• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of varying spatial orientations on build time requirements for FDM process:A case study

    2017-06-01 11:35:04SndeepRtheeMnuSrivstvSchinMheshwriArshdNoorSiddiquee
    Defence Technology 2017年2期

    Sndeep Rthee,Mnu Srivstv,Schin Mheshwri,Arshd Noor Siddiquee

    aDivision of Manufacturing Processes and Automation Engineering,Netaji Subhas Institute of Technology,New Delhi,India

    bDepartment of Mechanical Engineering,Jamia Millia Islamia,A Central University,New Delhi,India

    Effect of varying spatial orientations on build time requirements for FDM process:A case study

    Sandeep Ratheea*,Manu Srivastavaa,Sachin Maheshwaria,Arshad Noor Siddiqueeb

    aDivision of Manufacturing Processes and Automation Engineering,Netaji Subhas Institute of Technology,New Delhi,India

    bDepartment of Mechanical Engineering,Jamia Millia Islamia,A Central University,New Delhi,India

    A R T I C L E I N F O

    Article history:

    Received 31 August 2016

    Received in revised form

    24 November 2016

    Accepted 25 November 2016

    Available online 27 December 2016

    Fused deposition modeling

    Spatial orientation

    Process parameters

    Response Surface Methodology

    Build time

    In this research,effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied.Constructive solid geometry cylindrical primitive is taken as work piece and modeling is accomplished for it.Response surface methodology is used to design the experiments and obtain statistical models for build time requirements corresponding to different orientations of the given primitive in modeller build volume.Contour width,air gap,slice height,raster width,raster angle and angle of orientation are treated as process parameters.Percentage contribution of individual process parameter is found to change for build time corresponding to different spatial orientations.Also,the average of build time requirement changes with spatial orientation.This paper attempts to clearly discuss and describe the observations with an aim to develop a clear understanding of effect of spatial variations on the build time for Fused Deposition Modelling process.This work is an integral part of process layout optimization and these results can effectively aid designers specially while tackling nesting issues.

    ?2016 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Rapid Prototyping(RP)/Generative Manufacturing(GM)is around 3 decade old technology which enables quick transition from concept to physical models[1].GM answers the need of manufacturing which is environment friendly with minimal wastage of material.Though material availability and data transfer techniques have hindered widespread use of GM as an end product technology in the past yet these have been dealt with effectively during recent times[2].It has established itself as an efficient means for fast,easy and effective prototype production of intricate and complicated geometry parts[3].GM applications extend from prototyping to end product manufacturing[4].It is increasingly finding shining role in defence,aerospace,medical,polymer,and many other fields[5].Especially,in defence support applications, GMproves itself a game changing landmark technology owing to its versatility and flexibility to produce custom engineered designs and products[6-8].Busachi et al.[7]reported results of GM methodological studies carried out at various defence support systems in UK.Kalvala et al.[8]utilized friction assisted solid state lap seam welded joints with GM techniques and explained their probable utilization in defence applications.Several GM techniques like selective laser sintering[9],fused deposition modelling[10], three dimensional printing[11],laser engineered net shaping[12], etc.are in practice for fabrication of layered components directly from computer drawings of the part[5].

    Fused Deposition Modelling(FDM)is one of GM techniques having unique advantage of variety of raw materials and modelers it offers[13].It has the capability to produce intricate and complex shapes with reasonable time and cost requirements[5].FDM has been widely used for various defence applications by different military manufacturers including EOIR technology,RLM industries, Sheppard air base,Tiberius arms,etc.[14].These applications vary from prototypes,end products,guns,design modi fications,etc. Several authors successfully fabricated various functional components using FDM by investigating the effect of various process parameters like raster width,air gap,slice height,etc.[15-17]. Srivastava et al.[15]experimentally investigated the effect of various process parameters upon responses with an aim to achieve layout optimization.Vasudevarao et al.[16]proposed an experimental design to determine signi ficant factors and their interactions for optimal surface finish of parts fabricated via FusedDeposition Modelling process.Sood et al.[17]carried out parametric appraisal of the factors affecting the various mechanical properties of components fabricated by FDM process.

    Majority of published research mainly focuses on the evaluation of effects of process parameters namely raster parameters,air gap; slice height,etc.on the build time and mechanical properties of fabricated components.In addition to these process parameters, spatial orientation signi ficantly affects the build time which in turn affects the FDM layout process performance.Interestingly,investigations on effect of spatial orientation on build time for layout optimization of FDM process are almost untouched.Present work investigates effect of varying spatial orientation of components within the build volume in addition to other process parameters upon the build time(BT)requirements for FDM process.

