• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing

    2017-06-01 11:35:04SndeepRtheeSchinMheshwriArshdNoorSiddiqueeMnuSrivstv
    Defence Technology 2017年2期

    Sndeep Rthee,Schin Mheshwri,Arshd Noor Siddiquee,Mnu Srivstv

    aDivision of Manufacturing Processes and Automation Engineering(MPAE),Netaji Subhas Institute of Technology,New Delhi,India

    bDepartment of Mechanical Engineering,Jamia Millia Islamia,A Central University,New Delhi,India

    Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing

    Sandeep Ratheea,*,Sachin Maheshwaria,Arshad Noor Siddiqueeb,Manu Srivastavaa

    aDivision of Manufacturing Processes and Automation Engineering(MPAE),Netaji Subhas Institute of Technology,New Delhi,India

    bDepartment of Mechanical Engineering,Jamia Millia Islamia,A Central University,New Delhi,India

    A R T I C L E I N F O

    Article history:

    Received 31 August 2016

    Received in revised form

    20 October 2016

    Accepted 15 November 2016

    Available online 24 December 2016

    Metal matrix composites

    Aluminium matrix surface composites are gaining alluring role especially in aerospace,defence,and marine industries.Friction stir processing(FSP)is a promising novel solid state technique for surface composites fabrication.In this study,AA6061/SiC surface composites were fabricated and the effect of tool plunge depth on pattern of reinforcement particles dispersion in metal matrix was investigated.Six varying tool plunge depths were chosen at constant levels of shoulder diameter and tool tilt angle to observe the exclusive effect of plunge variation.Process parameters chosen for the experimentation are speed of rotation,travel speed and tool tilt angle which were taken as 1400 rpm,40 mm/min,and 2.5°respectively.Macro and the microstructural study were performed using stereo zoom and optical microscope respectively.Results re flected that lower plunge depth levels lead to insuf ficient heat generation and cavity formation towards the stir zone center.On the other hand,higher levels of plunge depth result in ejection of reinforcement particles and even sticking of material to tool shoulder.Thus,an optimal plunge depth is needed in developing defect free surface composites.

    ?2016 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    It is common knowledge that aluminium alloys are materials of choice for various structural applications in aerospace,defence, automobile,and marine industries owing to their lower weight density,higher strength to weight ratio and higher corrosion resistance[1].However,stiffness and strength of some of these alloys is not adequate for some structural purposes thereby necessitating requirement of suitable reinforcement.Aluminium metal matrix composites(AMMCs)exhibit improved metallurgical, mechanical,and tribological characteristics[1-3].Metal matrix composites(MMCs)can be synthesized using various techniques like laser technique[4],electron beam irradiation[5],plasma spraying[6],casting[7],mechanical alloying[8],etc.Most of these techniques are based on the principle of liquid phase processing which leads to formation of intermetallic reactions and undesirable phases between base metal(BM)and reinforcement[9,10].In view of the these shortcomings,employment of a process for composite fabrication which can be conducted below melting points of the matrix material can go a long way to improve and consequently optimize the MMCs design and fabrication issue.Friction stir processing(FSP)offers an excellent choice for development of surface composites(SCs)of metal alloys[11].

    FSP is a newly developed solid state processing technique which is a variant of friction stir welding(FSW)process initiated at The Welding Institute(TWI)in 1991[12].In its simple operation,a nonconsumable rotating tool with an exclusively designed pin and shoulder plummets into a BM plate and is made to traverse in prede fined direction to cover up the desired realm.Softening and plasticization of BM occurs owing to frictional heat generation between rotating tool and the workpiece[10,13].As the tool traverses,the material is forged beneath the shoulder resulting in the processed region.The work on composite fabrication using FSP,was started with the maiden work done by Mishra et al.[11].In this work,composites with Al 5083 alloy as BM and SiC as reinforcement were fabricated.A maximum microhardness of 173 Hv was achieved using 27 vol%of SiC particles which is almost double of the microhardness of BM(85 Hv).Numerous research studies on composite fabrication are reported since the initial work by Mishra et al.and a number of research projects are still in progress.Initially, FSP was used to modify aluminium alloys but with the passage of time FSP has gained a shining role in developing composites ofother alloys like magnesium[14],copper[15],titanium[16]and even steel[17].

    The addition of hard phase reinforcement particles make MMCs brittle[18].In many engineering applications,the service life of materials mainly depends on the surface properties of materials. Therefore,SCs are mostly prepared by combining a ductile metallic matrix with hard ceramic reinforcement up to a desired depth.The soundness of SCs apart from other aspects mainly depends on optimal selection of process parameters.Several authors[19-22] investigated the effect of various process parameters in developing SCs.Dolatkhah et al.[19]evaluated the effects of rotational and travel speeds,FSP pass count and size of reinforcement particles in fabrication of Al 5052/SiC composites.They reported that speed of rotation and FSP pass counts have major effect on uniform dispersion of reinforcement particles.Similarly,Zohoor et al.[21] investigated the effects of speed of rotation,FSP pass count and size of reinforcement particles in the fabrication of AA5083/Cu composites.They reported that best powder dispersion was achieved with four FSP pass count.Devaraju et al.[20]reported that speed of rotation and type of reinforcement particles have a strong impact on wear,microhardness and tensile strength of fabricated AA 6061/SiC+Al2O3hybrid SCs.Reddy et al.[23]investigated the effect of reinforcement particles(B4C and SiC)on the wear and mechanical properties of fabricated SCs.

