafted ceramic membranes in membrane distillation process of NaCl solutions,J.Membr.Sci.281(2006)253-259.

    [3]P.Peng,A.G.Fane,X.D.Li,Desalination by membrane distillation adopting a hydrophilic membrane,Desalination173(2005)45-54.

    [4]F.Edwie,M.M.Teoh,T.S.Chung,Effects of additives on dual-layer hydrophobichydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance,Chem.Eng.Sci.68(1)(2012)567-578.

    [5]M.Gryta,Influence of polypropylene membrane surface porosity on the performance of membrane distillation process,J.Membr.Sci.287(2007)67-78.

    [6]M.Khayeta,J.I.Menguala,T.Matsuurab,Porous hydrophobic/hydrophilic composite membranes application in desalination using direct contact membrane distillation,J.Membr.Sci.252(2005)101-113.

    [7]J.Zhang,J.D.Li,M.Duke,Z.Xie,S.Gray,Performance of asymmetrical hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement,J.Membr.Sci.362(2010)517-528.

    [8]M.Arzani,H.R.Mahdavi,O.Bakhtiari,T.Mohammadi,Preparation of mullite ceramic micro filter membranes using Response surface methodology based on central composite design,Ceram.Int.42(7)(2016)8155-8164.

    [9]J.Malzbender,Mechanical aspects of ceramic membrane materials,Ceram.Int.42(7)(2016)7899-7911.

    [10]J.-W.Wang,N.-X.Li,Z.-R.Li,J.-R.Wang,X.Xu,C.-S.Chen,Preparation and gas separation properties of Zeolitic imidazolate frameworks-8(ZIF-8)membranes supported on silicon nitride ceramic hollow fibers,Ceram.Int.42(7)(2016)8949-8954.

    [11]M.M.Gentleman,J.A.Ruud,Role of hydroxyls in oxide wettability,Langmuir26(2010)1408-1411.

    [12]C.Picard,A.Larbot,E.Tronel-Peyroz,R.Berjoan,Characterisation of hydrophilic ceramic membranes modified by fluoroalkylsilanes into hydrophobic membranes,Solid State Sci.6(2004)605-612.

    [13]S.Khemakhem,R.B.Amar,Grafting of fluoroalkylsilanes on micro filtration Tunisian clay membrane,Ceram.Int.37(2011)3323-3328.

    [14]J.W.Zhang,H.Fang,J.W.Wang,L.Y.Hao,X.Xu,C.S.Chen,Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination,J.Membr.Sci.450(2014)197-206.

    [15]C.Ren,H.Fang,J.Gu,L.Winnubst,C.Chen,Preparation and characterization of hydrophobic alumina planar membranes for water desalination,J.Eur.Ceram.Soc.35(2015)723-730.

    [16]D.Schondelmaier,S.Cramm,R.Klingeler,J.Morenzin,C.Zilkens,W.Eberhardt,Orientation and self-assembly of hydrophobic fluoroalkylsilanes,Langmuir18(2002)6242-6245.

    [17]W.Cao,I.M.Mujtaba,Simulation of vacuum membrane distillation process for desalination with Aspen Plus,Ind.Eng.Chem.Res.54(2)(2015)672-680.

    [18]K.W.Lawson,D.R.Liold,Membrane distillation.II:direct contact MD,J.Membr.Sci.120(1996)123-133.

    [19]A.O.Imdakm,M.Khayet,T.Matsuura,A Monte Carlo simulation model for vacuum membrane distillation process,J.Membr.Sci.306(2007)341-348.

    [20]C.M.Tun,A.G.Fane,J.T.Matheickal,R.Sheikholeslami,Membrane distillation crystallization of concentrated salts— flux and crystal formation,J.Membr.Sci.257(2005)144-155.