    2.Experimental procedure

    2.1.Materials

    Material used for current experimentation is Acrylonitrile Butadiene Styrene(ABS)having chemical formula(C8H8· C4H6·C3H3N)n.It is a thermoplastic used in making light weight, rigid,molded products like piping,musical instruments,golf club heads,automotive body parts,wheel covers,protective head gear, furniture buffer,air soft BBs,toys etc.An interesting application of an ABS variant has been reported in defence industry by Tiberius Arms,a group that produces different versions of their guns from cost effective ABS with the help of uPrint modeller which is an another high end FDM modeller[14].It is a copolymer derived by polymerizing styrene and acrylonitrile in the presence of polybutadiene.Its composition varies from 15 to 35%acrylonitrile, 5-30%butadiene and 40-60%styrene which results in a long chain of polybutadiene crisscrossed with shorter chains of poly(styreneco-acrylonitrile).Being polar,nitrile groups from neighboring chains attract each other and bind the chains together,making ABS stronger than pure polystyrene.ABS can be used in the temperature range of-25°C to 60°C.Model material and support material used for the current work are two variants of ABS namely ABS P430 and ABS SR30 respectively[18].

    In order to arrive upon de finite and meaningful design principles,components chosen are cylindrical primitives of constructive solid geometry(CSG)[19].There are seven basic primitives of CSG namely cylindrical,conical,spherical,pyramidal,prismatic,cubical and cuboidal.It is a matter of general understanding of CAD that all the rest of shapes can be obtained by performing Boolean operations on these primitives and thus the design principles proposed for them can be thought of as generally applicable.Though the design principles for cylindrical workpiece are established in current case study,this work can similarly be extended for six remaining primitives also.In the present work,experiments are carried out for cylindrical primitives having.stl size X=20 mm, Y=69.999 mm,Z=20 mm.Five different spatial orientations in the given build volume are considered for cylindrical primitives to arrive upon best orientation.These are absolute rotation about xaxis,absolute rotation about y-axis,absolute rotation about z-axis, rotation about x-axis keeping minimum z height and rotation about y-axis keeping minimum z-height.Fig.1 presents the different spatial orientations of cylindrical primitives at varying angles.

    Modeller used in the current experimentation is Fortus 250mc which is one of the most advanced and versatile Stratasys systems that offers cost effective printing of FDM parts with appreciable efficiency[20].It pairs fine layer resolution with a larger build envelope which imparts power to fine-tune most aspects of prototype production.It is an of fice friendly high end FDM system which optimizes parts for strength,print time and aesthetics[21].It is based on FDM technology.There are five basic steps involved in the FDM process which include[22]:

    Step 1 Formulation computer aided design(CAD)model from the component drawing

    Step 2 Converting CAD model of the drawing into.stl format,i.e., tessellated to enable it to be used as an input in to insight software

    Step 3 Dividing the tessellated.stl file into thin layers,i.e.,slicing

    Step 4 Constructing layers for actual physical model generation

    Step 5 Cleaning and finishing model

    Its working is explained as follows:A plastic filament is uncoiled from a roll and supplies material to an extrusion nozzle which can be used depending on requirement.The nozzle is heated to melt the material and can be moved in both horizontal and vertical directions by an automated computational mechanism,directly controlled by a computer-aided manufacturing(CAM)software package.The model or part is produced by extrusion of thermoplastic material to form layers as the material hardens immediately after extrusion from the nozzle[23].The technical speci fications of this modeller are tabulated in Table 1.

    2.2.Selection of process parameters

    There are four classes of parameters which are found to affect the FDM process.These are operation speci fic,modeller speci fic, geometry speci fic and material speci fic parameters[24].Operation speci fic parameters include slice thickness,road width,head speed, raster angle,temperature of extruding material,envelope temperature,contour width,raster width,single/multi fill contours and air gap.Modeller speci fic parameters include nozzle diameter,filament feed rate,roller speed,flow rate and filament diameter.Geometry speci fic parameters include fill vector length,support structures and orientation.Material speci fic properties include physical properties,binder,viscosity,chemical composition and flexibility[2,25].

    Previous experimentations,trial experiments and literature survey re flect that BT requirement of FDM modeler is mainly affected by six process parameters namely contour width(CW), slice height(SH),orientation(O),raster angle(RA),raster width (RW)and air gap(AG).These parameters are therefore selected as process parameters owing to their larger effect on BT as compared to others.

    2.3.Response Surface Methodology(RSM)based experimentation

    RSM technique is an extremely powerful statistical tool adopted for experimental design and building of empirical models in order to reduce experimental runs.This work utilizes central composite RSM design which has several advantages over other RSM designs. One of the biggest advantages of CCD is tremendous reduction in the number of runs as compared to full factorial designs[26].Six process parameters namely SH,O,CW,RA,RW,and AG at three levels each were chosen for experimentation.Their details are summarized in Table 2.

    Based on previous research work,rests of the parameters are kept constant throughout the experimentation primarily due to their lesser effect on the output as compared to chosen process parameters[5].The constant parameters and their values are listed in Table 3.

    Fig.1.Cylindrical primitives at varying spatial orientations.