    Majority of published research mainly focuses on the evaluation of effects of process parameters,namely tool rotation speed,travel speed,FSP pass count and tool dimensions on the surface and mechanical properties of fabricated SCs.Also,reinforcement particle type and its size remains center of research focus.Literature also report that the SCs imperfections can be reduced by accurate prediction of these process parameters.In addition to these process parameters,correct decision on suitable tool plunge depth(TPD)is also essential to achieve defect free and uniformly distributed SCs. Interestingly,TPD is not changed in-situ after the process has started and investigations on effect of TPD over distribution of reinforcement particles in SCs fabrication are very few.Present work investigates the effect of varying TPD on SCs fabrication by keeping all other parameters constant at optimized level.Six levels of TPD from 0.10 mm to 0.35 mm in steps of 0.05 mm were used to investigate and determine the role of plunge depth on material flow,uniformity of powder dispersion and tendency of defect formation.Additionally,proper care has also been taken to minimize the adverse effects originating from factors like machine vibrations, non-uniformity of BM and backing plate thickness which is normally not paid enough attention.

    Fig.1.Showing images of SiC powder and tools used;(a)SEM image of SiC powder;(b)Tools used during FSP.

    Fig.2.Steps in SCs fabrication using groove technique.

    2.Materials and methods

    In this study,AA 6061-T6 alloy sheet of 5 mm thickness was used as base material.AA 6061-T6 is commonly used in aerospace, defence and marine sectors due to its light weight,good strength to weight ratio and good corrosion resistance[24,25].The composition(weight%)of BM is 0.85%Mg,0.68%Si,0.22%Cu,0.07%Zn, 0.05%Ti,0.032%Mn,0.06%Cr and remaining aluminium.FSP samples of size 60 mmwide and 200 mm long were machined from the sheet.SiC powder having average particle size of~10μm was used as reinforcement(SEM image is shown in Fig.1(a).Six such FSP samples were prepared by cleaning them with acetone and machining square grooves of 2 mm width and 2 mm depth along the length.Subsequently,SiC powder was filled and compressed in the groove and upper surface(open)of the groove was closed by means of a tool(15 mm shoulder diameter,see Fig.1(b)without a pin in order to prevent the sputtering of powder during FSP.Finally, FSP was performed on a retro fitted vertical milling machine as shown in Fig.3 using a tool with a threaded cylindrical pin.The tools utilized for FSP were made of H-13 tool steel(see Fig.1(b)). Steps involved in SCs formation using groove technique are schematically illustrated in Fig.2.The values of process parameters such as speed of rotation,traverse speed and tilt angle of tool(see Table 1)were chosen by trial experiments performed on AA6061with TPD of 0.20 mm.Six experiments were performed by varying TPD from 0.10 mm to 0.35 mm in steps of 0.05 mm and keeping all other parameters(as shown in Table 1)as constant.

    After single pass FSP on all six samples,coupons for macro and microstructural study were machined using wire-EDM from the middle of each SC sample in a direction perpendicular to the processing route.These samples were polished following standard metallographic procedures and then etched with Keller's reagent (175 ml water,20 ml HNO3,3 ml HCL and 2 ml HF)for 30 s.Macrographic images were taken by stereo zoom microscope while micrographic images were taken by metallurgical optical microscope and scanning electron microscope.

    Fig.3.FSP setup.

    Table 1Showing constant process parameters used in SCs fabrication.

    3.Results

    3.1.Macroscopic observations

    Table 2 shows macroscopic images of SCs(S1-S6)along with their visual description.It is evident from the macrographic images that the pattern of reinforcement particles distribution in of all SCs is different.The width of processed region was found to be approximately same as diameter of tool shoulder.However,width/ area of stir zone and SC layer depth varies in all SCs.

    Table 2Macroscopic images of all samples(S1-S6)along with their description.

    Fig.4.Showing microstructural images of SCs taken at 100 magnifications,(a)corresponds to S1;(b)S2;(c)S3;(d)S4;(e)S5;(f)S6.

