• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Welding of nickel free high nitrogen stainless steel:Microstructure and mechanical properties

    2017-06-01 11:35:04RffiMohmmedMdhusudhnReddySrinivsRo
    Defence Technology 2017年2期

    Rf fiMohmmed,G.Mdhusudhn Reddy,K.Srinivs Ro,*

    aDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    Welding of nickel free high nitrogen stainless steel:Microstructure and mechanical properties

    Raf fiMohammeda,G.Madhusudhan Reddyb,K.Srinivasa Raoa,*

    aDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    A R T I C L E I N F O

    Article history:

    Received 29 April 2016

    Received in revised form

    6 June 2016

    Accepted 7 June 2016

    Available online 20 July 2016

    High nitrogen austenitic stainless steel

    (HNS)

    Shielded metal arc welding(SMAW)

    Gas tungsten arc welding(GTAW)

    Electron beam welding(EBW)

    Friction stir welding(FSW)

    High nitrogen stainless steel(HNS)is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost,excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption,solidification cracking in weld zone,liquation cracking in heat affected zone,nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process.In the present work,an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel.Shielded metal arc welding(SMAW),gas tungsten arc welding(GTAW),electron beam welding(EBW)and friction stir welding(FSW)processes were used in the present work.Optical microscopy,scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes.Hardness,tensile and bend tests were performed to evaluate the mechanical properties of welds.The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW.Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds.Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds.This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

    ?2016 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    High nitrogen austenitic stainless steel is a nickel free high Cr-Mn-N steel having a wide scope in defence sector for manufacturing battle tanks by replacing the existing armour steel. Austenitic stainless steel(>0.4%N)are becoming an important engineering material with combination of strength,toughness and wear resistance[1].Nitrogen has the following advantages:it is an effective solid solution strengthener than carbon and also enhances strengthening of grain size[2,3].Austenitic steels can bene fit from high nitrogen on several aspects:Nitrogen in a solid solution is a bene ficial alloying element to increase the strength without signi ficant loss of ductility and toughness.Nitrogen is a strong austenite stabilizer,thereby reducing the amount of nickel required for austenite stabilization.Nitrogen remarkably improves resistance to intergranular,pitting,crevice and stress corrosion cracking [4].As these steels are used for structural purposes,welding is an important consideration to join the structural components.During welding,it is very essential to avoid nitrogen losses,which result in poor mechanical properties and corrosion resistance.In conventional fusion welding process,it leads to several problems like formation of nitrogen pores,solidification cracking in the weld zone,lowering the dissolved nitrogen for solute strengthening and precipitation of Cr-nitrides in the heat affected zone[5].The nitride precipitation reduces seriously the mechanical and corrosion resistance.To alleviate the above problems,careful control of shielding gas,filler metal composition with low impurity levels (e.g.,S,P)in addition to control on segregation of major alloying elements and minimizing the level of intermetallic precipitates in the weld metal[6].Defects like porosity and solidification cracking may be overcome by using a suitable filler wire,which produces therequired amount of delta ferrite in fusion welds.Based on service conditions,delta ferrite requirement in austenitic stainless steel welds is often speci fied to ensure that weld contains a desired ferrite level[7].No commercial matching filler wires are available for welding high nitrogen austenitic stainless steel[3].Electrode with near matching composition similar to base metal resulted in improving the corrosion resistance but decreases the mechanical properties[8].Studies on microstructure and mechanical property correlations of nickel free high nitrogen steel welds are really scarce.In view of the above problems,the present work is aimed at studying the microstructural changes in high nitrogen steel welds made using shielded metal arc welding(SMAW),gas tungsten arcwelding(GTAW),electron beam welding(EBW)and friction stir welding(FSW)processes,and to correlate microstructure with observed mechanical properties of the welds.

    Fig.2.Macroscopic appearance of the high nitrogen stainless steel welds(a)SMAW;(b)GTAW;(c)EBW and(d)FSW.

    Table 1Composition of the base metal(HNS),electrode(Cr-Mn-N)and filler(MDN 250).

    Table 2Welding parameters using shielded metal arc welding.

    Table 3Welding parameters using gas tungsten arc welding.

    Table 4Welding parameters using electron beam welding.

    Table 5Welding parameters using friction stir welding.

    2.Experimental details

    Nickel free high nitrogen austenitic stainless steel(HNS)plates of size(500 mm×150 mm×5 mm)in wrought form were used in the present study.Weld joint design for SMAW and GTAW processes is shown in Fig.1 and the welds made with various processes were shown in Fig.2.Electrode of near matching composition of Cr-Mn-N type is used for the shielded metal arc welding process. Gas tungsten arc welding was made with standard high strength nickel based(18Ni)MDN 250 filler as no suitable fillers are available.Autogenous welds were made using electron beam welding and friction stir welding was carried out using tungsten-molybdenum(W-Mo)tool.The composition of the base metal and filler wires are given in Table 1.After having several experiments,welding parameters were optimized and we have obtained a sound weld free from defects.Optimized welding parameters of all the welding processes are given in Tables 2-5. Microstructural studies were conducted at various zones of the welds using optical microscopy and scanning electron microscopy. Orientation image mapping studies were performed with electron backscatter diffraction(EBSD)method to observe the orientation of the grains and phase analysis maps in various zones of the welds. Tensile testing is carried out using a universal testing machine at room temperature and specimens were prepared as per ASTM-E8 standard.Microhardness values were recorded towards the longitudinal directions of the weld with a load of 0.5 kgf for 20 seconds as per ASTM E384-09 standards using Vickers hardness tester.Face bend testing of the material was conducted to observe the crack development to know the ductile nature of the weld as per ASTM E190-92 standards.