    Build time(BT)is a critical factor for optimization of any GM technique and is taken as the response for current experimentation. Though build-time is frequently used as a measure of process time/ process speed,yet these two terms are not the same.Process timegives an indication of the overall product completion time while BT is the time which a part spends on a machine during its creation assuming no bottlenecks.Several factors need attention for the process time evaluation.These mainly include:model preparation/ file generation,system preparation,part build time,post build operations/post processing operations[27].In this work,only part build time is studied.86 run central composite RSM design table for six process parameters and single response was used for this experimentation(see Table 4).Empirical relationship among BT and input process parameters for various spatial orientations is determined and validated using analysis of variance(ANOVA), predicted versus actual plots and normal probability plot of residuals.

    Table 1Technical speci fications of Fortus 250mc modeler.

    3.Results and discussions

    Table 4 presents the observation table for BT corresponding to 86 run RSM design for each spatial orientation.The readings for BT are noted directly from FDM control center.

    3.1.RSM model details

    Models corresponding to each spatial orientation are derived, analyzed and validated using RSM technique by DesignExpert7 software.The details of RSM model for cylindrical primitives for varying spatial orientations are presented in Table 5.

    The model was found to be signi ficant with enough large F values.F-value for the model are suf ficiently large which implies that model as a whole has statistically signi ficant predictive capability.There is only 0.01%probability that such a high F-value can occur due to noise factors.Fig.2 shows the normal probability plot of residuals for build time.It is evident that all the residuals are clustered in the straight line implying that errors are normally distributed.Fig.3 shows the plot of actual vs predicted model values.Since the points are clustered around a straight line,the predicted value are in close adherence to the actual values.

    The final model equations for build-time for each spatial orientation in Terms of Actual Factors are given in Table 6.It can be easily observed from the model equations(1-5)that the interaction terms are not very signi ficant in any of the model thereby implying that we can neglect these interaction terms safely.

    3.2.Effect of process parameters on build time

    Fig.4(a)-(f)denotes BT variation of build-time with respect to the changes in process parameters.It is noted that B.T.invariably reduces with increase in slice height.It invariably reduces with increasing air gap.It depends slightly on contour width as only minor reduction can be seen corresponding to increasing contour width.The dependence on RW is also minor.BT invariably increases with increase in raster angle.It invariably increases with increase in angle of rotation about any particular axis(orientation)though it remains constant in cases where rotational symmetry about any particular axis is displayed.

    Percentage contribution of each process parameter is estimated. These results are summed up in Table 7.It can be easily observed that the percentage contribution of process parameters changes with changing spatial orientation.However air gap,slice height and orientation angle contribute majorly towards the changes in build time.Variation in slice height has maximum affect for almost each spatial orientation followed by air gap and orientation.Contour width and raster angle are the least signi ficant factors in mostof the cases.

    Table 2Process Parameters and their Levels.

    Table 3Fixed parameters and their levels.

    Table 486 run Central Composite RSM Design Table of Build time Observations for Cylindrical Primitives corresponding to varying spatial orientations.

    Table 4(continued)

    Table 5RSM Model Speci fications for cylindrical primitives.

    3.3.Effect of varying spatial orientations on build time

    Fig.4(a-f)denote BT variation of build-time with respect to varying spatial orientations.For cylindrical primitives,rotation about y axis keeping minimum z height gives the least value of build-time followed by rotations about z axis.This is followed by rotations about x and y axis both of which result in same BT requirements.Rotations about x axis for minimum z height requires maximum amount of BT.

    4.Conclusions

    This work successfully develops signi ficant and meaningful RSM models for build time in terms of various process parameters.Effects of varying spatial orientation have been established and numerous critical and important conclusions can be drawn from this research.The same scheme of experimentation can be easily applied to six remaining CSG primitives and results can be compiled to provide universally acceptable principles for orientation of a given component in the modeller build volume.Following are the important conclusions that can be drawn from this case study:

    1)Spatial orientation has large impact on Build Time in FDM process.

    2)Percentage contribution of process parameters varies with the changing spatial orientations.SH and AG are found to have maximum percentage contribution in almost every spatial orientation.CW is least signi ficant in each case.

    3)Effect of individual process parameter upon BT variation can be summed up as:

    a)BT invariably reduces with increase in SH and AG while it increases increases with increase in RA.

    b)B.T.depends slightly on CW and RW as only minor reduction can be seen corresponding to increasing CW and RW respectively.

    c)B.T.invariably increases with increase in angle of rotation about any particular axis(O)though it remains constant for components which display rotational symmetry about any particular axis.

    4)Effect on changes on spatial rotations on the build time is studied.It is established that for cylindrical primitives'rotations about y axis with minimum z height amounts to least BT requirements.

    5)Design rules established in this research can easily be extended to other GM processes with suitable process speci fic adjustments which can highly bene fit GM professionals.

    6)Though we have focused on achieving minimum build-time yet it should always be kept in mind that an inferior part can never compete with its superior counterpart even if the latter takes twice as much time.Therefore build-time should always be considered as one of the options and should always be weighed against other design objectives.

    Fig.2.Normal plot of residuals(BT).

    Fig.3.Predicted versus Actual(BT).

    Table 6RSM model equations of Build Time in terms of process parameters.

    Fig.4.BT variation with process parameters and spatial orientations.