    3.2.Microstructural characterization

    Fig.4(a)-(f)reveals the microstructural images of SCs(S1-S6respectively).A large cavity is present in centre of the SZ(see Fig.4(a)),which is also visible in macrograph corresponds to S1. Fig.4(b)shows that SiC particles dispersion slightly increases and cavity size decreases(with increase in TPD from 0.10 to 0.15 mm) which indicate the improvement in material flow and particles dispersion.With further increase in TPD from 0.15 to 0.20 mm,the improvement in material flow can be further seen in Fig.4(c)in which more particles were distributed in the aluminium matrix as compared to S1and S2.Finally,uniform dispersion of SiC particles was achieved(at TPD of 0.25 mm)without any defect formation as shown in Fig.4(d)whose SEM images are shown in Fig.5.Fig.4(e) and(f)shows that the uniformity of powder dispersion decreases (at TPD of 0.30 and 0.35 respectively).Also,the tendency of defect formation increases.

    4.Discussion

    Image corresponds to S1(Table 2)is the macroscopic image of SC fabricated at plunge depth of 0.10 mm.A large cavity defect appears at the center of SZ and powder distribution is very less.Shoulder driven flow causes the powder distribution.SC layer depth is quite less.This may be attributed to less material flow due to low heat generation at lower plunge depth of 0.10 mm.At low plunge depth, the contact area between tool shoulder and base metal is less.With the increase of plunge depth from 0.10 mm to 0.15 mm,the contact area between shoulder and workpiece increases which results in more heat generation.Also,the vertical pressure on the base metal increases resulting in better forging and improved material flow and particles dispersion[26]as shown in S2(Table 2).Depth of SC layer also increases.However,a cavity remains un filled in this sample that implies that heat generation was still not adequate.As plunge depth further increases from 0.15 to 0.20 mm,cavity sizedecreases to its minimum and uniformity in powder dispersion increases as shown in S3(Table 2)and Fig.4(c).Also,the SC layer achieves a depth which is approximately equal to tool pin height in bulk matrix.

    Fig.5.shows the SEM images of SCs fabricated at 0.25 mm plunge depth,(a)distribution of SiC particles;(b)Maximum size of SiC particle after FSP.

    The cavity finally disappears in S4(Table 2)fabricated at plunge depth of 0.25 mm owing to suf ficient heat generation due to the adequate contact area of tool shoulder and workpiece.Distribution of reinforcement particles also becomes visibly uniform(see Fig.4(d)).And SC layer depth becomes equal to tool pin height.

    Any further increase of TPD from 0.25 to 0.30 and 0.35 mm results in a reduction of powder dispersion and decrease of SC depth as shown in S5and S6(Table 2)and Fig.4(e)and(f)respectively.It may be assumed that after an optimumvalue of TPD,the increase of plunge depth causes excess heat generation which results in more softening of material near tool matrix interface.This excess softening of material leads to more flash generation.The high tool pressure(at higher TPD),the shoulder expels the reinforcement particles with or in form of flash resulting in less dispersion of SiC in the metal matrix.Same results can be seen from S6,in which SiC distribution further decreases and defect appears in the SZ.Also, the frictional mode between shoulder and material(to be stirred) changes from sliding to sticking due to high pressure exerted by tool shoulder.This high pressure can results in thinning and may even damage of specimen.Thus,low penetration depths causes less material flow while high penetration depths results in excessive flash and damage of the specimen.

    Fig.5(a)-(b)shows SEM images of SC fabricated at 0.25 mm plunge depth.It is evident from the figure that SiC particles are well distributed in aluminium matrix and their particle size viz-a-viz original size has reduced drastically.This reduction may occur due to the fragmentation of SiC particles owing to high strain induced by FSP and vigorous stirring action of tool.The vigorous stirring of tool might also have ground the sharp edges of SiC particles(see Fig.5(b)).

    Thus,reduction in the size of SiC particles can be attributed to severe stresses and shear effects caused by the tool rotation.Similar results were reported by other researchers[27,28].Moreover,the distributed particles have large size variations and maximium size of SiC particles after FSP was found as 7.28 μm(see Fig.5(b)).The average SiC particle size was found as~2.1μm which is a huge reduction as compared to as-received 10μm average particle size.

    This investigation has demonstrated that the size of SiC particles was subdivided during FSP causing an increase in particle density and reduction in grain size and interparticle spacing.Moreover,the scope of FSP for SCs fabrication may be further investigated by using smaller particles size of order of nanometer which may results in further improvement in properties of nano SCs as compared to micro SCs.

    5.Conclusions

    The practical bene fit of this work is to provide adequate TPD to fabricate sound AA 6061/SiC surface composites.Following conclusions are drawn from the present study:

    1)Low plunge depth results in less material flow and cavity formation at centre of SZ owing to less heat generation at low contact area between tool shoulder and base metal.

    2)The optimum plunge depth obtained from current work is 0.25 mm with 20 mm shoulder diameter and 2.5°tilt angle.The particles were found well distributed in the aluminium matrix.

    3)During FSP,fragmentation of SiC particles takes place owing to high plastic strains and stirring action of FSP tool.

    4)The penetration depths above the optimum value may results in sticking of workpiece to the shoulder,flashing out of reinforcement particles,thinning of processed specimen and even damage of the specimens.