    3.Results and discussion

    3.1.Microstructure

    3.1.1.Base metal

    Nickel free high nitrogen steel plates in cold worked condition is observed to have equiaxed fine grains of austenite and annealing twins at the grain boundaries as shown in Fig.3.In the cold worked condition,high nitrogen steel has a concurrent twinning and slip in austenite.High nitrogen steel,in general,shows a planar slip and pronounced twinning.The twin deformation in austenite is related to the stacking fault energy of the material.In nickel containing Cr-Ni steels,the stacking fault energy does not decrease with increasing nitrogen content.However,in Ni free high nitrogen steels there is a decrease in stacking fault energy with increasing N content.In high nitrogen steel,a decrease in stacking fault energy with N enhances the formation of deformed band structure.These bands have high dislocation density and do not undergo dynamic recovery.Hence,nitrogen gives more strengthening to Ni free Cr-Mn steel than Ni containing steels[9].Grain orientation mapping and phase analysis maps of the nickel free high nitrogen steel is observed to have fine grain morphology and single phase austenite was observed and is shown in Fig.4.

    3.1.2.Weld microstructure

    Microstructural changes and solidification mode of high nitrogen austenitic stainless steel welds are determined on various factors like chemical composition of the electrode/filler and welding process.Heat input and cooling rates of the welding process may in fluence the dilution of the weld.Based on cooling rates,the extent of dilution also varies in the welds.Filler wire,which differs from base metal composition,also alters the solidification mode and extent of dilution[10].Welds made with shielded metal arc welding using Cr-Mn-N type electrode have high heat input and slow cooling rate,resulting in weld metal microstructure as fully austenitic and coarse dendritic grains,as shown in Fig.5.

    Fig.3.Microstructure of base metal high nitrogen steel:(a)optical microscopy;(b)scanning electron microscopy.

    Fig.4.Grain orientation,OIM maps and phase analysis of high nitrogen steel(base metal).

    Solidi fication mode as fully austenite structure in the weld metal of shielded metal arc welds is attributed to the high amount of chromium and manganese,which helps improve the solubility of nitrogen,enhancing the austenite phase stability.At the weld interface,along the fusion boundary towards the base metal, transition of coarse grains to fine grains was observed and is shown in Figs.5-7.

    Fig.5.Optical micrographs of high nitrogen steel SMA welds made with Cr-Mn-N electrode:(a)weld interface,(b)heat affected zone,(c)fusion zone.

    The weld microstructure has a maximum austenite structure due to the dilution of adjacent base metal that has nitrogen,which is completely soluble in the solid solution.Scanning electron micrographs shown in Fig.6 clearly revealed the evidence for coarsening of austenite.In Fig.7,the grain orientation and phase analysis maps in the weld metal and weld interface of SMA weld clearly revealed coarse grain orientation at the weld zone and coarsegrains to fine grain transition at the weld interface.Even though the SMAW process can be used in welding most of the structural components,problems like increased width of weld zone and excess deposition rate of electrode and spattering lead to nonuniform and poor quality of the weld joint.The above problems can be overcome by using gas tungsten arc welds where control of filler metal deposition,brighter arc than SMAW and decreased width of weld zone can be achieved.GTA welds of high nitrogen steel made with high strength nickel based filler(18Ni)MDN 250 filler resulted in a continuous network of island pools of reverted austenite in the martensite matrix and clearly observed to be having elongated and coarse grains,as shown in Figs.8-10.Weld microstructure of GTA weld is attributed to the presence of nickel and cobalt as austenite stabilizers.The rate of heating and cooling during welding affects the microstructure and composition of fusion welds of high nitrogen steel[11].Unmixed zone formation is observed for the welds made with MDN 250 filler.This zone exists along the fusion line and between the partially melted zone and the weld metal.Unmixed zone is a boundary layer near the fusion line in which the base metals melt and re-solidify during welding without mechanically mixing with the filler wire and base metal [12].The width of the unmixed zone depends on the local thermalconditions along the weld fusion line which can be seen in Figs.8(c) and 9(c).In Fig.10,grain orientation maps for the welds made with gas tungsten arc welding are observed to have an elongated coarse grain orientation.Isolated pore in the weld metal near the fusion boundary was observed due to the entrapment of nitrogen gas pores during welding.GTAwelds have achieved decreased width of weld zone due to the square butt joint when compared to SMA welds having single V joint,but due to the variation of the filler wire composition to the base metal resulted in unmixed zone along the fusion boundary adjacent to the base metal,which is not desirable for obtaining the better combination of properties. Electron beam welding is an effective autogenous welding process to produce a high precision weld joint with a narrow width of the weld zone and is attributed to low heat input and faster cooling rates.Weld metal microstructure of the electron beam welds is solidi fied as a mixture of austenite matrix and delta ferrite dendrites and is due to rapid cooling as shown in Figs.11 and 12.At the weld interface of electron beam welds,formation of elongated coarse grains of austenite is observed in Figs.11 and 12.