    Table 7Variation in Percentage Contribution of Process Parameters with changes in BT corresponding to varying spatial orientations.

    [1]Chua CK,Feng C,Lee CW,Ang GQ.Rapid investment casting:direct and indirect approaches via model maker II.Int J Adv Manuf Technol 2005;25:11-25.

    [2]Pandey PM,Reddy NV,Dhande SG.Improvement of surface finish by staircase machining in fused deposition modelling.J Mater Process Technol 2003;132(1-3):323-31.

    [3]Upcraft S,Fletcher R.The rapid prototyping technologies.Rapid Prototyp J 2003;23(4):318-30.

    [4]Yan Y,Li S,Zhang R,Lin F,Wu R,Lu Q,Xiong Z.Rapid prototyping and manufacturing technology:principle,representative technics,applications, and development trends.Tsinghua Sci Techno l 2009;14:1-12.

    [5]Srivastava M.Some studies on layout of generative manufacturing processes for functional components.PhD thesis.Delhi University;2015.

    [6]Busachi A,Erkoyuncu J,Colegrove P,Martina F,Ding J.Designing a WAAM based manufacturing system for defence applications.Procedia CIRP 2015;37(2013):48-53.

    [7]Busachi A,Erkoyuncu J,Colegrove P,Drake R,Watts C,Martina F.De fining next-generation additive manufacturing applications for the ministry of defence(MoD).Procedia CIRP 2016;55:302-7.

    [8]Kalvala PR,Akram J,Misra M.Friction assisted solid state lap seam welding and additive manufacturing method.Def Technol 2015;12(1):1-9.

    [9]Jain PK,Pandey PM,Rao PVM.Effect of delay time on part strength in selective laser Sintering.Int J Adv Manuf Technol 2008;43(1):117.

    [10]Teitelbaum GA.Proposed build guidelines for use in fused deposition modeling to reduce build time and material volume.University of Maryland; 2009.

    [11]Pham D.T,Gault R.S.“A Comparison of rapid technologies,”Int J Mach Tool Manuf,vol.38,pp.1259-1272.

    [12]Ivanova O,Williams C,Campbell T.Additive manufacturing(AM)and nanotechnology:promises and challenges.Rapid Prototyp J 2013;19(5):3-8.

    [13]Stratasys.Insight help/glossary,Stratasys.FDM MaxumTM user guide version 1.3.2005.

    [14]Stratasys.Defense case studies[Online].Available.2016.http://www. stratasys.com/resources/case-studies/defense.

    [15]Srivastava M,Maheshwari S,Kundra TK.Multi-response optimization of fused deposition modelling process parameters of ABS using response surface Methodology(RSM)-Based desirability analysis.Mater Today Proc 2015;2(4-5):3471-80.

    [16]Vasudevarao B,Natarajan DP,Razdan A,Mark H.Sensitivity of RP surface finish to process parameter variation.Proc.solid Free form Fabr.Austin,USA. 2000.

    [17]Sood AK,Ohdar RK,Mahapatra SS.Parametric appraisal of mechanical property of fused deposition modelling processed parts.Elsevier Mater Des 2010;31:287-95.

    [18]Stratasys.PC-ABS for Fortus 3D production systems[Online].Available.2015. http://www.stratasys.com/~/media/en/Materials/FDM/PC_ABS/pc_abs_spec_ sheet.pdf.%0A%0A.

    [19]Srivastava M,Maheshwari S,Kundra TK,Rathee S.An integrated RSM-GA based approach for multi response optimization of FDM process parameters for pyramidal ABS primitives.J Manuf Sci Prod Gruyter September 2016;16(3):201-8.http://dx.doi.org/10.1515/jmsp-2016-0012.

    [20]Stratasys.Fortus 250mc[Online].Available.2015.http://www.stratasys.com/ 3d-printers/design-series/fortus-250mc.

    [21]Stratasys.Fortus 250mc[Online].Available.2016.http://www.stratasys.com/ 3d-printers/design-series/fortus-250mc.

    [22]Srivastava M,Maheshwari S,Kundra TK,Rathee S.“Experimental investigation of process parameters for build time estimation in FDM process using RSM technique.CAD/CAM,robotics and factories of future.Springer;2015.

    [23]Ahn SH,Montero M,Odell D,Roundy S,Wright PK.Anisotropic material properties of fused deposition modelling ABS.Rapid Prototyp J 2002;8(4): 248-57.

    [24]Srivastava M,Maheshwari S,Kundra T,K.,Rathee S,Yashaswi RK.Integration of fuzzy logic with response surface Methodology for predicting the effect of process parameters on build time and model material volume in FDM process. CAD/CAM,robotics and factories of future,i.Springer;2016.

    [25]Pandey PM.Rapid prototyping technologies,applications and Part deposition planning[Online].Available.2012.iitd.ac.in/~pmpandey/MEL120_html/RP_ document.pdf.

    [26]Montagomary DC.Design and analysis of experiments.Singapore:John Wiley &Sons;2003.