    Acknowledgments

    The authors thank the University Grants Commission(UGC)for its financial assistance(vide sanction order No.F.3-40/2012(SAP-II) under its SAP(DRS-I)sanctioned to the Department of Mechanical Engineering for the project entitled Friction Stir Welding,Ultrasonic Machining.

    [1]Miracle DB.Metal matrix composites-from science to technological significance.Compos Sci and Technol 2005;65(15-16):2526-40.

    [2]Cavaliere P.Mechanical properties of Friction Stir Processed 2618/Al2O3/20p metal matrix composite.Compos Part A Appl Sci Manuf 2005;36(12): 1657-65.

    [3]Joseph,S.,High temperature metal matrix composites for future aerospace systems,in 24th Joint Propulsion Conference 1988,American Institsute of Aeronautics and Astronautics.

    [4]Ghosh SK,Saha P.Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process.Mater Des 2011;32(1):139-45.

    [5]Choo S-H,Lee S,Kwon S-J.Surface hardening of a gray cast iron used for a diesel engine cylinder block using high-energy electron beam irradiation. Metall Mater Trans A 1999;30(5):1211-21.

    [6]Xu J,et al.Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders.J Alloys Compd 2016;672:251-9.

    [7]Hashim J,Looney L,Hashmi MSJ.Metal matrix composites:production by the stir casting method.J Mater Process Technol 1999;92-93(0):1-7.

    [8]Banhart J.Manufacture,characterisation and application of cellular metals and metal foams.Prog Mater Sci 2001;46(6):559-632.

    [9]Mishra R.S,Mahoney M.W,Friction stir welding and processing 2007:ASM International.

    [10]Mishra RS,Ma ZY.Friction stir welding and processing.Mater Sci Eng R Rep 2005;50(1-2):1-78.

    [11]Mishra RS,Ma ZY,Charit I.Friction stir processing:a novel technique for fabrication of surface composite.Mater Sci Eng A 2003;341(1-2):307-10.

    [12]Thomas,W.M.,TWI,Editor 1991:U.S.

    [13]Berbon PB,et al.Friction stir processing:a tool to homogenize nanocomposite aluminum alloys.Scr Mater 2001;44(1):61-6.

    [14]Azizieh M,Kokabi AH,Abachi P.Effect of rotational speed and probe pro file on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing.Mater Des 2011;32(4):2034-41.

    [15]Barmouz M,Besharati Givi MK,Sey fiJ.On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure,microhardness,wear and tensile behavior. Mater Charact 2011;62(1):108-17.

    [16]Shamsipur A,Kashani-Bozorg SF,Zarei-Hanzaki A.The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer.Surf Coatings Technol 2011;206(6):1372-81.

    [17]Ghasemi-Kahrizsangi A,Kashani-Bozorg SF.Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing.Surf Coatings Technol 2012;209(0):15-22.

    [18]Arora HS,Singh H,Dhindaw BK.Composite fabrication using friction stir processing-a review.Int J Adv Manuf Technol 2012;61(9-12):1043-55.

    [19]Dolatkhah A,et al.Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing.Mater Des 2012;37(0):458-64.

    [20]Devaraju A,et al.In fluence of reinforcements(SiC and Al2O3)and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing.Mater Des 2013;51(0):331-41.

    [21]Zohoor M,Besharati Givi MK,Salami P.Effect of processing parameters on fabrication of Al-Mg/Cu composites via friction stir processing.Mater Des 2012;39:358-65.

    [22]Sudhakar I,et al.Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing.Def Technol 2015;11(1):10-7.

    [23]Madhusudhan Reddy G,Sambasiva Rao A,Srinivasa Rao K.Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy.Trans Indian Inst Metals 2013;66(1):13-24.

    [24]Devaraju A.K.A.,Kotiveerachari B.,In fluence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing.Mater Des 2013;45:576-85.

    [25]Mukhopadhyay P.Alloy designation,processing,and Use of AA6XXX series aluminium alloys.ISRN Metall 2012;2012:15.

    [26]Asadi P,Faraji G,Besharati M.Producing of AZ91/SiC composite by friction stir processing(FSP).Int J Adv Manuf Technol 2010;51(1-4):247-60.

    [27]Salih OS,et al.A review of friction stir welding of aluminium matrix composites.Mater Des 2015;86:61-71.

    [28]Palanivel R,et al.In fluence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing.Mater Des 2016;106:195-204.

    *Corresponding author.TRF,MPAE Division,NSIT,New Delhi,110078,India.

    E-mail address:rathee8@gmail.com(S.Rathee).

    Peer review under responsibility of China Ordnance Society.