    Fig.6.SEM images of high nitrogen steel welds made with Cr-Mn-N electrode:(a)base metal,(b)fusion zone,(c)weld interface,(d)heat affected zone.

    Fig.7.Grain orientation,OIM maps and phase analysis of high nitrogen steel SMA weld.

    Fig.8.Optical micrographs of high nitrogen steel GTA welds made with MDN 250 filler:(a)weld interface,(b)fusion zone,(c)heat affected zone.

    Fig.9.SEM images of high nitrogen steel welds made with MDN 250 filler:(a)base metal,(b)fusion zone,(c)weld interface,(d)heat affected zone.

    In Fig.13 grain orientation maps and phase analysis maps of the high nitrogen stainless steel made with electron beam welding process have a fine grain orientation at the weld zone,and at theweld interface,formation of coarse grain heat affected zone is observed.Different phases were analysed using phase maps and recorded the percentage of delta ferrite and austenite,and also determined the distribution of the ferrite in the matrix.It can be seen in Fig.13 that the delta ferrite is distributed as a discontinuous network of fine dispersed delta ferrite in the austenite matrix. Electron beam welds are observed as high quality weld joints with narrow width of weld joint and better compared to SMA and GTA welds,but the presence of delta ferrite prompt to affect the performance of the weld joint signi ficantly.As discussed above, problems during fusion welding process such as nitrogen desorption,solidification cracking,liquation cracking and porosity can be avoided by the solid state joining,i.e.,friction stir welding where no melting takes place and sound welds with high quality weld joint can be achieved.

    Fig.10.Grain orientation,OIM maps and phase analysis of high nitrogen steel GTA weld.

    Fig.11.Optical micrographs of high nitrogen steel EB welds:(a)macrograph,(b)fusion zone,(c)weld interface.

    Friction stir welds of high nitrogen steel made with tungsten-molybdenum(W-Mo)tool has resulted in fine recrystallized grains of austenite due to severe plastic deformation.Weld nuggetmicrostructure of the friction stir welds has an equiaxed and homogenous austenite grain structure,as shown in Figs.14-16.At the weld interface,relatively coarse grains were observed when compared to weld nugget,as shown in Fig.14.In Fig.16 grain orientation and phase analysis maps clearly revealed the formation of fine recrystallized grains and phase maps also gave evidence for single phase austenite microstructure in the weld nugget.

    Fig.12.SEM images of high nitrogen steel welds made with EBW:(a)base metal,(b)fusion zone,(c)weld interface,(d)heat affected zone.

    Fig.13.Grain orientation,OIM maps and phase analysis of high nitrogen steel EB weld.

    3.2.Mechanical properties

    Strengthening has been generally observed by addition of nitrogen in steels.Nitrogen is a strong austenite stabilizer and reduces the requirement of nickel and improves microstructural stability and resistance to deformation induced martensite.

    Improvement in the strength of high nitrogen stainless steel is

    influenced by solid solution hardening and decrease in stacking fault energy[13].In nickel free high Cr-Mn-N steels,the decrease in stacking fault energy enhances the formation of mechanical twins that enhances strength.Nitrogen containing austenitic stainless steels show high impact toughness and this is attributed to the fact that nitrogen does not induce void nucleation sites in the steel[2].However,increasing nitrogen content enhances strength and retains impact toughness.Hence,nickel free high nitrogen austenitic stainless steels have the optimum combination of strength,ductility and toughness.Welding process may in fluence the mechanical properties of high nitrogen steel signi ficantly.Factors like heat input,cooling rate,electrode/filler wire composition lead to microstructuralchanges due to varying thermal cycles in the weld joints.In Fig.17,face bend ductility tests were performed on welds and ductile joints were observed,and welds did not fail even for bending at 180°at a bend radius of 16 mm.Hardness survey is shown in Fig.18 and it is clearly evident that friction stir welds have high strength when compared to fusion welds.Tensile tests were performed and failed specimens are shown in Fig.19 and all the welds failed at the centre of the weld joint.Tensile properties were given in Table 6.From the observed tensile data,it is observed that shielded metal arc welds exhibited poor strength and it is attributed to high input during welding and coarse dendritic structure in the weld metal.Gas tungsten arc welds have recorded moderate strength but there is presence of elongated island pools,and formation of unmixed zone at the fusion boundary is having more coarse grains even though contains the chemical composition similar to base metal and not favourable for overall performance of the weld joint.Although electron beam welds have obtained maximum strength compared to other welds,ductility has been observed to be low when compared to base metal and it may be due to the presence of delta ferrite in the austenite matrix.In friction stir welds,the high strength and ductility were obtained and they are attributed to fine recrystallized austenite grains.Among all the

    welds investigated,high nitrogen steel welds made with friction stir welding exhibited high hardness,tensile strength and improvement in ductility as shown in Table 6.From Figs.19-23,it is evident that all the fractographs of the welds were observed as ductile failure.Hence,improved mechanical properties are obtained in friction stir welds when compared to fusion welds.This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

    Fig.14.Optical micrographs of high nitrogen steel FS welds made with W-Mo tool:(a)macrograph,(b)nugget zone,(c)heat affected zone.

