• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    2017-06-01 11:35:04DilipMiynjiAustinLssellThomsStrrBrentStuker
    Defence Technology 2017年2期

    J.J.S.Dilip*,H.MiynjiAustin LssellThoms L.Strr,Brent Stuker

    aRapid Prototyping Center,Department of Industrial Engineering,University of Louisville,Louisville,KY 40292,USA

    bDepartment of Chemical Engineering,University of Louisville,Louisville,KY 40292,USA

    c3DSIM,1794 Olympic Parkway,Suite 110,Park City,UT 84098,USA

    A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    J.J.S.Dilipa,*,H.Miyanajia,Austin Lassella,Thomas L.Starrb,Brent Stuckerc

    aRapid Prototyping Center,Department of Industrial Engineering,University of Louisville,Louisville,KY 40292,USA

    bDepartment of Chemical Engineering,University of Louisville,Louisville,KY 40292,USA

    c3DSIM,1794 Olympic Parkway,Suite 110,Park City,UT 84098,USA

    A R T I C L E I N F O

    Article history:

    Received 24 May 2016

    Accepted 23 August 2016

    Available online 3 September 2016

    Additive manufacturing

    Binder jetting

    Intermetallic

    Titanium aluminide

    Reactive sintering

    The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti-6Al-4V and Al powders.This approach uses a binder jetting additive manufacturing process followed by reactive sintering.The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

    ?2016 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Titanium-aluminides(TiAl)have low density(3.9 g/cm3),good high temperature strength and superior resistance to oxidation (above 750°C)giving them the potential to be used as light weight and high-temperature structural materials[1,2].As such,these properties make the material quite attractive for aerospace and automobile applications.Recently,porous TiAl alloys are also being considered for high temperature liquid and gas separation filters [3].TiAl alloys of technical signi ficance have the general composition of Ti-Al(42-49)-X(0.1-1.0),where X represents alloying elements such as Cr,Nb,W,V,Ta,Si,B,and C[2,4].Currently,large scale processing methods such as ingot casting,powder processing and ingot forging,sheet production by hot-rolling,powder metallurgy processing,investment casting and permanent mold casting are used to fabricate TiAl.However,these conventional methods pose signi ficant challenges in processing of the alloy leading to higher production costs[1,2].Given the ordered tetragonal structure and strong bonding between Ti and Al,the alloy is inherently brittle,making machining and shaping dif ficult[1].To overcome such problems net-shape fabrication technologies such as powder metallurgy have been considered[2].

    Additive manufacturing(AM)is advantageous for a number of reasons,including extensive design freedom in terms of geometry. Recent work have focused on the use of selective laser melting and electron beam melting AM processes to fabricate TiAl parts[5,6]. However,these processes encounter problems because they inherently involve melting and solidification stages.Also these processes suffer a variety of metallurgical problems such as solid state cracking due to thermal stresses from the inherent brittleness of as-cast TiAl microstructures[5-7].In contrast,binder jetting avoids these problems as it is a low temperature process.In binder jetting powder is deposited layer by layer and binder is applied in the regions of interest,creating a green part directly from a CAD model.Subsequently,the green part from the printer is oven cured and sintered[7,8].

    This study evaluates the feasibility of fabricating titanium aluminide(TiAl)parts by using Ti-6Al-4V and Al powders via binder jetting followed by a reactive sintering treatment.This route to produce TiAl intermetallic alloy parts can be economical when compared to the use of TiAl powders since TiAl powder is very expensive.

    2.Materials and methods

    In the present study two metal powders were used;atomized Al (Pyrochem,USA)and Ti-6Al-4V(Raymor-Grade 23)powders withaverage particle size near 30μm and 45μm respectively.The powders were mixed in equi-atomic proportion(by Wt%)Al to achieve TiAl after sintering.The ExOne binder jetting printer was used to build 3D parts of 10×10×3 mm in size.The parameters used during binder jetting are as follows:100μm layer thickness, 60%binder drying power,45 s dry time,jet feed rate 2 mm/min and 60%binder saturation level.The binder used for the experiment was“ExOne PM-B-SR1-04”,an ether solvent based binder.The green parts from the printer were carefully loaded into an oven to cure the binder at 200°C for 2 h.The cured parts were then subjected to reactive sintering at temperatures of 600°C and 800°C for 6 h,as well as 1000°C for 6 h and 24 h in nitrogen atmosphere. Microstructural characterization of the powders and sintered parts was carried out using SEM equipped with EDS.Phase analysis of the steel powder and as-built samples were characterized using X-Ray Diffraction with Cu-Kαradiation(λ=1.54 A°).The phases formed were identi fied by comparison of the recorded diffraction peaks with the ICDD database.Density of the sintered parts was measured using the Archimedes method according to ASTM B962-08.