    Friction stir processing

    Tool plunge depth

    Microstructural characterization

    国产亚洲av片在线观看秒播厂| 黄色怎么调成土黄色| 男人和女人高潮做爰伦理| 欧美高清性xxxxhd video| 91精品一卡2卡3卡4卡| 纵有疾风起免费观看全集完整版| 国产男女内射视频| 国产老妇伦熟女老妇高清| 老熟女久久久| 十八禁网站网址无遮挡 | 中文字幕av成人在线电影| 97超视频在线观看视频| 久久国内精品自在自线图片| 丝袜喷水一区| 永久网站在线| 亚洲av福利一区| 亚洲综合精品二区| 丝袜喷水一区| 1000部很黄的大片| 多毛熟女@视频| 日韩亚洲欧美综合| 午夜免费观看性视频| 精品熟女少妇av免费看| 啦啦啦在线观看免费高清www| 午夜福利影视在线免费观看| videos熟女内射| 国产精品一区二区在线观看99| 国产一区二区在线观看日韩| 卡戴珊不雅视频在线播放| 免费看av在线观看网站| 人妻一区二区av| 汤姆久久久久久久影院中文字幕| 青春草亚洲视频在线观看| 免费黄色在线免费观看| 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 偷拍熟女少妇极品色| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| 观看av在线不卡| 黄色怎么调成土黄色| 性色av一级| 欧美老熟妇乱子伦牲交| 亚洲精品,欧美精品| 激情 狠狠 欧美| 97精品久久久久久久久久精品| 国产欧美日韩精品一区二区| 蜜臀久久99精品久久宅男| 日韩强制内射视频| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| 精品国产三级普通话版| 夜夜骑夜夜射夜夜干| 尤物成人国产欧美一区二区三区| 欧美三级亚洲精品| 日本猛色少妇xxxxx猛交久久| 亚洲欧美中文字幕日韩二区| 亚洲精华国产精华液的使用体验| 亚洲精品日韩av片在线观看| 好男人视频免费观看在线| 直男gayav资源| 女性生殖器流出的白浆| 中国三级夫妇交换| 天天躁日日操中文字幕| 99热这里只有是精品50| 边亲边吃奶的免费视频| 我要看日韩黄色一级片| 成年av动漫网址| h日本视频在线播放| 国产精品秋霞免费鲁丝片| 精品久久久久久久末码| 美女中出高潮动态图| 91久久精品电影网| 欧美日韩视频高清一区二区三区二| 国产无遮挡羞羞视频在线观看| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久av不卡| 欧美一级a爱片免费观看看| 国产成人精品久久久久久| 亚洲国产欧美在线一区| 精品人妻熟女av久视频| 91精品一卡2卡3卡4卡| 国产精品偷伦视频观看了| 国产综合精华液| 亚洲精品456在线播放app| 国产伦在线观看视频一区| 国产 一区精品| 日本爱情动作片www.在线观看| 国产精品蜜桃在线观看| 肉色欧美久久久久久久蜜桃| 欧美另类一区| 久久久久久久国产电影| 欧美xxⅹ黑人| 搡老乐熟女国产| 色视频www国产| 伦精品一区二区三区| 国产真实伦视频高清在线观看| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 国产成人精品一,二区| 久久99热6这里只有精品| 97精品久久久久久久久久精品| 久久精品国产鲁丝片午夜精品| 国产成人一区二区在线| 日韩av在线免费看完整版不卡| av免费观看日本| 99九九线精品视频在线观看视频| 欧美xxxx性猛交bbbb| 成人一区二区视频在线观看| 成人高潮视频无遮挡免费网站| 欧美激情极品国产一区二区三区 | 国产精品一区二区三区四区免费观看| 黑丝袜美女国产一区| 欧美日韩综合久久久久久| 91aial.com中文字幕在线观看| 99九九线精品视频在线观看视频| 久久久久精品性色| 亚洲人成网站在线播| 亚洲在久久综合| 国产 一区精品| 美女xxoo啪啪120秒动态图| 国产熟女欧美一区二区| 欧美xxⅹ黑人| 亚洲精品色激情综合| 婷婷色综合www| 免费在线观看成人毛片| 蜜桃久久精品国产亚洲av| 国产精品人妻久久久久久| 两个人的视频大全免费| 精品一区二区免费观看| 免费大片18禁| 亚洲欧美一区二区三区国产| 亚洲精品一区蜜桃| 伦精品一区二区三区| 边亲边吃奶的免费视频| 日本vs欧美在线观看视频 | 国产视频首页在线观看| 日本欧美国产在线视频| 纯流量卡能插随身wifi吗| 亚洲经典国产精华液单| 国产亚洲午夜精品一区二区久久| 国产精品伦人一区二区| 免费av不卡在线播放| 五月玫瑰六月丁香| 国产精品伦人一区二区| 国产有黄有色有爽视频| 偷拍熟女少妇极品色| 