    Fig.15.SEM images of high nitrogen steel FS welds made with W-Mo tool:(a)base metal,(b)fusion zone,(c)weld interface,(d)heat affected zone.

    Fig.16.Grain orientation,OIM maps and phase analysis of high nitrogen steel friction stir weld.

    Fig.17.Face bend specimens of nickel free high nitrogen steel welds.

    Fig.18.Vickers hardness values of nickel free high nitrogen steel welds.

    Fig.19.Fracture features of tensile specimens of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    Table 6Tensile properties and hardness values of nickel free high nitrogen steel welds.

    Fig.20.Fracture features of tensile specimens of SMA welds of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    Fig.21.Fracture features of tensile specimens of GTA welds of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    Fig.22.Fracture features of tensile specimens of EB welds of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    4.Conclusions

    1)SMA welds made using Cr-Mn-N electrode have a fully coarse austenite dendritic structure and are due to the presence of chromium and manganese,which help in complete solubility of nitrogen in the weld metal.SMA welds resulted in reduction in strength and ductility and it is attributed to coarse dendritic structure.

    2)GTA welds made using MDN 250 filler has resulted in reverted austenite island pools in the martensite matrix.Unmixed zone is formed adjacent to the weld metal due the variation in base metal and filler wire composition.GTA welds have moderate strength and ductility.

    3)Autogenous EB welds were observed to have narrow width of weld zone and discontinuous network of delta ferrite in the austenite matrix.It has high strength and improvement in ductility.

    4)Friction stir welds made with tungsten-molybdenum(W-Mo) tool resulted in high strength and ductility and it is due to recrystallized fine grain austenite structure in the weld nugget.

    5)Improved mechanical properties are obtained in friction stir welding when compared to fusion welds.This is attributed tothe refined microstructure consisting of equiaxed and homogenous austenite grains.Hence,friction stir welding is recommended as best welding process when compared to all fusion welding processes to achieve improved mechanical properties.

    Fig.23.Fracture features of tensile specimens of FS welds of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    Acknowledgment

    The authors would like to thank the Director of Defence Metallurgical Research Laboratory Hyderabad,India,for his continued encouragement and permission to publish this work.

    [1]Reed RP.Nitrogen in austenitic stainless steels.J Met 1989;41(3):16.

    [2]Speidel MO.Properties and applications of high-nitrogen steels.In:Foct J, Hendry A,editors.Proc.Int.Conf.High-Nitrogen Steels,HNS 88,held in Lille, France,May 1988.London,England:The Institute of Metals;1989.p.92.

    [3]Byrnes ML,Grujicic M,Owen WS.Nitrogen strengthening of stable austenitic stainless steel.Acta Metall 1987;35(7):1853.

    [4]Menzel J,Stein G,Dahlmann P.Massively nitrogen-alloyed austenitic bolt materials for high-strength and high-temperature applications.In:Foct J, Hendry A,editors.Proc.Int.Conf.High-Nitrogen Steels,HNS 88,held in Lille, France,May 1988.London,England:The Institute of Metals;1989.p.147.

    [5]Rawers JC,Dunning JS,Asai G,Reed RP.Characterization of stainless steels melted under high nitrogen pressure.Metall Trans A 1992;23A:2061.

    [6]Rawers JC,Asai G,Doan R,Dunning JS.Mechanical and microstructural properties of nitrogen-high pressure melted Fe-Cr-Ni alloys.J Mater Res 1992;7(5):1083.

    [7]Speidel MO,Uggowitzer PJ.Stickstof flegierte Stahle,Ergebnisse der Werkstoff Forschung Band 4.Zurich:Thubal-Kain;1991.

    [8]Werner E.Solid solution and grain size hardening of nitrogen alloyed austenitic steels.Mater Sci Eng A 1988;101:93.

    [9]Gavriljuk VG,Berns H.High nitrogen steels.Springer;1999.p.82.

    [10]Davis JR.Corrosion of weldments.ASM International;2006.p.1.

    [11]Ghali E,Sastri VS,Elboujdaini M.Corrosion prevention and protection:practical solutions.Wiley;2009.p.380.

    [12]Namjou A,Dehmoloei R,Ashra fiA.Int J Nat Eng Sci 2014:22-8.

    [13]Mathew MD,Srinivasan VS.Mechanical properties of nitrogen bearing steels. 2006.p.182.

    *Corresponding author.

    E-mail address:arunaraok@gmail.com(K.Srinivasa Rao).

    Peer review under responsibility of China Ordnance Society.