    Fig.1.SEM micrographs showing morphology of(a)Al powder and(b)Ti-6Al-4V powder used.

    3.Results and discussion

    The size and morphology of the powders can be observed from the SEM micrographs presented in Fig.1.The Al powder particles (Fig.1(a))are irregular in shape,whereas the Ti-6Al-4V alloy powder particles(Fig.1(b))are spherical in shape in a bimodal distribution.

    Fig.2(a)shows the samples sintered at different temperatures. The samples sintered at 600°C appear bright(gray),whereas the samples sintered at higher temperatures appear black.This change in luster is attributed to the reaction products formed during sintering.The surface morphology of the sample sintered at 600°C is presented in Fig.2(b).The micrograph shows predominantly unreacted Al(irregular)and Ti-6Al-4V(spherical)particles.On any given Ti-6Al-4V particle,conical structures can be seen growing on the surface and interconnecting neighboring Ti-6Al-4V particles together.EDS analysis indicates these interconnecting channels have the composition of TiAl3.Fig.2(c)shows the surface morphology of a sample sintered at 800°C for 6 h.Clearly,the surfaces of the particles appear different(grainier)than those sintered at 600°C.The in-set in Fig.2(c)shows a high magni fication micrograph revealing the surface texture.Given the sinteringtemperature was above the melting temperature of Al,liquid phase sintering occurs.The Ti-6Al-4V particles retain the original spherical morphology and the surface contains reaction product. EDS analysis on the surface con firms the presence of TiAl3.Initially, Ti atoms on the surface will dissolve in liquid Al and the Ti enriched solution will recast onto the sintered particles,resulting in TiAl3. The appearance of small globular features(due to surface tension) on the sintered particle surfaces indicate recasting has occurred.

    Fig.2.(a)Photograph of sintered samples.SEM micrographs showing surface morphology of samples sintered for 6 h at 600°C(b),800°C(c)and 1000°C(d).High magni fication micrographs are shown in the in-sets.

    At the melting temperature of Al,the diffusion of Al in Ti is 75×10-3mm/s while the diffusion of Ti in the Al is 66×10-3mm/s [3].Given the higher diffusion of Al atoms into Ti particles the result is the enrichment of Al,which aids in forming TiAl3on/below the surface of the sintered particle[2,3,6,9,10].As time progresses all the liquid Al will be consumed and an Al rich intermetallic layer grows and thickens on the sintered particle.Subsequently,Al diffuses inwards and Ti-Al intermetallics evolve in different layers.The samples sintered at 1000°C for 6 h and 24 h also showed similar grainy/globular morphology and the presence of TiAl3on the particle surfaces.Since the samples sintered at 600°C and 800°C were fragile,further microstructural characterization was carried out only on samples sintered at 1000°C.

    Fig.3.An SEM(BSE)micrograph of the polished cross-section of a sample sintered at 1000°C for 6 h.(a)Low magni fication micrograph showing overall microstructural features. (b)Individual particle cross-section showing different layers of reaction products.(c)High magni fication micrograph showing finer features at the first and second layer interface.

    Fig.3 shows the cross-section SEM back scattered electron(BSE) micrograph of the sample sintered at 1000°C for 6 h.Fig.3(a) shows a low magni fication micrograph indicating particles being fused together by a mixture of TiAl3+TiAl(Fig.3(c)).Multiple layers, five in total,within the Ti-6Al-4V particle can be clearly observed from Fig.3(b).The micrograph shows the variation in contrast caused by the composition changes from layer to layer.At least ten EDS spot analyses were performed on each of these layers.The outer periphery consists of a higher percentage of Al with a dark gray background against a white network(Fig.3(c)),which corresponds to the mixture of TiAl3(73%-75%Al,25%-27%Ti by Wt%) and TiAl respectively.The second layer appears as a lighter gray ring,which has the composition of TiAl+Ti3Al(34%-38%Al,62%-65%Ti by Wt%).The third layer corresponds to the composition of TiAl3,which is the predominant phase.The fourth layer corresponds to TiAl(48%-50%Al,48%-52%Ti by Wt%).The inner core has an irregular shape and was identi fied as Ti3Al.