    猜你喜歡
    新機(jī)制中共中央國(guó)務(wù)院
    中共中央關(guān)于黨的百年奮斗重大成就和歷史經(jīng)驗(yàn)的決議
    國(guó)務(wù)院糾正“一刀切”停產(chǎn)限產(chǎn)或“運(yùn)動(dòng)式”減碳
    國(guó)務(wù)院明確取消投標(biāo)報(bào)名
    建立第三方醫(yī)療糾紛解決新機(jī)制
    第十九屆中共中央組織結(jié)構(gòu)圖
    國(guó)務(wù)院確定2016年深化醫(yī)改重點(diǎn)
    大社會(huì)(2016年3期)2016-05-04 03:40:53
    重在建立新機(jī)制
    新機(jī)制 新格局
    構(gòu)建公立醫(yī)院運(yùn)行新機(jī)制
    國(guó)務(wù)院正式發(fā)布《水污染防治行動(dòng)計(jì)劃》
    中出人妻视频一区二区| 国内毛片毛片毛片毛片毛片| 99精品欧美一区二区三区四区| 18禁国产床啪视频网站| 国产一区在线观看成人免费| 国产野战对白在线观看| 久久国产乱子伦精品免费另类| 搡老岳熟女国产| 97人妻精品一区二区三区麻豆| 精品久久久久久,| 男人舔女人下体高潮全视频| 国产不卡一卡二| 国产高清激情床上av| 他把我摸到了高潮在线观看| 97超视频在线观看视频| 久久久久久久久久黄片| 亚洲熟妇熟女久久| 色综合站精品国产| 久久中文字幕人妻熟女| 18禁美女被吸乳视频| 久久精品91无色码中文字幕| 男插女下体视频免费在线播放| 桃红色精品国产亚洲av| 99在线视频只有这里精品首页| 国产麻豆成人av免费视频| 国产成人一区二区三区免费视频网站| 精品熟女少妇八av免费久了| 国产视频内射| 免费看日本二区| 国产人伦9x9x在线观看| 久久人妻av系列| 日韩大尺度精品在线看网址| 丁香六月欧美| 亚洲av成人一区二区三| 欧美日韩瑟瑟在线播放| 亚洲专区国产一区二区| 国内精品美女久久久久久| 亚洲乱码一区二区免费版| av中文乱码字幕在线| 国产一区在线观看成人免费| 国产主播在线观看一区二区| 色吧在线观看| 琪琪午夜伦伦电影理论片6080| 色播亚洲综合网| 久9热在线精品视频| 后天国语完整版免费观看| 亚洲黑人精品在线| 日本免费a在线| a级毛片在线看网站| 午夜激情福利司机影院| 精品久久蜜臀av无| 国产综合懂色| 免费一级毛片在线播放高清视频| 又黄又爽又免费观看的视频| 老汉色∧v一级毛片| 日本与韩国留学比较| 国产主播在线观看一区二区| 免费av毛片视频| 亚洲精品美女久久久久99蜜臀| 久久久精品欧美日韩精品| 一夜夜www| 麻豆av在线久日| 亚洲成人久久爱视频| 婷婷丁香在线五月| 国产aⅴ精品一区二区三区波| 国产在线精品亚洲第一网站| 窝窝影院91人妻| 中文字幕av在线有码专区| 老熟妇乱子伦视频在线观看| 我的老师免费观看完整版| 国产精品综合久久久久久久免费| 亚洲 欧美 日韩 在线 免费| 国产爱豆传媒在线观看| 免费在线观看影片大全网站| av福利片在线观看| 国产精品99久久久久久久久| 99热这里只有是精品50| 日本在线视频免费播放| 亚洲一区高清亚洲精品| 国产69精品久久久久777片 | 免费看日本二区| 国产日本99.免费观看| 午夜激情欧美在线| 真人一进一出gif抽搐免费| bbb黄色大片| 麻豆国产av国片精品| 久久久久国内视频| 免费观看人在逋| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 亚洲天堂国产精品一区在线| 欧美色欧美亚洲另类二区| 好男人在线观看高清免费视频| 岛国在线免费视频观看| 性色av乱码一区二区三区2| 国产午夜精品久久久久久| 在线免费观看的www视频| 九九久久精品国产亚洲av麻豆 | 亚洲18禁久久av| 亚洲国产欧洲综合997久久,| 国产精品自产拍在线观看55亚洲| 