    精品国产超薄肉色丝袜足j| 免费高清在线观看日韩| 少妇粗大呻吟视频| 又黄又粗又硬又大视频| 精品久久久久久久人妻蜜臀av | 欧美日韩一级在线毛片| 一夜夜www| 天堂√8在线中文| 多毛熟女@视频| 国产精品亚洲美女久久久| 亚洲人成伊人成综合网2020| av有码第一页| 在线免费观看的www视频| 免费看a级黄色片| 此物有八面人人有两片| 午夜影院日韩av| 嫩草影视91久久| 激情在线观看视频在线高清| 亚洲av五月六月丁香网| 欧美性长视频在线观看| netflix在线观看网站| 在线十欧美十亚洲十日本专区| 手机成人av网站| 精品国产亚洲在线| 一区二区三区激情视频| 久热爱精品视频在线9| 亚洲国产高清在线一区二区三 | 波多野结衣一区麻豆| 色尼玛亚洲综合影院| 别揉我奶头~嗯~啊~动态视频| 色精品久久人妻99蜜桃| 欧美日韩乱码在线| 极品教师在线免费播放| 国产精品自产拍在线观看55亚洲| 国产一区二区在线av高清观看| 在线永久观看黄色视频| 人人妻,人人澡人人爽秒播| 男人舔女人的私密视频| 每晚都被弄得嗷嗷叫到高潮| 精品国产亚洲在线| 国产成人欧美| 欧美日韩黄片免| 免费在线观看影片大全网站| 久久人人97超碰香蕉20202| 欧美日韩黄片免| 天天躁夜夜躁狠狠躁躁| 老汉色∧v一级毛片| 国语自产精品视频在线第100页| 欧美日韩瑟瑟在线播放| 中文字幕精品免费在线观看视频| 国产亚洲精品一区二区www| 在线观看舔阴道视频| 亚洲一区二区三区不卡视频| 日日夜夜操网爽| 黑人欧美特级aaaaaa片| 国内精品久久久久精免费| 国产aⅴ精品一区二区三区波| 多毛熟女@视频| 人妻久久中文字幕网| 两人在一起打扑克的视频| 国产单亲对白刺激| 亚洲av电影不卡..在线观看| 久久久久精品国产欧美久久久| 黄色丝袜av网址大全| 成人亚洲精品av一区二区| 女人被狂操c到高潮| av天堂久久9| 看免费av毛片| 亚洲中文日韩欧美视频| 一本大道久久a久久精品| 国产免费男女视频| 手机成人av网站| 自线自在国产av| 日本五十路高清| 午夜福利18| 欧美午夜高清在线| 天堂√8在线中文| 天堂√8在线中文| 国产精品九九99| 日韩精品免费视频一区二区三区| 人人妻人人澡欧美一区二区 | 午夜福利视频1000在线观看 | 老司机靠b影院| 每晚都被弄得嗷嗷叫到高潮| 国产三级在线视频| 好男人电影高清在线观看| 亚洲专区中文字幕在线| 国产精品久久久久久亚洲av鲁大| 人人妻,人人澡人人爽秒播| 乱人伦中国视频| 丁香欧美五月| 一a级毛片在线观看| 国产精品久久久人人做人人爽| www.999成人在线观看| 露出奶头的视频| 成在线人永久免费视频| 国产亚洲精品久久久久5区| 亚洲国产欧美一区二区综合| 免费在线观看日本一区| 精品无人区乱码1区二区| 91国产中文字幕| 很黄的视频免费| 久久久久久亚洲精品国产蜜桃av| 大码成人一级视频| 亚洲精品国产一区二区精华液| xxx96com| 美国免费a级毛片| 欧美国产精品va在线观看不卡| 亚洲 欧美一区二区三区| 最近最新中文字幕大全电影3 | 如日韩欧美国产精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲av一区麻豆| svipshipincom国产片| 中文字幕最新亚洲高清| 亚洲欧美日韩高清在线视频| 男男h啪啪无遮挡| 欧美日韩精品网址| 国产免费男女视频| 精品少妇一区二区三区视频日本电影| 一边摸一边抽搐一进一出视频| 97人妻天天添夜夜摸| 亚洲精品在线美女| 国产99白浆流出| 最好的美女福利视频网| 精品一品国产午夜福利视频| 岛国视频午夜一区免费看| 琪琪午夜伦伦电影理论片6080| 一个人免费在线观看的高清视频| 色播亚洲综合网| a在线观看视频网站| 欧美激情高清一区二区三区| 国产精品精品国产色婷婷| 老鸭窝网址在线观看| 亚洲av熟女| 国产亚洲av嫩草精品影院| 日本vs欧美在线观看视频| 人人妻人人澡人人看| 免费久久久久久久精品成人欧美视频| av片东京热男人的天堂| 久久这里只有精品19| av福利片在线| 精品国产一区二区久久| 久久久国产成人精品二区| 精品午夜福利视频在线观看一区| 人妻久久中文字幕网| 国内精品久久久久精免费| 韩国av一区二区三区四区| 色婷婷久久久亚洲欧美| 97人妻天天添夜夜摸| 一区二区三区激情视频| 免费少妇av软件| 免费高清视频大片| 久久中文字幕一级| 色播亚洲综合网| 99香蕉大伊视频| 中文字幕色久视频| 久久热在线av| 国产精品野战在线观看| 欧美国产精品va在线观看不卡| 亚洲一区二区三区色噜噜| av天堂在线播放| 