    Earlier studies on reaction synthesis of TiAl[9-11]from elemental Ti and Al powders were based on the Ti-Al phase diagram,and the sequence of formation of the intermetallics is as follows

    Ti+Al→TiAl3→TiAl2→TiAl→Ti3Al

    Lee et al.synthesized TiAl from elemental powders and also observed multiple layers of intermediate phases in the reacting constituents[10].However,in the present study,the presence of TiAl3in the third layer was unexpected according to the Ti-Al phase diagram.This can be explained by the variation in interdiffusion rates of Ti in Al through the second layer(TiAl+Ti3Al), and also the sintering time was not suf ficient for homogenization of the composition throughout the particle.Mishin and Hertzig reported the inter-diffusion of these elements in TiAl,and concluded that Al diffuses faster than Ti through TiAl[10].Therefore,enrichment of Al%in the close proximity of TiAl,and simultaneous diffusion of Ti toward the outer surface,results in the formation of TiAl3.Hence,to homogenize the composition and to form TiAl throughout,the samples were sintered for 24 h at 1000°C.SEMBSE micrographs of the cross-section of a sample sintered for 24 h are presented in Fig.4.

    Fig.4(a)shows a typical inter-particle neck region.It can be clearly seen that the bonding region was the result of the overlap of the TiAl+Ti3Al layers of the individual particles.The original outer periphery,seen in Fig.3(a),composed of TiAl3,was consumed resulting in the formation of TiAl+Ti3Al.Fig.4(b)shows three layers in the particle cross-section micrograph.The outer layer still consists of a very thin layer of TiAl3+TiAl,however,the thickness of the outer layer was lower when compared to the 6 h sintered sample (Fig.3(c)).The second layer in Fig.4(b)has a composition of 34%-40%Al and 60%-66%Ti making up TiAl+Ti3Al.The inner core region corresponds to the composition of intermetallic TiAl(42%-44%Al, 56%-54%Ti).Fig.4(c)shows a high magni fication micrograph of the cross-section of a sintered particle revealing bright isolated, irregular shaped regions.These regions were observed to be enriched with vanadium as indicated by EDS analysis.Duringreactive sintering and thermal treatment,vanadium present as solid solution in the alloy Ti-6Al-4V was observed to segregate to certain random areas within the sintered particles.This is a consequence of lower solubility of vanadium in the intermetallic phases relative to the high solubility in beta titanium at the sintering temperature.XRD analysis on these samples also reveals the presence of V-Al intermetallic(Fig.5).

    Fig.4.SEM(BSE)micrograph of the as-polished cross-section of a sample sintered at 1000°C for 24 h.(a)Region showing the inter-particle bonding region.(b)An individual particle cross-section showing multiple layers.

    Phase analysis was performed on the as-mixed powders and the sintered sample using X-ray diffraction.An XRD pattern of the powder mixture of Ti-6Al-4V and Al is presented in Fig.5(a).It can be observed that only elemental Ti and Al peaks were present in the XRD pattern.Fig.5(b)shows the XRD pattern of the sample sintered at 1000°C for 24 h.XRDshows the presence of various intermetallic phases formed during reactive sintering.The final microstructure consists of TiAl along with other intermetallic phases such as Al2Ti, Al3Ti,All1V,Al8V5,and Ti3Al.The vanadium rich regions correspond to Al11V and/or Al8V5phase in the microstructure shown in Fig.4(c).The XRD results agree with the SEM analysis of the sintered samples.The density of the part sintered at 1000°C for 6 h and 24 h was 3.34 g/cm3 and 3.45 g/cm3 respectively.Further detailed investigation into the phase evolution,reaction kinetics, and evaluation of mechanical properties is necessary to establish and scale up the process for mass production.

    Fig.5.X-ray diffraction patterns(a)as mixed Ti-6Al-4V powder and Al powder and (b)sample sintered at 1000°C for 24 h.

    4.Conclusions

    This study focused on the fabrication of porous,additive manufactured parts in the TiAl intermetallic alloy.The work reports initial results and evaluates the feasibility of the new approach through the use of a binder jetting process followed by reactive sintering.During high temperature liquid phase sintering Al initially reacts with Ti-6Al-4V particle surfaces and forms Al3Ti. As the sintering time progresses Al diffuses into the Ti-6Al-4V particle and forms TiAl.Microstructural investigation and phase analysis revealed the evolution of a TiAl intermetallic phase along with various other intermediate phases.The present investigation demonstrates that the proposed new approach is capable of producing TiAl intermetallic alloy parts directly from separate Ti-6Al-4V and Al powders using a versatile additive manufacturing method.