    [27]Stratasys.Stratasys data sheets:the truth about speeds[Online].Available. 2014.www.stratasys.com.

    *Corresponding author.

    E-mail address:rathee8@gmail.com(S.Rathee).

    Peer review under responsibility of China Ordnance Society.

    成人国产一区最新在线观看| 国产成人精品无人区| 香蕉国产在线看| 熟女少妇亚洲综合色aaa.| 一级毛片高清免费大全| 日韩精品青青久久久久久| 精品乱码久久久久久99久播| 夜夜爽天天搞| 精品久久久久久久久久久久久| 亚洲成av人片在线播放无| 欧美日韩黄片免| 国产精品久久久久久精品电影| 91在线精品国自产拍蜜月 | 人妻久久中文字幕网| 亚洲国产日韩欧美精品在线观看 | 免费电影在线观看免费观看| 成人无遮挡网站| 亚洲成人久久爱视频| 可以在线观看的亚洲视频| 最新美女视频免费是黄的| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| 亚洲中文av在线| 99在线视频只有这里精品首页| 精品久久久久久久久久久久久| 国产黄片美女视频| 国产91精品成人一区二区三区| 日本 欧美在线| 亚洲欧美精品综合久久99| 在线观看舔阴道视频| 91字幕亚洲| 天堂动漫精品| 狂野欧美白嫩少妇大欣赏| 亚洲 欧美一区二区三区| 级片在线观看| 亚洲电影在线观看av| 日韩欧美一区二区三区在线观看| 亚洲黑人精品在线| 久久久久精品国产欧美久久久| 国产精品一区二区三区四区免费观看 | 午夜精品一区二区三区免费看| 午夜两性在线视频| 宅男免费午夜| 国产淫片久久久久久久久 | 亚洲色图 男人天堂 中文字幕| 中文在线观看免费www的网站| 一二三四在线观看免费中文在| 搡老岳熟女国产| 99re在线观看精品视频| av欧美777| 观看美女的网站| 可以在线观看的亚洲视频| 美女高潮的动态| 欧美日韩一级在线毛片| aaaaa片日本免费| 一本精品99久久精品77| 国内久久婷婷六月综合欲色啪| 亚洲在线观看片| 亚洲熟女毛片儿| 香蕉av资源在线| a级毛片在线看网站| 国产激情久久老熟女| 色老头精品视频在线观看| 一级a爱片免费观看的视频| 亚洲精品中文字幕一二三四区| 免费看日本二区| 欧美高清成人免费视频www| 日本熟妇午夜| 亚洲成av人片免费观看| 99riav亚洲国产免费| 国产麻豆成人av免费视频| 欧美国产日韩亚洲一区| 国产精品电影一区二区三区| 国产精品99久久99久久久不卡| 男女午夜视频在线观看| 精品国产美女av久久久久小说| 精品乱码久久久久久99久播| 婷婷精品国产亚洲av| 国产午夜福利久久久久久| 欧美av亚洲av综合av国产av| 亚洲,欧美精品.| 俄罗斯特黄特色一大片| 午夜精品在线福利| 成人精品一区二区免费| 国产av在哪里看| 在线观看美女被高潮喷水网站 | 亚洲欧美日韩无卡精品| 99国产精品一区二区蜜桃av| 久久午夜综合久久蜜桃| 国产一级毛片七仙女欲春2| 亚洲熟妇中文字幕五十中出| 免费在线观看亚洲国产| 免费无遮挡裸体视频| 久久精品aⅴ一区二区三区四区| 最近最新免费中文字幕在线| 久久热在线av| 男人舔奶头视频| 极品教师在线免费播放| 欧美中文日本在线观看视频| 欧美日韩综合久久久久久 | www国产在线视频色| 免费看光身美女| 男女下面进入的视频免费午夜| 母亲3免费完整高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 女同久久另类99精品国产91| 综合色av麻豆| 欧美国产日韩亚洲一区| 999久久久国产精品视频| a级毛片a级免费在线| 日本撒尿小便嘘嘘汇集6| 久久久久免费精品人妻一区二区| 久久久成人免费电影| 久久久久九九精品影院| 亚洲国产日韩欧美精品在线观看 | 狠狠狠狠99中文字幕| 国产精品 欧美亚洲| 日韩中文字幕欧美一区二区| 中文字幕熟女人妻在线| 伦理电影免费视频| 大型黄色视频在线免费观看| 亚洲av熟女| 欧美极品一区二区三区四区| 色哟哟哟哟哟哟| 成年女人永久免费观看视频| 精品99又大又爽又粗少妇毛片 | 51午夜福利影视在线观看| 最近最新免费中文字幕在线| 亚洲av熟女| 日韩有码中文字幕| 天堂影院成人在线观看| 超碰成人久久| 国产精品久久久久久亚洲av鲁大| 69av精品久久久久久| 日韩欧美国产在线观看| 久久久久久人人人人人| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 美女大奶头视频| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 女人高潮潮喷娇喘18禁视频| 