久久精品国产亚洲av香蕉五月| 亚洲中文av在线| 老鸭窝网址在线观看| 欧美色视频一区免费| 最新在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 久久伊人香网站| 国内精品久久久久精免费| 中文字幕久久专区| 亚洲欧美日韩另类电影网站| 亚洲 国产 在线| 日韩欧美一区视频在线观看| videosex国产| 亚洲精华国产精华精| 男人操女人黄网站| 亚洲国产中文字幕在线视频| 在线国产一区二区在线| 国产精品免费视频内射| 精品电影一区二区在线| 午夜福利欧美成人| 国产一区二区三区综合在线观看| 美女高潮到喷水免费观看| 最近最新中文字幕大全免费视频| 后天国语完整版免费观看| 国产亚洲欧美98| 久久国产精品人妻蜜桃| 国产精品亚洲美女久久久| 成人特级黄色片久久久久久久| 男女午夜视频在线观看| 在线永久观看黄色视频| 日本免费a在线| 国产成人精品无人区| 女人精品久久久久毛片| 最新美女视频免费是黄的| 香蕉久久夜色| 身体一侧抽搐| 久久国产精品男人的天堂亚洲| 国产亚洲欧美在线一区二区| 人成视频在线观看免费观看| 无人区码免费观看不卡| 国产激情久久老熟女| 脱女人内裤的视频| 欧美日韩瑟瑟在线播放| 午夜精品国产一区二区电影| 国产三级在线视频| 国产av在哪里看| 婷婷六月久久综合丁香| 一二三四社区在线视频社区8| 国产一区二区激情短视频| 免费搜索国产男女视频| 97超级碰碰碰精品色视频在线观看| 午夜福利成人在线免费观看| 热re99久久国产66热| 亚洲欧美精品综合一区二区三区| 国产男靠女视频免费网站| 久久精品影院6| 欧美日韩乱码在线| 可以在线观看的亚洲视频| 亚洲第一电影网av| 少妇熟女aⅴ在线视频| 悠悠久久av| 国产精品香港三级国产av潘金莲| 日韩视频一区二区在线观看| 18禁裸乳无遮挡免费网站照片 | 一个人免费在线观看的高清视频| 一级作爱视频免费观看| 法律面前人人平等表现在哪些方面| 黑人操中国人逼视频| 老司机靠b影院| 在线免费观看的www视频| 亚洲精品久久国产高清桃花| 美女 人体艺术 gogo| 啦啦啦观看免费观看视频高清 | 午夜福利免费观看在线| 桃红色精品国产亚洲av| 色av中文字幕| 亚洲一区二区三区不卡视频| 久久人人97超碰香蕉20202| 亚洲熟妇中文字幕五十中出| 18美女黄网站色大片免费观看| 亚洲男人的天堂狠狠| 热re99久久国产66热| 亚洲 欧美 日韩 在线 免费| 婷婷六月久久综合丁香| 搡老妇女老女人老熟妇| 夜夜夜夜夜久久久久| 精品卡一卡二卡四卡免费| 欧美一区二区精品小视频在线| 免费在线观看完整版高清| 欧美激情高清一区二区三区| 亚洲成a人片在线一区二区| 99国产精品99久久久久| 成人av一区二区三区在线看| 欧美老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 国产精品久久电影中文字幕| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃| 欧美日本中文国产一区发布| 欧美成人一区二区免费高清观看 | 日日爽夜夜爽网站| 少妇粗大呻吟视频| 中文字幕人妻丝袜一区二区| 91国产中文字幕| www.熟女人妻精品国产| 岛国在线观看网站| 成人三级黄色视频| 亚洲性夜色夜夜综合| 亚洲人成伊人成综合网2020| 啦啦啦韩国在线观看视频| 国产精品一区二区精品视频观看| 波多野结衣av一区二区av| 亚洲片人在线观看| 亚洲av第一区精品v没综合| 亚洲人成伊人成综合网2020| 亚洲中文日韩欧美视频| 波多野结衣高清无吗| 国产av精品麻豆| 操美女的视频在线观看| 看黄色毛片网站| 97碰自拍视频| 国产欧美日韩精品亚洲av| 国产av又大| 日韩大尺度精品在线看网址 | 日本 欧美在线| www.熟女人妻精品国产| 亚洲成人免费电影在线观看| 午夜a级毛片| 亚洲人成电影观看| av天堂久久9| 亚洲成人久久性| 一个人免费在线观看的高清视频| 成人国语在线视频| 亚洲最大成人中文| 国产亚洲精品第一综合不卡| www.999成人在线观看| 国产欧美日韩综合在线一区二区| 在线播放国产精品三级| 亚洲成人免费电影在线观看| 88av欧美| 别揉我奶头~嗯~啊~动态视频| 9色porny在线观看| 亚洲三区欧美一区| 深夜精品福利| 亚洲一卡2卡3卡4卡5卡精品中文| 波多野结衣巨乳人妻| 丝袜在线中文字幕| 十八禁网站免费在线| 国产av又大| 夜夜躁狠狠躁天天躁| 国产高清视频在线播放一区| 久久久久久久午夜电影| 精品无人区乱码1区二区| 