    [1]Welsch G,Boyer R,Collings EW.Materials properties handbook:titanium alloys.Materials Park(OH):ASM International;1993.

    [2]Appel F,Paul JDH,Oehring M.Gamma titanium aluminide alloys:science and technology.John Wiley&Sons;2011.

    [3]Tan P,Tang HP,Kang XT,Wang QB,Zhu JL,Li C,et al.Research on TiAl alloy porous metal flow restrictors.Mater Trans 2009;50(10):2484-7.

    [4]Fu-Sheng S,Cao C,Yan M,Kim S,Yong T.Alloying mechanism of beta stabilizers in a TiAl alloy.Metall Mater Trans A 2001;32(7):1573-89.

    [5]Loeber L,Biamino S,Ackelid U,Sabbadini S,Epicoco P,Fino P,et al.Comparison of selective laser and electron beam melted titanium aluminides in solid freeform fabrication proceedings.Austin:University of Texas;2011.

    [6]Murr LE,Gaytan SM,Ceylan A,Martinez E,Martinez JL,Hernandez DH,et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting.Acta Mater 2010;58: 1887-94.

    [7]Gibson I,Rosen DW,Stucker B.Additive manufacturing technologies:rapid prototyping to direct digital manufacturing.New York:Springer;2010.

    [8]Miyanaji H,Zhang S,Lassell A,Zandinejad A,Yang L.Process development of porcelain ceramic material with binder jetting process for dental applications. J Miner Met Mater Soc 2016;11:1543-851.

    [9]Lee TW,Lee CH.The effect of heating rate on the reactive sintering of Ti-48%Al elemental powder mixture.J Mater Sci Lett 1998;17:1367-70.

    [10]Mishin Y,Herzig C.Diffusion in the Ti-Al system.Acta Mater 2000;48: 589-623.

    [11]Novoselova T,Celotto S,Morgan R,Fox P,O’Neill W.Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits.J Alloys Compd 2007;436:69-77.

    *Corresponding author.

    E-mail address:samueldilip@gmail.com(J.J.S.Dilip).

    Peer review under responsibility of China Ordnance Society.