国产爽快片一区二区三区| 亚洲国产高清在线一区二区三| 午夜激情久久久久久久| 欧美日韩亚洲高清精品| 日韩欧美 国产精品| 国产精品精品国产色婷婷| 精品99又大又爽又粗少妇毛片| 人体艺术视频欧美日本| 麻豆国产97在线/欧美| 日本黄色片子视频| 成年美女黄网站色视频大全免费 | 日产精品乱码卡一卡2卡三| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 日韩欧美 国产精品| 国产精品女同一区二区软件| 免费黄网站久久成人精品| 欧美xxⅹ黑人| 久久人人爽av亚洲精品天堂 | 我的女老师完整版在线观看| 建设人人有责人人尽责人人享有的 | 九草在线视频观看| 五月玫瑰六月丁香| 一级av片app| 精品国产一区二区三区久久久樱花 | 一本久久精品| 国产一区有黄有色的免费视频| 日韩av在线免费看完整版不卡| 亚洲色图综合在线观看| a级一级毛片免费在线观看| 美女主播在线视频| 日韩 亚洲 欧美在线| 免费大片黄手机在线观看| 爱豆传媒免费全集在线观看| 特大巨黑吊av在线直播| 日韩av不卡免费在线播放| 亚洲欧美日韩卡通动漫| 国产精品人妻久久久久久| 最新中文字幕久久久久| 人妻系列 视频| 久久国产精品大桥未久av | 欧美精品亚洲一区二区| 成人亚洲欧美一区二区av| 97在线视频观看| 亚洲精品国产av蜜桃| 亚洲第一区二区三区不卡| 一级二级三级毛片免费看| 直男gayav资源| 久久精品人妻少妇| 夜夜骑夜夜射夜夜干| 欧美老熟妇乱子伦牲交| www.色视频.com| 在线免费观看不下载黄p国产| 黄色日韩在线| 午夜免费鲁丝| 午夜视频国产福利| 黑人高潮一二区| 超碰97精品在线观看| 一级毛片黄色毛片免费观看视频| 在线观看美女被高潮喷水网站| 一个人免费看片子| 久久久久精品久久久久真实原创| 麻豆精品久久久久久蜜桃| 大陆偷拍与自拍| 我要看日韩黄色一级片| 亚洲国产精品国产精品| 女性生殖器流出的白浆| 亚洲精品国产成人久久av| 麻豆精品久久久久久蜜桃| 赤兔流量卡办理| 精品一区二区免费观看| 国产v大片淫在线免费观看| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久久久免| av在线蜜桃| 亚洲色图综合在线观看| 国产精品不卡视频一区二区| 日韩av免费高清视频| 欧美极品一区二区三区四区| 国产黄频视频在线观看| 国产精品99久久99久久久不卡 | 人人妻人人爽人人添夜夜欢视频 | 成人18禁高潮啪啪吃奶动态图 | 在现免费观看毛片| 精品酒店卫生间| 97在线视频观看| 亚洲av在线观看美女高潮| 2022亚洲国产成人精品| 人妻少妇偷人精品九色| 免费观看在线日韩| 王馨瑶露胸无遮挡在线观看| 亚洲最大成人中文| 欧美性感艳星| 亚洲第一av免费看| 国产精品一及| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区| 国模一区二区三区四区视频| 亚洲中文av在线| av一本久久久久| 国产亚洲av片在线观看秒播厂| 欧美日韩在线观看h| 成年人午夜在线观看视频| 国产黄片美女视频| av在线播放精品| av视频免费观看在线观看| 美女国产视频在线观看| 蜜桃久久精品国产亚洲av| 午夜福利在线在线| 日韩 亚洲 欧美在线| 黄片wwwwww| 精品人妻熟女av久视频| 插逼视频在线观看| 欧美成人a在线观看| 国产伦理片在线播放av一区| 激情五月婷婷亚洲| 青春草视频在线免费观看| 一区二区av电影网| 午夜精品国产一区二区电影| 成人黄色视频免费在线看| 国产精品99久久99久久久不卡 | 国产成人精品福利久久| 日本av手机在线免费观看| 久久婷婷青草| 在线观看三级黄色| 亚洲国产毛片av蜜桃av| 亚洲国产精品专区欧美| 亚洲美女搞黄在线观看| 一区在线观看完整版| 最近的中文字幕免费完整| 欧美日韩一区二区视频在线观看视频在线| 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 中国国产av一级| 日韩电影二区| 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| 午夜福利在线在线| 狂野欧美激情性bbbbbb| 日本-黄色视频高清免费观看| 少妇猛男粗大的猛烈进出视频| 国产伦理片在线播放av一区| 久久ye,这里只有精品| 国产色婷婷99| 亚洲自偷自拍三级| 国产一区有黄有色的免费视频| 少妇人妻 视频| 国产无遮挡羞羞视频在线观看| 国内少妇人妻偷人精品xxx网站| 国语对白做爰xxxⅹ性视频网站| 国产欧美亚洲国产| av国产精品久久久久影院| 亚洲欧美成人精品一区二区| 国产亚洲欧美精品永久| 国产色婷婷99| 久久久久久伊人网av| 国产91av在线免费观看| 