搡老熟女国产l中国老女人| 搡老岳熟女国产| 69av精品久久久久久| 制服人妻中文乱码| 成人av一区二区三区在线看| 国产三级黄色录像| 亚洲成a人片在线一区二区| 777久久人妻少妇嫩草av网站| xxx96com| 中文字幕精品免费在线观看视频| 日韩精品免费视频一区二区三区| 亚洲国产精品成人综合色| 中文字幕最新亚洲高清| 妹子高潮喷水视频| 免费高清在线观看日韩| 国产激情久久老熟女| 午夜两性在线视频| 精品一品国产午夜福利视频| 丝袜人妻中文字幕| 淫妇啪啪啪对白视频| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 久久久国产成人免费| 久久精品国产综合久久久| 97人妻精品一区二区三区麻豆 | 在线观看一区二区三区| 夜夜爽天天搞| 中文字幕最新亚洲高清| 精品国产亚洲在线| 色综合站精品国产| aaaaa片日本免费| 欧美 亚洲 国产 日韩一| 在线观看免费视频网站a站| 黄片大片在线免费观看| 人人澡人人妻人| 免费在线观看影片大全网站| 国产精品九九99| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 亚洲,欧美精品.| 给我免费播放毛片高清在线观看| 免费一级毛片在线播放高清视频 | 亚洲人成电影免费在线| 99国产精品99久久久久| 97人妻精品一区二区三区麻豆 | 亚洲视频免费观看视频| 在线观看免费日韩欧美大片| 人妻丰满熟妇av一区二区三区| 国产精品影院久久| 男女下面插进去视频免费观看| 成人18禁在线播放| 国产一区二区三区视频了| 黑丝袜美女国产一区| 精品久久久久久成人av| 国产一区二区三区视频了| 成在线人永久免费视频| 亚洲欧美精品综合久久99| 久久香蕉精品热| 国产三级黄色录像| e午夜精品久久久久久久| 国产精品免费视频内射| 国产精品九九99| 精品欧美一区二区三区在线| 午夜两性在线视频| or卡值多少钱| 色综合欧美亚洲国产小说| 不卡一级毛片| 亚洲成人国产一区在线观看| 亚洲欧美激情综合另类| 岛国在线观看网站| 国产成年人精品一区二区| 国产色视频综合| 美女扒开内裤让男人捅视频| 999精品在线视频| 久久人妻熟女aⅴ| 国产精品永久免费网站| 久久婷婷成人综合色麻豆| 亚洲无线在线观看| 美女扒开内裤让男人捅视频| 国产精品综合久久久久久久免费 | 精品欧美一区二区三区在线| 亚洲成人免费电影在线观看| 美女高潮到喷水免费观看| 亚洲avbb在线观看| 国产一级毛片七仙女欲春2 | 国产欧美日韩一区二区三| 一进一出抽搐动态| 又黄又粗又硬又大视频| 欧美午夜高清在线| 免费在线观看亚洲国产| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 成人18禁在线播放| 亚洲精品一区av在线观看| 欧美成人一区二区免费高清观看 | 老司机靠b影院| 午夜亚洲福利在线播放| 亚洲在线自拍视频| 国产一区在线观看成人免费| 青草久久国产| 国产成+人综合+亚洲专区| 亚洲熟妇中文字幕五十中出| 久久久久国产一级毛片高清牌| 国产一级毛片七仙女欲春2 | 黄频高清免费视频| 亚洲欧美日韩高清在线视频| 国产野战对白在线观看| 欧美乱妇无乱码| 老司机在亚洲福利影院| 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 91成人精品电影| 69精品国产乱码久久久| 欧美不卡视频在线免费观看 | 757午夜福利合集在线观看| 天堂√8在线中文| 黄色丝袜av网址大全| 12—13女人毛片做爰片一| 一个人观看的视频www高清免费观看 | 香蕉久久夜色| 深夜精品福利| 高清在线国产一区| 亚洲国产精品999在线| 中文字幕人妻熟女乱码| 九色亚洲精品在线播放| 亚洲无线在线观看| 91老司机精品| 黄色女人牲交| www国产在线视频色| 午夜福利高清视频| 91国产中文字幕| 亚洲欧美精品综合一区二区三区| 亚洲九九香蕉| 看免费av毛片| 亚洲成人国产一区在线观看| 久久久久国产一级毛片高清牌| 欧美一区二区精品小视频在线| 一本久久中文字幕| 在线十欧美十亚洲十日本专区| or卡值多少钱| 免费在线观看日本一区| 91麻豆精品激情在线观看国产| 精品久久蜜臀av无| 欧美+亚洲+日韩+国产| 成年人黄色毛片网站| 久久伊人香网站| 欧美日韩福利视频一区二区| 国产亚洲欧美精品永久| 色哟哟哟哟哟哟| 人成视频在线观看免费观看| 香蕉久久夜色| АⅤ资源中文在线天堂| 欧美成人免费av一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久久久九九精品影院| www日本在线高清视频| 