    妹子高潮喷水视频| 一二三四在线观看免费中文在| 国产精品九九99| 日韩免费av在线播放| 亚洲av成人一区二区三| 日本撒尿小便嘘嘘汇集6| 欧美色视频一区免费| a在线观看视频网站| а√天堂www在线а√下载| 精华霜和精华液先用哪个| 欧美不卡视频在线免费观看 | 免费看a级黄色片| 色婷婷久久久亚洲欧美| 精品国内亚洲2022精品成人| 亚洲成a人片在线一区二区| 他把我摸到了高潮在线观看| 国产午夜福利久久久久久| 国产精品1区2区在线观看.| 欧美日韩瑟瑟在线播放| 老鸭窝网址在线观看| 亚洲av美国av| 人人妻人人澡欧美一区二区| 老熟妇乱子伦视频在线观看| 国内精品久久久久精免费| 一本久久中文字幕| 久久久久久大精品| 亚洲自偷自拍图片 自拍| 国产精品美女特级片免费视频播放器 | 一区福利在线观看| 婷婷亚洲欧美| 黑人欧美特级aaaaaa片| 精品熟女少妇八av免费久了| 精品国产乱码久久久久久男人| 亚洲精品久久成人aⅴ小说| 亚洲国产高清在线一区二区三 | 国产亚洲精品一区二区www| 欧美日韩亚洲国产一区二区在线观看| 俺也久久电影网| 一个人观看的视频www高清免费观看 | 怎么达到女性高潮| 夜夜夜夜夜久久久久| 18禁黄网站禁片午夜丰满| 日日干狠狠操夜夜爽| 一二三四社区在线视频社区8| 男女做爰动态图高潮gif福利片| 男女下面进入的视频免费午夜 | 国产精品亚洲一级av第二区| xxx96com| 欧美成人免费av一区二区三区| 久久精品国产99精品国产亚洲性色| 在线看三级毛片| 一本久久中文字幕| 波多野结衣高清作品| 人人妻人人澡欧美一区二区| 色老头精品视频在线观看| 一级毛片高清免费大全| 50天的宝宝边吃奶边哭怎么回事| 91老司机精品| 国产激情久久老熟女| 国内精品久久久久久久电影| 别揉我奶头~嗯~啊~动态视频| 午夜亚洲福利在线播放| 亚洲av成人av| 99精品欧美一区二区三区四区| 亚洲激情在线av| 午夜免费成人在线视频| 欧美 亚洲 国产 日韩一| 中文字幕最新亚洲高清| 欧美国产日韩亚洲一区| 丰满人妻熟妇乱又伦精品不卡| 色综合亚洲欧美另类图片| 亚洲精品中文字幕在线视频| www日本在线高清视频| 久久 成人 亚洲| 亚洲天堂国产精品一区在线| 欧美一级毛片孕妇| 欧美日韩福利视频一区二区| 香蕉国产在线看| 日日摸夜夜添夜夜添小说| 一本久久中文字幕| 久久中文字幕一级| 亚洲精品久久国产高清桃花| 国产成人精品无人区| 一区福利在线观看| ponron亚洲| 日本成人三级电影网站| 欧美日本视频| 国产aⅴ精品一区二区三区波| x7x7x7水蜜桃| 久久久久九九精品影院| 99国产综合亚洲精品| 久久久久久久久久黄片| 亚洲真实伦在线观看| 身体一侧抽搐| 一二三四在线观看免费中文在| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱码精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 在线观看午夜福利视频| 丝袜美腿诱惑在线| 少妇裸体淫交视频免费看高清 | 色综合婷婷激情| 成人精品一区二区免费| 热re99久久国产66热| 色综合婷婷激情| 人妻丰满熟妇av一区二区三区| 桃色一区二区三区在线观看| 中国美女看黄片| 51午夜福利影视在线观看| 欧美黑人巨大hd| a在线观看视频网站| 国产成人精品久久二区二区91| 中文字幕人妻丝袜一区二区| 国产av一区二区精品久久| 丁香欧美五月| 91麻豆精品激情在线观看国产| 亚洲国产欧洲综合997久久, | 午夜成年电影在线免费观看| 免费在线观看成人毛片| 欧美色视频一区免费| 日韩一卡2卡3卡4卡2021年| 母亲3免费完整高清在线观看| 搡老妇女老女人老熟妇| 啪啪无遮挡十八禁网站| 俺也久久电影网| 国产色视频综合| 制服诱惑二区| 精品久久久久久久末码| 啪啪无遮挡十八禁网站| 国内精品久久久久久久电影| 午夜福利成人在线免费观看| 日本一本二区三区精品| 精品国产乱子伦一区二区三区| 成人国语在线视频| 非洲黑人性xxxx精品又粗又长| 精品熟女少妇八av免费久了| 欧美人与性动交α欧美精品济南到| 欧美乱妇无乱码| 禁无遮挡网站| 日韩大码丰满熟妇| 91国产中文字幕| 一进一出抽搐动态| 久久久国产成人免费| 1024视频免费在线观看| 精品免费久久久久久久清纯| 久久久精品欧美日韩精品| 99在线人妻在线中文字幕| 亚洲成av片中文字幕在线观看| 国产av一区二区精品久久| 在线永久观看黄色视频| 午夜福利欧美成人| 国产主播在线观看一区二区| 黄色女人牲交| 久久精品影院6| 免费高清视频大片| 