99热国产这里只有精品6| 人妻系列 视频| 亚洲av欧美aⅴ国产| 中文字幕精品免费在线观看视频 | 亚洲精品日本国产第一区| 亚洲成人av在线免费| 久久6这里有精品| 久久av网站| 97在线视频观看| 日韩视频在线欧美| 午夜激情久久久久久久| 男人添女人高潮全过程视频| 久久人人爽人人爽人人片va| 精品亚洲成国产av| 亚洲一级一片aⅴ在线观看| 欧美成人午夜免费资源| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 最黄视频免费看| 国产无遮挡羞羞视频在线观看| 亚洲精品乱码久久久久久按摩| 男人爽女人下面视频在线观看| 全区人妻精品视频| 高清欧美精品videossex| 久久国产精品大桥未久av | 亚洲精品乱码久久久v下载方式| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o| 国产永久视频网站| 最近的中文字幕免费完整| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 国产男女超爽视频在线观看| 午夜老司机福利剧场| 久久女婷五月综合色啪小说| av国产久精品久网站免费入址| 亚洲色图av天堂| 高清不卡的av网站| 看十八女毛片水多多多| 久久97久久精品| 日韩国内少妇激情av| 青青草视频在线视频观看| 日日摸夜夜添夜夜添av毛片| 成人影院久久| 国产精品国产av在线观看| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 激情五月婷婷亚洲| 熟女av电影| av一本久久久久| 久久久精品免费免费高清| 国产男女内射视频| 少妇的逼水好多| 久久久精品94久久精品| 熟女av电影| 国产精品精品国产色婷婷| 91精品一卡2卡3卡4卡| 噜噜噜噜噜久久久久久91| 欧美变态另类bdsm刘玥| 亚洲国产精品一区三区| 亚洲无线观看免费| 国产黄片视频在线免费观看| 亚洲中文av在线| 国国产精品蜜臀av免费| 精品人妻一区二区三区麻豆| 久久久久久久久大av| 99热这里只有精品一区| 午夜福利在线在线| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩在线中文字幕| 性色av一级| 欧美日韩在线观看h| 美女视频免费永久观看网站| 免费观看a级毛片全部| 如何舔出高潮| 国产伦精品一区二区三区视频9| 亚洲不卡免费看| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久| 黑人高潮一二区| 成人美女网站在线观看视频| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 最近中文字幕高清免费大全6| 亚洲国产日韩一区二区| 亚洲婷婷狠狠爱综合网| 精品熟女少妇av免费看| 国产人妻一区二区三区在| 国产永久视频网站| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 亚洲精品国产av蜜桃| 日韩不卡一区二区三区视频在线| 涩涩av久久男人的天堂| 久久人人爽人人爽人人片va| 人人妻人人看人人澡| 亚洲av电影在线观看一区二区三区| 亚洲性久久影院| 校园人妻丝袜中文字幕| 一个人看的www免费观看视频| 欧美xxxx黑人xx丫x性爽| 熟女电影av网| 国产 精品1| 久久久午夜欧美精品| 国产69精品久久久久777片| 日本色播在线视频| 国产乱人偷精品视频| 国产精品国产三级国产av玫瑰| 在线观看一区二区三区激情| 久久久精品94久久精品| 99re6热这里在线精品视频| 亚洲,一卡二卡三卡| 三级经典国产精品| 国产亚洲精品久久久com| 纵有疾风起免费观看全集完整版| 久久久久性生活片| av国产免费在线观看| 内地一区二区视频在线| 日韩三级伦理在线观看| 小蜜桃在线观看免费完整版高清| 校园人妻丝袜中文字幕| 久久久久久久久久人人人人人人| 五月天丁香电影| 日韩av在线免费看完整版不卡| 美女高潮的动态| 美女主播在线视频| 最近最新中文字幕大全电影3| 中文精品一卡2卡3卡4更新| 国产av一区二区精品久久 | 成年女人在线观看亚洲视频| 成人漫画全彩无遮挡| 久久鲁丝午夜福利片| 99久久综合免费| 久久人妻熟女aⅴ| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 伊人久久国产一区二区| 国产男女内射视频| 伊人久久精品亚洲午夜| 国产免费视频播放在线视频| 精品熟女少妇av免费看| 少妇 在线观看| 深夜a级毛片| 国产深夜福利视频在线观看| 啦啦啦在线观看免费高清www| 人人妻人人看人人澡| 黄色怎么调成土黄色| 免费av不卡在线播放| 亚洲av免费高清在线观看| 久久精品人妻少妇| 久久久久久久大尺度免费视频| 日本vs欧美在线观看视频 | 欧美精品一区二区大全| 干丝袜人妻中文字幕| 亚洲欧美成人综合另类久久久| 丝袜喷水一区| 国产高清国产精品国产三级 | 日本欧美国产在线视频| 汤姆久久久久久久影院中文字幕| 国产91av在线免费观看| 777米奇影视久久| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区成人| av.