高清毛片免费观看视频网站| 91九色精品人成在线观看| 国产精品久久久av美女十八| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 午夜a级毛片| 两性夫妻黄色片| 亚洲av中文字字幕乱码综合| 热99在线观看视频| 真人一进一出gif抽搐免费| 亚洲国产欧美网| 国产又色又爽无遮挡免费看| 操出白浆在线播放| 亚洲专区国产一区二区| 久久精品影院6| 桃色一区二区三区在线观看| 国产精品98久久久久久宅男小说| 亚洲狠狠婷婷综合久久图片| 亚洲第一电影网av| 日本五十路高清| 久久亚洲真实| 欧美最黄视频在线播放免费| 亚洲片人在线观看| 欧美日韩福利视频一区二区| 网址你懂的国产日韩在线| 国产高清视频在线观看网站| 精品日产1卡2卡| 动漫黄色视频在线观看| 亚洲av第一区精品v没综合| 级片在线观看| 国产三级在线视频| 久久久久国内视频| 午夜日韩欧美国产| 在线永久观看黄色视频| 三级毛片av免费| 婷婷亚洲欧美| 久久精品综合一区二区三区| svipshipincom国产片| 身体一侧抽搐| 黄色视频,在线免费观看| 国产精品永久免费网站| 亚洲真实伦在线观看| 亚洲国产欧美一区二区综合| xxx96com| 午夜两性在线视频| 日韩欧美精品v在线| 十八禁网站免费在线| 亚洲五月婷婷丁香| 亚洲天堂国产精品一区在线| av福利片在线观看| 精品国产三级普通话版| 欧美性猛交黑人性爽| 国产精品自产拍在线观看55亚洲| 亚洲五月婷婷丁香| 国产aⅴ精品一区二区三区波| 一个人看的www免费观看视频| 精华霜和精华液先用哪个| 欧美zozozo另类| 久久久久久久久免费视频了| 亚洲成人中文字幕在线播放| 亚洲欧美日韩高清专用| 老司机在亚洲福利影院| 久久中文字幕一级| 国产精品一区二区免费欧美| 国产精品久久久久久亚洲av鲁大| 香蕉国产在线看| 特级一级黄色大片| 欧美日韩中文字幕国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 三级国产精品欧美在线观看 | 欧美zozozo另类| xxxwww97欧美| 中文字幕久久专区| 三级国产精品欧美在线观看 | 91老司机精品| 久久久久久九九精品二区国产| 精品久久久久久久毛片微露脸| e午夜精品久久久久久久| 一级黄色大片毛片| 制服丝袜大香蕉在线| 久久久久久久久免费视频了| 男女做爰动态图高潮gif福利片| 成人av在线播放网站| 韩国av一区二区三区四区| 久久99热这里只有精品18| 美女 人体艺术 gogo| 在线a可以看的网站| 久久久久久大精品| 国产在线精品亚洲第一网站| 最新中文字幕久久久久 | 日韩精品中文字幕看吧| 欧美一区二区国产精品久久精品| 精品久久久久久久久久免费视频| 九九久久精品国产亚洲av麻豆 | 久久精品91蜜桃| 制服丝袜大香蕉在线| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 国产精品98久久久久久宅男小说| 舔av片在线| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 国产成人av教育| 麻豆成人av在线观看| 国内毛片毛片毛片毛片毛片| 成人精品一区二区免费| 老汉色av国产亚洲站长工具| 中文在线观看免费www的网站| 色在线成人网| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 亚洲黑人精品在线| 天天一区二区日本电影三级| av在线天堂中文字幕| 99热这里只有是精品50| 国产伦精品一区二区三区视频9 | 制服人妻中文乱码| 少妇丰满av| 精品一区二区三区四区五区乱码| 国产高潮美女av| 老鸭窝网址在线观看| 日韩欧美在线乱码| 成年女人永久免费观看视频| 精品国产乱子伦一区二区三区| 午夜福利欧美成人| 狂野欧美激情性xxxx| 99久久久亚洲精品蜜臀av| 久久久精品欧美日韩精品| 夜夜夜夜夜久久久久| 日韩中文字幕欧美一区二区| 国产一区二区在线av高清观看| 国产精品美女特级片免费视频播放器 | 香蕉av资源在线| 久久草成人影院| ponron亚洲| www.www免费av| 亚洲va日本ⅴa欧美va伊人久久| 国产三级黄色录像| 国内精品久久久久精免费| 国产伦精品一区二区三区视频9 | 欧美最黄视频在线播放免费| 亚洲激情在线av| 操出白浆在线播放| 亚洲自偷自拍图片 自拍| 18禁黄网站禁片免费观看直播| 亚洲av第一区精品v没综合| 精品99又大又爽又粗少妇毛片 | 国产又色又爽无遮挡免费看| 麻豆av在线久日| 老司机福利观看| 国产乱人伦免费视频| 亚洲国产看品久久| a级毛片在线看网站| 欧美最黄视频在线播放免费| 97超视频在线观看视频| 国内久久婷婷六月综合欲色啪| 日韩成人在线观看一区二区三区| 成年免费大片在线观看| 人人妻人人澡欧美一区二区| 