88av欧美| 免费高清视频大片| 听说在线观看完整版免费高清| 两个人视频免费观看高清| 嫁个100分男人电影在线观看| 久久九九热精品免费| 欧美日韩一级在线毛片| 亚洲欧美激情综合另类| 成人18禁在线播放| 亚洲av中文字字幕乱码综合 | 国产一区在线观看成人免费| 国产三级在线视频| 午夜免费成人在线视频| 亚洲欧美日韩无卡精品| 欧美黑人欧美精品刺激| 久久久久久国产a免费观看| 成人午夜高清在线视频 | 脱女人内裤的视频| 久久久久久久久中文| 日韩欧美在线二视频| 老司机午夜福利在线观看视频| 女人被狂操c到高潮| 男人操女人黄网站| 成人手机av| 免费看日本二区| 久久人妻福利社区极品人妻图片| 日本 欧美在线| av福利片在线| 午夜老司机福利片| 男女那种视频在线观看| 国产黄片美女视频| 亚洲熟女毛片儿| 久久人人精品亚洲av| 亚洲激情在线av| 99精品欧美一区二区三区四区| 国产精品av久久久久免费| 国产成人影院久久av| 国产成人一区二区三区免费视频网站| 一本精品99久久精品77| 亚洲av五月六月丁香网| 日韩欧美 国产精品| 最好的美女福利视频网| 国产私拍福利视频在线观看| 俄罗斯特黄特色一大片| 日韩高清综合在线| 国产日本99.免费观看| 天堂影院成人在线观看| 女性被躁到高潮视频| 国产成人欧美| 波多野结衣高清无吗| 亚洲,欧美精品.| 亚洲一码二码三码区别大吗| 别揉我奶头~嗯~啊~动态视频| 成人三级做爰电影| 麻豆一二三区av精品| 少妇 在线观看| 久久欧美精品欧美久久欧美| 香蕉av资源在线| 老鸭窝网址在线观看| 国内精品久久久久久久电影| √禁漫天堂资源中文www| 日日夜夜操网爽| 精品国产超薄肉色丝袜足j| 午夜a级毛片| 久久香蕉国产精品| 夜夜爽天天搞| 日韩一卡2卡3卡4卡2021年| 可以在线观看毛片的网站| 日韩中文字幕欧美一区二区| 巨乳人妻的诱惑在线观看| 淫秽高清视频在线观看| 亚洲色图 男人天堂 中文字幕| 精品久久久久久久久久久久久 | av电影中文网址| 午夜免费成人在线视频| videosex国产| av福利片在线| 禁无遮挡网站| e午夜精品久久久久久久| 精品一区二区三区av网在线观看| 女性被躁到高潮视频| 精品电影一区二区在线| 国产私拍福利视频在线观看| 18禁美女被吸乳视频| 国产麻豆成人av免费视频| 亚洲欧洲精品一区二区精品久久久| 女性被躁到高潮视频| 久久久久亚洲av毛片大全| 18禁国产床啪视频网站| 久久中文字幕一级| 成人手机av| 欧美一级毛片孕妇| 热re99久久国产66热| 老司机靠b影院| 久久国产精品男人的天堂亚洲| 99精品欧美一区二区三区四区| 夜夜爽天天搞| 国产精品亚洲av一区麻豆| 久久 成人 亚洲| 久久香蕉精品热| 国产男靠女视频免费网站| 亚洲成av片中文字幕在线观看| 欧美黑人巨大hd| 在线av久久热| 国产亚洲精品一区二区www| 黑人巨大精品欧美一区二区mp4| 午夜福利在线在线| 宅男免费午夜| 精品国产乱码久久久久久男人| 日韩有码中文字幕| 观看免费一级毛片| 亚洲色图av天堂| 欧美日本亚洲视频在线播放| 亚洲国产欧洲综合997久久, | 久久热在线av| 好看av亚洲va欧美ⅴa在| 亚洲国产欧美日韩在线播放| 在线永久观看黄色视频| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| 超碰成人久久| 美女午夜性视频免费| 大型av网站在线播放| 日本在线视频免费播放| 成年版毛片免费区| 精品国产一区二区三区四区第35| 中文字幕另类日韩欧美亚洲嫩草| 女人被狂操c到高潮| 久久久久精品国产欧美久久久| 国产成人精品久久二区二区免费| 久久婷婷成人综合色麻豆| 18禁国产床啪视频网站| 国产精品 国内视频| 法律面前人人平等表现在哪些方面| 日本熟妇午夜| 91成人精品电影| 亚洲狠狠婷婷综合久久图片| 国产成人一区二区三区免费视频网站| 国产久久久一区二区三区| 在线国产一区二区在线| 久久久久免费精品人妻一区二区 | 免费看a级黄色片| 免费看美女性在线毛片视频| www国产在线视频色| 女性被躁到高潮视频| 一a级毛片在线观看| 免费搜索国产男女视频| 亚洲第一欧美日韩一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲自拍偷在线| 极品教师在线免费播放| 非洲黑人性xxxx精品又粗又长| 看片在线看免费视频| 麻豆久久精品国产亚洲av| 免费电影在线观看免费观看| 18美女黄网站色大片免费观看| 午夜成年电影在线免费观看| 婷婷亚洲欧美| 一区福利在线观看| cao死你这个sao货| 成人三级做爰电影| 