午夜免费激情av| 久久精品国产99精品国产亚洲性色| 久久人妻av系列| 一个人看视频在线观看www免费 | 亚洲av成人不卡在线观看播放网| 亚洲熟妇中文字幕五十中出| 精品免费久久久久久久清纯| 久久久久性生活片| 欧美中文日本在线观看视频| 亚洲无线观看免费| 欧美乱色亚洲激情| 熟妇人妻久久中文字幕3abv| 身体一侧抽搐| 1024香蕉在线观看| 亚洲中文av在线| 天天躁日日操中文字幕| 最近在线观看免费完整版| 久久久久精品国产欧美久久久| 国产精品一区二区三区四区免费观看 | 熟女人妻精品中文字幕| 一级毛片女人18水好多| 日本成人三级电影网站| 色综合亚洲欧美另类图片| 日本 欧美在线| 美女扒开内裤让男人捅视频| 国产乱人伦免费视频| 国产三级在线视频| 国产精品爽爽va在线观看网站| 在线观看免费午夜福利视频| 可以在线观看毛片的网站| 久久国产精品影院| 美女免费视频网站| 国产精品自产拍在线观看55亚洲| 美女cb高潮喷水在线观看 | 999久久久国产精品视频| 日韩成人在线观看一区二区三区| 老熟妇仑乱视频hdxx| 18禁黄网站禁片免费观看直播| 色在线成人网| 偷拍熟女少妇极品色| 亚洲欧美精品综合久久99| 国产精品98久久久久久宅男小说| 国产精品九九99| 免费看日本二区| 又紧又爽又黄一区二区| 精品久久久久久久毛片微露脸| 精品午夜福利视频在线观看一区| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区| 色综合欧美亚洲国产小说| 免费av不卡在线播放| 深夜精品福利| 又爽又黄无遮挡网站| 小说图片视频综合网站| 亚洲国产欧美人成| 日韩欧美在线二视频| 国产一级毛片七仙女欲春2| 亚洲,欧美精品.| 精品久久久久久久末码| e午夜精品久久久久久久| 蜜桃久久精品国产亚洲av| 国产精品电影一区二区三区| 成人国产综合亚洲| 国产极品精品免费视频能看的| 久久久成人免费电影| 少妇裸体淫交视频免费看高清| 在线观看日韩欧美| 在线播放国产精品三级| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| 成人性生交大片免费视频hd| 不卡av一区二区三区| 久久中文看片网| 国产成人一区二区三区免费视频网站| 在线观看免费视频日本深夜| 国产精品女同一区二区软件 | 国产高清视频在线观看网站| xxxwww97欧美| 99视频精品全部免费 在线 | 色老头精品视频在线观看| 欧美黄色片欧美黄色片| 桃色一区二区三区在线观看| 黑人巨大精品欧美一区二区mp4| 欧美一区二区国产精品久久精品| av黄色大香蕉| 日韩精品青青久久久久久| 母亲3免费完整高清在线观看| 高潮久久久久久久久久久不卡| 午夜福利18| 国产精品久久视频播放| 在线国产一区二区在线| 精品乱码久久久久久99久播| www国产在线视频色| 一区二区三区激情视频| 亚洲欧美日韩卡通动漫| 亚洲av成人一区二区三| 99精品欧美一区二区三区四区| 欧美黄色淫秽网站| 国产爱豆传媒在线观看| 一本久久中文字幕| 日韩精品中文字幕看吧| 极品教师在线免费播放| 日韩大尺度精品在线看网址| 国产免费av片在线观看野外av| 操出白浆在线播放| 小说图片视频综合网站| 18禁美女被吸乳视频| 天堂网av新在线| 成人三级黄色视频| bbb黄色大片| h日本视频在线播放| 人妻久久中文字幕网| 又紧又爽又黄一区二区| 香蕉丝袜av| 亚洲天堂国产精品一区在线| 国产又色又爽无遮挡免费看| 97超级碰碰碰精品色视频在线观看| av福利片在线观看| 男女之事视频高清在线观看| 小蜜桃在线观看免费完整版高清| 国产高清视频在线观看网站| 欧美日韩亚洲国产一区二区在线观看| 午夜福利在线在线| 一本久久中文字幕| 国产精品99久久99久久久不卡| 欧美一区二区国产精品久久精品| 最近最新中文字幕大全电影3| 女人高潮潮喷娇喘18禁视频| 在线观看免费午夜福利视频| 亚洲国产高清在线一区二区三| 