在线免费观看不下载黄p国产 | av片东京热男人的天堂| 午夜福利在线在线| 久久这里只有精品19| 全区人妻精品视频| 午夜免费激情av| 亚洲色图av天堂| 久久中文字幕人妻熟女| 亚洲无线观看免费| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 1024香蕉在线观看| 国产综合懂色| 免费电影在线观看免费观看| 色尼玛亚洲综合影院| 国产又色又爽无遮挡免费看| 欧美极品一区二区三区四区| 男人舔女人下体高潮全视频| 美女扒开内裤让男人捅视频| 在线视频色国产色| 两性夫妻黄色片| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 两个人视频免费观看高清| 午夜成年电影在线免费观看| 婷婷精品国产亚洲av| 少妇丰满av| 最近在线观看免费完整版| 又紧又爽又黄一区二区| 精品国产乱码久久久久久男人| xxxwww97欧美| 麻豆av在线久日| 精品国内亚洲2022精品成人| 亚洲国产精品999在线| 高清毛片免费观看视频网站| 99久久精品一区二区三区| 伦理电影免费视频| 999久久久精品免费观看国产| 母亲3免费完整高清在线观看| 91九色精品人成在线观看| 99精品欧美一区二区三区四区| 久久精品国产99精品国产亚洲性色| 99视频精品全部免费 在线 | 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 亚洲国产精品成人综合色| 看免费av毛片| 久久精品国产清高在天天线| 国产单亲对白刺激| 久久久久久九九精品二区国产| 一本久久中文字幕| 一本综合久久免费| 19禁男女啪啪无遮挡网站| 欧美国产日韩亚洲一区| 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 国产精品1区2区在线观看.| 最近视频中文字幕2019在线8| 怎么达到女性高潮| 一级a爱片免费观看的视频| 无人区码免费观看不卡| 亚洲国产高清在线一区二区三| 国产成人啪精品午夜网站| 99久久久亚洲精品蜜臀av| 久久天躁狠狠躁夜夜2o2o| 在线观看舔阴道视频| 亚洲精品国产精品久久久不卡| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲| 久久久久性生活片| 日韩中文字幕欧美一区二区| 亚洲精品中文字幕一二三四区| 国产成人精品久久二区二区免费| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式 | 久久久久久九九精品二区国产| 亚洲精品中文字幕一二三四区| 级片在线观看| 中文字幕人成人乱码亚洲影| 国内精品久久久久久久电影| 1000部很黄的大片| 欧美xxxx黑人xx丫x性爽| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 欧美中文综合在线视频| 日韩精品青青久久久久久| tocl精华| 又紧又爽又黄一区二区| 我要搜黄色片| 亚洲在线观看片| 99久久精品热视频| 欧美丝袜亚洲另类 | 日韩欧美一区二区三区在线观看| 亚洲人与动物交配视频| 国产99白浆流出| 麻豆av在线久日| 欧美日韩瑟瑟在线播放| or卡值多少钱| 国产激情偷乱视频一区二区| 亚洲,欧美精品.| 亚洲精品乱码久久久v下载方式 | 免费av毛片视频| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 亚洲精华国产精华精| 特级一级黄色大片| 噜噜噜噜噜久久久久久91| 国产精品电影一区二区三区| 久久久久久久久久黄片| 精品日产1卡2卡| 亚洲 国产 在线| 这个男人来自地球电影免费观看| 熟妇人妻久久中文字幕3abv| 国产一区二区在线av高清观看| 黄色丝袜av网址大全| 国产精品久久久av美女十八| 久久久色成人| 免费av不卡在线播放| 久久中文字幕一级| 国内精品久久久久精免费| 国产精品av视频在线免费观看| aaaaa片日本免费| 12—13女人毛片做爰片一| 久久亚洲真实| 好看av亚洲va欧美ⅴa在| АⅤ资源中文在线天堂| 黄色丝袜av网址大全| 91av网一区二区| 黄色片一级片一级黄色片| 久久精品91蜜桃| 亚洲av熟女| 亚洲无线观看免费| 久久久久久国产a免费观看| 国产 一区 欧美 日韩| 国产不卡一卡二| 国产亚洲欧美98| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲美女久久久| 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频| 免费电影在线观看免费观看| 色av中文字幕| 2021天堂中文幕一二区在线观| 午夜精品久久久久久毛片777| 老司机在亚洲福利影院| 噜噜噜噜噜久久久久久91| 欧美一级a爱片免费观看看| 