日韩视频一区二区在线观看| 窝窝影院91人妻| 精品国产美女av久久久久小说| 国产欧美日韩综合在线一区二区| 国产乱人伦免费视频| 欧美激情高清一区二区三区| 黄色毛片三级朝国网站| 免费av毛片视频| 欧美中文综合在线视频| 国产又爽黄色视频| 在线av久久热| 12—13女人毛片做爰片一| 国产成+人综合+亚洲专区| 黑人巨大精品欧美一区二区蜜桃| 国产精品99久久99久久久不卡| avwww免费| 久久久久九九精品影院| 成人精品一区二区免费| 国产成人系列免费观看| 99国产综合亚洲精品| 国内精品久久久久精免费| 久久精品aⅴ一区二区三区四区| 视频在线观看一区二区三区| 欧美日本视频| 这个男人来自地球电影免费观看| 久久精品91无色码中文字幕| 母亲3免费完整高清在线观看| av网站免费在线观看视频| 国产精品一区二区免费欧美| 亚洲少妇的诱惑av| 男人操女人黄网站| 久久精品亚洲熟妇少妇任你| 亚洲人成77777在线视频| 法律面前人人平等表现在哪些方面| 日本欧美视频一区| 91成年电影在线观看| 久久久国产成人精品二区| 日本免费一区二区三区高清不卡 | 99久久国产精品久久久| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久免费视频| 国产一区在线观看成人免费| 可以免费在线观看a视频的电影网站| 搞女人的毛片| 亚洲欧美一区二区三区黑人| 波多野结衣巨乳人妻| 91麻豆精品激情在线观看国产| 一级作爱视频免费观看| 国产精品乱码一区二三区的特点 | 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 成人亚洲精品一区在线观看| www.精华液| 99久久久亚洲精品蜜臀av| 又大又爽又粗| 国产伦一二天堂av在线观看| 国产亚洲欧美在线一区二区| www.熟女人妻精品国产| 成人三级黄色视频| 真人一进一出gif抽搐免费| 亚洲人成网站在线播放欧美日韩| 国产伦人伦偷精品视频| 午夜免费鲁丝| 一区福利在线观看| 成人国语在线视频| 久久久久久人人人人人| 久久久久国内视频| 欧美性长视频在线观看| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 免费看a级黄色片| 久久久久九九精品影院| 午夜两性在线视频| 69av精品久久久久久| 好看av亚洲va欧美ⅴa在| 日韩欧美三级三区| www.熟女人妻精品国产| 国产一区在线观看成人免费| aaaaa片日本免费| 日韩欧美国产一区二区入口| 午夜福利视频1000在线观看 | 巨乳人妻的诱惑在线观看| 久久久久久亚洲精品国产蜜桃av| x7x7x7水蜜桃| 中文字幕av电影在线播放| 国产av一区二区精品久久| 在线观看日韩欧美| 老司机在亚洲福利影院| 女人高潮潮喷娇喘18禁视频| 香蕉国产在线看| 免费在线观看日本一区| 国产成年人精品一区二区| 色综合欧美亚洲国产小说| 亚洲国产毛片av蜜桃av| 久久久久九九精品影院| 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 久久精品亚洲精品国产色婷小说| 亚洲精品粉嫩美女一区| 精品国内亚洲2022精品成人| 18禁国产床啪视频网站| 成人18禁在线播放| 久久人人精品亚洲av| 母亲3免费完整高清在线观看| 9色porny在线观看| 不卡一级毛片| 在线观看一区二区三区| 一二三四社区在线视频社区8| 久久久久久久精品吃奶| 久久久精品国产亚洲av高清涩受| 午夜久久久在线观看| 啦啦啦韩国在线观看视频| 欧美日韩精品网址| 在线观看一区二区三区| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 不卡一级毛片| 亚洲黑人精品在线| 日韩国内少妇激情av| а√天堂www在线а√下载| 无限看片的www在线观看| 亚洲七黄色美女视频| 欧美乱色亚洲激情| 叶爱在线成人免费视频播放| 看黄色毛片网站| 中文字幕另类日韩欧美亚洲嫩草| 波多野结衣巨乳人妻| 91av网站免费观看| 成人欧美大片| 中文字幕人妻丝袜一区二区| 天堂影院成人在线观看| avwww免费| √禁漫天堂资源中文www| 精品乱码久久久久久99久播| 午夜久久久在线观看| 国产精品免费一区二区三区在线| 欧美成人免费av一区二区三区| 午夜福利一区二区在线看| 最新在线观看一区二区三区| 激情视频va一区二区三区| 亚洲精华国产精华精| 757午夜福利合集在线观看| 久久中文字幕一级| 亚洲av电影不卡..在线观看|