日韩欧美免费精品| 国产精品野战在线观看| 五月玫瑰六月丁香| 天堂影院成人在线观看| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 国产视频一区二区在线看| 免费大片18禁| 免费一级毛片在线播放高清视频| 国产高清视频在线观看网站| 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 老汉色av国产亚洲站长工具| 精品日产1卡2卡| ponron亚洲| 天天躁日日操中文字幕| 亚洲欧美日韩东京热| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| 中文字幕精品亚洲无线码一区| 一区二区三区激情视频| 中国美女看黄片| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 色视频www国产| 亚洲一区二区三区色噜噜| 久久久久久久精品吃奶| 看黄色毛片网站| 18禁国产床啪视频网站| 国产精品永久免费网站| 18禁黄网站禁片免费观看直播| 亚洲人与动物交配视频| 三级国产精品欧美在线观看 | 欧美一区二区精品小视频在线| 国产高清有码在线观看视频| 亚洲午夜理论影院| 久久久久久国产a免费观看| 亚洲av电影不卡..在线观看| 丁香欧美五月| 国产视频内射| 99国产极品粉嫩在线观看| 青草久久国产| 欧美日韩综合久久久久久 | 精品久久久久久久人妻蜜臀av| 色吧在线观看| 国产激情久久老熟女| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 日本黄大片高清| 麻豆av在线久日| 亚洲va日本ⅴa欧美va伊人久久| 久久香蕉国产精品| 91老司机精品| 久久精品夜夜夜夜夜久久蜜豆| 国内精品久久久久久久电影| 亚洲美女视频黄频| 首页视频小说图片口味搜索| 婷婷精品国产亚洲av在线| 欧美乱妇无乱码| 三级男女做爰猛烈吃奶摸视频| 免费观看人在逋| 一级毛片高清免费大全| 成年女人永久免费观看视频| 成人一区二区视频在线观看| 亚洲国产欧洲综合997久久,| 淫妇啪啪啪对白视频| 日韩欧美一区二区三区在线观看| 美女扒开内裤让男人捅视频| 一进一出抽搐gif免费好疼| 久久久久久久午夜电影| 亚洲精品456在线播放app | 1024香蕉在线观看| 亚洲欧美日韩高清专用| 丁香六月欧美| 亚洲国产精品sss在线观看| 热99re8久久精品国产| 国产一级毛片七仙女欲春2| 国产成人精品无人区| 黑人欧美特级aaaaaa片| 久久久久久人人人人人| 国产蜜桃级精品一区二区三区| www.www免费av| 不卡av一区二区三区| 久久久精品欧美日韩精品| 久久久久精品国产欧美久久久| 12—13女人毛片做爰片一| 极品教师在线免费播放| 午夜成年电影在线免费观看| 亚洲国产高清在线一区二区三| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色| 一二三四在线观看免费中文在| 一二三四社区在线视频社区8| 色视频www国产| av天堂中文字幕网| 亚洲精品粉嫩美女一区| 色视频www国产| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| 亚洲第一欧美日韩一区二区三区| 网址你懂的国产日韩在线| 丰满的人妻完整版| 热99re8久久精品国产| 不卡av一区二区三区| 欧美黄色片欧美黄色片| 亚洲成a人片在线一区二区| 国产黄片美女视频| 中文字幕人妻丝袜一区二区| 日本黄色片子视频| 99视频精品全部免费 在线 | 国产亚洲精品一区二区www| 国产高清视频在线观看网站| 精品99又大又爽又粗少妇毛片 | 亚洲无线在线观看| 国产精品 欧美亚洲| 欧美+亚洲+日韩+国产| 在线观看午夜福利视频| 国产亚洲精品一区二区www| 深夜精品福利| 久久久国产成人精品二区| 变态另类成人亚洲欧美熟女| 男女床上黄色一级片免费看| 