在线天堂| 狂野欧美白嫩少妇大欣赏| 亚洲精品日韩av片在线观看| 观看免费一级毛片| 又粗又硬又长又爽又黄的视频| kizo精华| 亚洲成人手机| 欧美精品人与动牲交sv欧美| 91精品国产九色| 色吧在线观看| kizo精华| 18禁在线无遮挡免费观看视频| 高清黄色对白视频在线免费看 | 亚洲,欧美,日韩| 18禁在线无遮挡免费观看视频| 国产免费一级a男人的天堂| 建设人人有责人人尽责人人享有的 | 高清不卡的av网站| 寂寞人妻少妇视频99o| 免费在线观看成人毛片| 日本wwww免费看| 精品一品国产午夜福利视频| 亚洲精品久久午夜乱码| 国产熟女欧美一区二区| 久久久久性生活片| 久久久成人免费电影| h视频一区二区三区| 精品少妇久久久久久888优播| 插逼视频在线观看| 人妻系列 视频| 国产伦精品一区二区三区视频9| 大又大粗又爽又黄少妇毛片口| 超碰av人人做人人爽久久| 亚洲成人av在线免费| 最近2019中文字幕mv第一页| 又大又黄又爽视频免费| 亚洲丝袜综合中文字幕| 国精品久久久久久国模美| 制服丝袜香蕉在线| 国产精品久久久久久精品古装| 一级毛片 在线播放| 午夜免费男女啪啪视频观看| 大片免费播放器 马上看| 欧美精品人与动牲交sv欧美| 国产欧美日韩一区二区三区在线 | 久久久成人免费电影| 久热这里只有精品99| 精品少妇久久久久久888优播| 欧美日韩一区二区视频在线观看视频在线| 三级国产精品片| 99热网站在线观看| 国产精品不卡视频一区二区| 日韩欧美精品免费久久| 午夜日本视频在线| 尤物成人国产欧美一区二区三区| 国产精品爽爽va在线观看网站| 亚洲成色77777| 亚洲欧美中文字幕日韩二区| 精品国产乱码久久久久久小说| 日韩视频在线欧美| 啦啦啦中文免费视频观看日本| 成年美女黄网站色视频大全免费 | 国产美女午夜福利| 最新中文字幕久久久久| 秋霞伦理黄片| 六月丁香七月| 日韩av在线免费看完整版不卡| 丝瓜视频免费看黄片| 一级毛片电影观看| 亚洲成人av在线免费| 99热全是精品| 99久久中文字幕三级久久日本| 国产伦理片在线播放av一区| 春色校园在线视频观看| 日本av免费视频播放| 99热这里只有是精品50| 最近中文字幕高清免费大全6| 在线看a的网站| 特大巨黑吊av在线直播| 精品久久久久久久久av| 成人亚洲精品一区在线观看 | 国产成人精品久久久久久| 嘟嘟电影网在线观看| 啦啦啦在线观看免费高清www| 国产一区二区三区综合在线观看 | 国产真实伦视频高清在线观看| 久久久久久久亚洲中文字幕| 亚洲精品久久午夜乱码| 边亲边吃奶的免费视频| 九九爱精品视频在线观看| 精品一区在线观看国产| 99视频精品全部免费 在线| 国产乱来视频区| 18禁裸乳无遮挡动漫免费视频| 欧美激情国产日韩精品一区| 中文乱码字字幕精品一区二区三区| 国产一区二区在线观看日韩| 成人午夜精彩视频在线观看| 国模一区二区三区四区视频| 日本与韩国留学比较| 亚洲av成人精品一区久久| 久久青草综合色| 国内少妇人妻偷人精品xxx网站| 高清毛片免费看| 国产精品一区二区在线不卡| 免费观看在线日韩| 亚洲av不卡在线观看| 黑人猛操日本美女一级片| 亚洲中文av在线| 99久久精品国产国产毛片| 日韩av不卡免费在线播放| 高清欧美精品videossex| 欧美高清性xxxxhd video| 九九久久精品国产亚洲av麻豆| 亚洲国产精品国产精品| 一级毛片 在线播放| 欧美97在线视频| 青春草亚洲视频在线观看| 国产毛片在线视频| 欧美性感艳星| 精品酒店卫生间| 美女cb高潮喷水在线观看| 亚洲欧美日韩无卡精品| 成年女人在线观看亚洲视频| 国模一区二区三区四区视频| 国产真实伦视频高清在线观看| 亚洲丝袜综合中文字幕| 能在线免费看毛片的网站| 成人黄色视频免费在线看| 日韩欧美一区视频在线观看 | 99热6这里只有精品| 黑人高潮一二区| 国产精品.久久久| 麻豆精品久久久久久蜜桃| 亚洲av福利一区| 久久女婷五月综合色啪小说| 热re99久久精品国产66热6| 精品久久久久久久久av| 美女脱内裤让男人舔精品视频| 香蕉精品网在线| 91久久精品国产一区二区三区| 精品熟女少妇av免费看| 久久久久久人妻| 免费大片18禁| 国产永久视频网站| av在线老鸭窝| 天天躁日日操中文字幕|