757午夜福利合集在线观看| 97人妻精品一区二区三区麻豆 | 久久亚洲真实| 可以免费在线观看a视频的电影网站| 欧美 亚洲 国产 日韩一| 亚洲自拍偷在线| 国产亚洲欧美在线一区二区| 久久性视频一级片| 婷婷丁香在线五月| 不卡av一区二区三区| 精华霜和精华液先用哪个| 18禁美女被吸乳视频| 狂野欧美激情性xxxx| 9191精品国产免费久久| 男人舔奶头视频| 亚洲av日韩精品久久久久久密| 亚洲色图 男人天堂 中文字幕| 欧美另类亚洲清纯唯美| 女同久久另类99精品国产91| avwww免费| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 美女午夜性视频免费| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕精品亚洲无线码一区 | 国产精品亚洲一级av第二区| 久热这里只有精品99| 精品久久久久久久末码| 精品久久久久久久久久久久久 | 午夜福利18| 日日干狠狠操夜夜爽| 国产精品 欧美亚洲| 变态另类成人亚洲欧美熟女| 两个人免费观看高清视频| 久久精品91无色码中文字幕| 欧美大码av| 悠悠久久av| 亚洲熟妇熟女久久| 日韩有码中文字幕| 99国产精品99久久久久| 亚洲真实伦在线观看| 制服丝袜大香蕉在线| 桃色一区二区三区在线观看| 一本大道久久a久久精品| 一级a爱片免费观看的视频| 成人午夜高清在线视频 | 亚洲欧美日韩无卡精品| 叶爱在线成人免费视频播放| 亚洲成国产人片在线观看| 免费在线观看视频国产中文字幕亚洲| 村上凉子中文字幕在线| 亚洲精品中文字幕一二三四区| 法律面前人人平等表现在哪些方面| 日韩精品中文字幕看吧| 国产精品久久久人人做人人爽| 18美女黄网站色大片免费观看| 欧美大码av| 12—13女人毛片做爰片一| a级毛片a级免费在线| 午夜激情福利司机影院| 波多野结衣巨乳人妻| 婷婷六月久久综合丁香| 香蕉国产在线看| 亚洲av片天天在线观看| 久久精品夜夜夜夜夜久久蜜豆 | www日本黄色视频网| 亚洲国产欧美一区二区综合| 国产高清videossex| 欧美亚洲日本最大视频资源| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 国产精品国产高清国产av| 亚洲成人国产一区在线观看| 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 黄色女人牲交| 亚洲人成电影免费在线| 香蕉久久夜色| 日韩成人在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 女人被狂操c到高潮| 精品国产亚洲在线| 美女高潮到喷水免费观看| 成人亚洲精品av一区二区| 欧美成人午夜精品| 女性生殖器流出的白浆| 桃色一区二区三区在线观看| 中文字幕精品免费在线观看视频| 丰满的人妻完整版| 热99re8久久精品国产| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 真人一进一出gif抽搐免费| 亚洲av五月六月丁香网| 欧美激情 高清一区二区三区| 国产极品粉嫩免费观看在线| 欧美性长视频在线观看| 男女下面进入的视频免费午夜 | 精品久久久久久久末码| 欧美丝袜亚洲另类 | 99国产精品一区二区三区| 99re在线观看精品视频| 一区二区三区精品91| 人人澡人人妻人| 日本五十路高清| 18禁美女被吸乳视频| 两个人看的免费小视频| 大型黄色视频在线免费观看| 国产成人精品无人区| 亚洲天堂国产精品一区在线| 少妇粗大呻吟视频| 午夜亚洲福利在线播放| 欧美中文综合在线视频| 色哟哟哟哟哟哟| 一夜夜www| 国产片内射在线| 久久久久亚洲av毛片大全| 国产高清有码在线观看视频 | 丝袜美腿诱惑在线| 午夜久久久在线观看| 人人妻,人人澡人人爽秒播| 叶爱在线成人免费视频播放| 黄色丝袜av网址大全| 久久久久久人人人人人| 18禁美女被吸乳视频| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 国产一区二区在线av高清观看| 日韩有码中文字幕| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 国产99白浆流出| 大型av网站在线播放| 国产激情偷乱视频一区二区| 国产一区在线观看成人免费| 欧美激情 高清一区二区三区| 中亚洲国语对白在线视频| 十分钟在线观看高清视频www| 精品久久久久久久人妻蜜臀av| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 