精品一区二区三区视频在线 | 中文资源天堂在线| 日韩欧美免费精品| 成人高潮视频无遮挡免费网站| 一夜夜www| 特级一级黄色大片| 岛国在线免费视频观看| 国产精品99久久99久久久不卡| 老鸭窝网址在线观看| 岛国在线观看网站| 最近最新免费中文字幕在线| а√天堂www在线а√下载| 免费观看精品视频网站| 九色成人免费人妻av| 亚洲欧美日韩高清在线视频| 天堂√8在线中文| 99热这里只有是精品50| 99精品欧美一区二区三区四区| 精品久久久久久久久久免费视频| 99在线人妻在线中文字幕| 看免费av毛片| 淫秽高清视频在线观看| 国产精品99久久久久久久久| 欧美性猛交黑人性爽| 久久国产精品人妻蜜桃| 欧美不卡视频在线免费观看| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 又大又爽又粗| 国产熟女xx| 日韩欧美一区二区三区在线观看| 久久久久性生活片| 午夜两性在线视频| 精品免费久久久久久久清纯| 淫妇啪啪啪对白视频| 美女午夜性视频免费| 三级毛片av免费| 欧美日韩黄片免| or卡值多少钱| 国内精品久久久久精免费| 久久99热这里只有精品18| 91麻豆av在线| 午夜免费成人在线视频| 别揉我奶头~嗯~啊~动态视频| 99视频精品全部免费 在线 | 99视频精品全部免费 在线 | 18禁黄网站禁片免费观看直播| 热99re8久久精品国产| 日韩中文字幕欧美一区二区| 国产精品日韩av在线免费观看| 国产精品九九99| 蜜桃久久精品国产亚洲av| 成人国产一区最新在线观看| 欧美成狂野欧美在线观看| 手机成人av网站| 床上黄色一级片| 久久国产精品人妻蜜桃| 色噜噜av男人的天堂激情| 免费在线观看亚洲国产| 欧美日韩瑟瑟在线播放| 我要搜黄色片| 亚洲国产日韩欧美精品在线观看 | 午夜影院日韩av| 性色avwww在线观看| 国产精品亚洲美女久久久| 久久精品影院6| 欧美国产日韩亚洲一区| 亚洲真实伦在线观看| 国产真实乱freesex| 国语自产精品视频在线第100页| 老鸭窝网址在线观看| 中文亚洲av片在线观看爽| 免费观看的影片在线观看| 老熟妇仑乱视频hdxx| 国产日本99.免费观看| 18禁黄网站禁片免费观看直播| 国产久久久一区二区三区| 欧美黄色片欧美黄色片| 99热只有精品国产| 亚洲人与动物交配视频| 亚洲自拍偷在线| xxxwww97欧美| 亚洲 国产 在线| 免费观看的影片在线观看| 中亚洲国语对白在线视频| 午夜成年电影在线免费观看| 男女午夜视频在线观看| 高清毛片免费观看视频网站| 亚洲自偷自拍图片 自拍| 亚洲熟妇熟女久久| 成人18禁在线播放| 91av网一区二区| 亚洲欧美激情综合另类| 国产极品精品免费视频能看的| 亚洲五月天丁香| 在线十欧美十亚洲十日本专区| 一夜夜www| 又黄又爽又免费观看的视频| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 19禁男女啪啪无遮挡网站| 精品一区二区三区av网在线观看| 最新中文字幕久久久久 | 精品国产乱子伦一区二区三区| 国产精品免费一区二区三区在线| 两人在一起打扑克的视频| 国产单亲对白刺激| 色哟哟哟哟哟哟| 91久久精品国产一区二区成人 | 国产真实乱freesex| 一区二区三区激情视频| 国产精品久久视频播放| 欧美日韩精品网址| 99久久无色码亚洲精品果冻| 亚洲欧美日韩东京热| 欧美成人性av电影在线观看| 欧美绝顶高潮抽搐喷水| 在线观看美女被高潮喷水网站 | 国产黄色小视频在线观看| 一二三四在线观看免费中文在| 99在线视频只有这里精品首页| 最好的美女福利视频网| 精品久久久久久久久久久久久| 19禁男女啪啪无遮挡网站| 无限看片的www在线观看| 18美女黄网站色大片免费观看| 黄色 视频免费看| 日本撒尿小便嘘嘘汇集6| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三区av网在线观看| 