国产精品香港三级国产av潘金莲| 99热6这里只有精品| 日韩欧美 国产精品| 国产亚洲精品久久久com| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av日韩精品久久久久久密| 国产激情偷乱视频一区二区| 哪里可以看免费的av片| 国产高清三级在线| 黄片小视频在线播放| 久久国产精品人妻蜜桃| 美女高潮喷水抽搐中文字幕| 国产成人av激情在线播放| 亚洲av美国av| 国产精品一区二区免费欧美| 国产高清激情床上av| www国产在线视频色| 久久久国产欧美日韩av| 亚洲人成伊人成综合网2020| 国产爱豆传媒在线观看| 亚洲国产色片| 老熟妇仑乱视频hdxx| 给我免费播放毛片高清在线观看| 午夜两性在线视频| 禁无遮挡网站| 成年女人看的毛片在线观看| 午夜免费激情av| 亚洲专区国产一区二区| 最近最新免费中文字幕在线| 网址你懂的国产日韩在线| 久久精品91无色码中文字幕| 日韩精品中文字幕看吧| cao死你这个sao货| 日韩精品中文字幕看吧| 亚洲精品中文字幕一二三四区| 国产精品国产高清国产av| 少妇裸体淫交视频免费看高清| 亚洲国产欧美网| 久久久久久久午夜电影| 成人欧美大片| 国产成人福利小说| 一级毛片女人18水好多| 十八禁网站免费在线| 亚洲人成网站高清观看| 五月玫瑰六月丁香| 国产成人av激情在线播放| 99精品欧美一区二区三区四区| 国产精品一区二区免费欧美| 亚洲精品美女久久久久99蜜臀| 亚洲在线自拍视频| 九色成人免费人妻av| 国产av麻豆久久久久久久| 国产一区二区激情短视频| 一级毛片高清免费大全| 淫秽高清视频在线观看| 9191精品国产免费久久| 国产一区二区激情短视频| 精品国产乱子伦一区二区三区| 一a级毛片在线观看| 国产69精品久久久久777片 | 欧美xxxx黑人xx丫x性爽| av天堂中文字幕网| 毛片女人毛片| 黄色 视频免费看| 麻豆国产av国片精品| 日韩精品青青久久久久久| 成人鲁丝片一二三区免费| 色在线成人网| 美女扒开内裤让男人捅视频| 国产蜜桃级精品一区二区三区| 国产人伦9x9x在线观看| 天堂动漫精品| 日日摸夜夜添夜夜添小说| 中国美女看黄片| 手机成人av网站| 老鸭窝网址在线观看| 一个人看的www免费观看视频| 麻豆av在线久日| 国产视频一区二区在线看| 午夜福利在线观看吧| av天堂中文字幕网| 亚洲精品久久国产高清桃花| 女同久久另类99精品国产91| 亚洲五月婷婷丁香| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 999精品在线视频| 麻豆国产av国片精品| 女同久久另类99精品国产91| 亚洲黑人精品在线| 亚洲欧美日韩东京热| 中文字幕熟女人妻在线| 国产1区2区3区精品| 国产一区二区在线av高清观看| 亚洲天堂国产精品一区在线| www日本黄色视频网| 99久久综合精品五月天人人| 搡老岳熟女国产| 国产激情久久老熟女| 国产私拍福利视频在线观看| 精品国产乱子伦一区二区三区| 亚洲国产欧美人成| 久久久久免费精品人妻一区二区| 18禁美女被吸乳视频| 欧美日韩精品网址| 十八禁人妻一区二区| 亚洲 欧美 日韩 在线 免费| 久久久国产成人免费| 91字幕亚洲| 亚洲一区高清亚洲精品| 久久精品aⅴ一区二区三区四区| 两个人看的免费小视频| 床上黄色一级片| 中文资源天堂在线| 夜夜爽天天搞| 成人特级黄色片久久久久久久| 真人一进一出gif抽搐免费| 神马国产精品三级电影在线观看| 国产成人欧美在线观看| 亚洲美女视频黄频| 久久人妻av系列| 免费高清视频大片| 在线国产一区二区在线| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| 一区二区三区激情视频| 在线观看日韩欧美| 女人高潮潮喷娇喘18禁视频| 人妻久久中文字幕网| 1024香蕉在线观看| 国产精品电影一区二区三区| 成在线人永久免费视频| 欧美精品啪啪一区二区三区| 99在线视频只有这里精品首页| 精品国产三级普通话版| 欧美高清成人免费视频www| 美女cb高潮喷水在线观看 | 国产成人欧美在线观看| 国产一区二区在线av高清观看| 亚洲专区国产一区二区| 成人鲁丝片一二三区免费| 日韩三级视频一区二区三区| 久久国产精品影院| www国产在线视频色| 亚洲国产欧美人成| 全区人妻精品视频| 亚洲av电影不卡..在线观看| 国产一区二区三区在线臀色熟女| 999久久久精品免费观看国产| 美女扒开内裤让男人捅视频| 成在线人永久免费视频| 麻豆久久精品国产亚洲av| 日韩欧美在线二视频| 国内毛片毛片毛片毛片毛片| 国产高清视频在线播放一区| 亚洲国产精品久久男人天堂| 国内毛片毛片毛片毛片毛片| 国产高清视频在线播放一区| 天堂影院成人在线观看| 欧美成人性av电影在线观看| 国产精品影院久久| 免费观看精品视频网站| 国模一区二区三区四区视频 | 久久热在线av|