久久久久久久久免费视频了| 97人妻精品一区二区三区麻豆 | 国产成人啪精品午夜网站| 999精品在线视频| 日韩av在线大香蕉| 国产亚洲精品综合一区在线观看 | 国产成人系列免费观看| 香蕉国产在线看| 亚洲午夜精品一区,二区,三区| 88av欧美| 久久久国产成人精品二区| 亚洲成人免费电影在线观看| 午夜福利免费观看在线| 在线播放国产精品三级| 国产精品影院久久| 欧美在线一区亚洲| 免费在线观看日本一区| avwww免费| 国产极品粉嫩免费观看在线| 曰老女人黄片| 女生性感内裤真人,穿戴方法视频| 精品久久蜜臀av无| 国产男靠女视频免费网站| 在线观看免费午夜福利视频| 又紧又爽又黄一区二区| 免费高清在线观看日韩| 亚洲精品av麻豆狂野| 久久婷婷人人爽人人干人人爱| 在线看三级毛片| 每晚都被弄得嗷嗷叫到高潮| 一本久久中文字幕| 成年版毛片免费区| 一个人观看的视频www高清免费观看 | 亚洲欧洲精品一区二区精品久久久| 日韩欧美国产一区二区入口| 一本一本综合久久| 在线观看66精品国产| 日本免费a在线| 看片在线看免费视频| 岛国视频午夜一区免费看| 国内久久婷婷六月综合欲色啪| 午夜a级毛片| 最近在线观看免费完整版| 久久久久免费精品人妻一区二区 | 国产高清有码在线观看视频 | 99riav亚洲国产免费| 超碰成人久久| av有码第一页| 亚洲精品国产一区二区精华液| 欧美+亚洲+日韩+国产| 久久天躁狠狠躁夜夜2o2o| 日日爽夜夜爽网站| 美女高潮喷水抽搐中文字幕| 午夜老司机福利片| 国产精品99久久99久久久不卡| 国产成人精品无人区| 91老司机精品| 人人妻,人人澡人人爽秒播| 精品欧美国产一区二区三| 国产成+人综合+亚洲专区| 黄片小视频在线播放| 国产又黄又爽又无遮挡在线| av中文乱码字幕在线| 日韩大码丰满熟妇| 亚洲国产高清在线一区二区三 | 麻豆国产av国片精品| 曰老女人黄片| 视频区欧美日本亚洲| 国产精品永久免费网站| 久久久国产欧美日韩av| 国产色视频综合| 亚洲色图av天堂| av在线天堂中文字幕| 九色国产91popny在线| 男女下面进入的视频免费午夜 | 久久伊人香网站| 一区福利在线观看| 无人区码免费观看不卡| 麻豆成人av在线观看| 国产精华一区二区三区| 少妇裸体淫交视频免费看高清 | 午夜激情福利司机影院| 韩国精品一区二区三区| 99热6这里只有精品| 亚洲精品一区av在线观看| 热99re8久久精品国产| 亚洲全国av大片| 亚洲人成伊人成综合网2020| 一级a爱片免费观看的视频| 亚洲欧美精品综合久久99| 99re在线观看精品视频| 亚洲国产精品久久男人天堂| 欧美午夜高清在线| 夜夜躁狠狠躁天天躁| 女生性感内裤真人,穿戴方法视频| 在线国产一区二区在线| 天天添夜夜摸| 国产伦一二天堂av在线观看| 99国产精品一区二区蜜桃av| 手机成人av网站| 久久久久国内视频| 久久久久久免费高清国产稀缺| 精品无人区乱码1区二区| 在线视频色国产色| 欧美中文综合在线视频| 国产私拍福利视频在线观看| 成人欧美大片| 最近最新免费中文字幕在线| 国产男靠女视频免费网站| 国产精品一区二区免费欧美| 国产高清有码在线观看视频 | 亚洲第一av免费看| 免费在线观看日本一区| 色播亚洲综合网| 久久欧美精品欧美久久欧美| 国产又黄又爽又无遮挡在线| 男女之事视频高清在线观看| 老熟妇仑乱视频hdxx| svipshipincom国产片| 欧美性猛交╳xxx乱大交人| 久久精品91蜜桃| 精品日产1卡2卡| 成人免费观看视频高清| 国产视频一区二区在线看| 桃色一区二区三区在线观看| 波多野结衣高清作品| 亚洲av五月六月丁香网| 免费在线观看亚洲国产| 99精品欧美一区二区三区四区| 亚洲一区中文字幕在线| 很黄的视频免费| 欧美黑人欧美精品刺激| 白带黄色成豆腐渣| 99久久精品国产亚洲精品| 国产成年人精品一区二区| 亚洲午夜精品一区,二区,三区| 非洲黑人性xxxx精品又粗又长| 黄片小视频在线播放| 亚洲国产精品合色在线| 国产成人一区二区三区免费视频网站| 18禁国产床啪视频网站| 色婷婷久久久亚洲欧美| 午夜激情福利司机影院| 岛国视频午夜一区免费看| 亚洲午夜精品一区,二区,三区| 亚洲人成伊人成综合网2020| 99精品欧美一区二区三区四区| 老熟妇乱子伦视频在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲精品美女久久久久99蜜臀| av免费在线观看网站| 女人被狂操c到高潮| 美女高潮到喷水免费观看| 中文亚洲av片在线观看爽| 成熟少妇高潮喷水视频| 嫩草影院精品99|