叶爱在线成人免费视频播放| h日本视频在线播放| 亚洲国产色片| 搡老岳熟女国产| 久久国产精品人妻蜜桃| 亚洲性夜色夜夜综合| 国产精品99久久99久久久不卡| 亚洲国产色片| 国产真人三级小视频在线观看| 国产精品一区二区免费欧美| 极品教师在线免费播放| 女同久久另类99精品国产91| 国内精品久久久久久久电影| 国产蜜桃级精品一区二区三区| 一级毛片精品| 欧美在线一区亚洲| 99久久久亚洲精品蜜臀av| 亚洲精品456在线播放app | 亚洲无线观看免费| 久久久久国内视频| 99国产极品粉嫩在线观看| 欧美国产日韩亚洲一区| 欧美性猛交黑人性爽| 白带黄色成豆腐渣| 国产成人aa在线观看| 美女午夜性视频免费| 国产成人av激情在线播放| 叶爱在线成人免费视频播放| 午夜两性在线视频| aaaaa片日本免费| 久久精品aⅴ一区二区三区四区| 老司机午夜福利在线观看视频| 欧美中文日本在线观看视频| 熟女电影av网| 最近最新中文字幕大全免费视频| 国产精品亚洲美女久久久| 国产精品九九99| 看片在线看免费视频| АⅤ资源中文在线天堂| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| 国产激情偷乱视频一区二区| 麻豆国产97在线/欧美| 国产激情偷乱视频一区二区| 综合色av麻豆| 国产伦在线观看视频一区| 精品免费久久久久久久清纯| 久久久久国产精品人妻aⅴ院| 欧美黑人巨大hd| 变态另类成人亚洲欧美熟女| 长腿黑丝高跟| 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站 | 中文字幕久久专区| 他把我摸到了高潮在线观看| 久久国产精品人妻蜜桃| 五月玫瑰六月丁香| 国产又黄又爽又无遮挡在线| 国产精品,欧美在线| 亚洲在线观看片| 国产精品日韩av在线免费观看| 午夜日韩欧美国产| 天天添夜夜摸| 亚洲最大成人中文| 老鸭窝网址在线观看| 九九在线视频观看精品| 午夜福利视频1000在线观看| 9191精品国产免费久久| 色在线成人网| 美女高潮的动态| 一a级毛片在线观看| 亚洲男人的天堂狠狠| 亚洲激情在线av| 一级毛片女人18水好多| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 狠狠狠狠99中文字幕| 免费av不卡在线播放| 毛片女人毛片| 18禁观看日本| 国产精品亚洲av一区麻豆| 美女免费视频网站| 成人一区二区视频在线观看| 国产精品 国内视频| 人人妻,人人澡人人爽秒播| 国产高清videossex| 国产精品av久久久久免费| 一区二区三区激情视频| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 麻豆成人av在线观看| 性欧美人与动物交配| 1024香蕉在线观看| 国产激情欧美一区二区| 国产精品自产拍在线观看55亚洲| 男插女下体视频免费在线播放| 99国产精品一区二区三区| 欧美在线一区亚洲| 国产亚洲av高清不卡| 男人和女人高潮做爰伦理| 色在线成人网| www.精华液| 久久精品综合一区二区三区| 一个人看视频在线观看www免费 | 18禁裸乳无遮挡免费网站照片| 国产精品综合久久久久久久免费| 女警被强在线播放| 国产精品影院久久| 99久久综合精品五月天人人| 在线永久观看黄色视频| 成人永久免费在线观看视频| 后天国语完整版免费观看| 亚洲国产看品久久| 亚洲av成人一区二区三| 久久午夜亚洲精品久久| 国产又色又爽无遮挡免费看| netflix在线观看网站| 两性夫妻黄色片| 国产一区二区在线观看日韩 | 一个人看的www免费观看视频| 日本撒尿小便嘘嘘汇集6| 一二三四社区在线视频社区8| 免费av不卡在线播放| 欧美中文日本在线观看视频| 久久精品综合一区二区三区| 亚洲电影在线观看av| 一卡2卡三卡四卡精品乱码亚洲| 噜噜噜噜噜久久久久久91| 三级国产精品欧美在线观看 |