• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-isothermalcrystallization kinetics ofNylon 10T and Nylon 10T/1010 copolymers:Effect of sebacic acid as a third comonomer☆

    2017-05-29 01:39:08ZhongqiangWangGuoshengHuJingtingZhangJiushengXuWenboShi

    Zhongqiang Wang ,Guosheng Hu *,Jingting Zhang Jiusheng Xu ,Wenbo Shi

    1 Institute of Macromolecules and Bioengineering,School of Materials Science and Engineering,North University of China,Taiyuan 030051,China

    2 Guangdong Sinoplast Advanced Material Co.Ltd.,Dongguan 523860,China

    1.Introduction

    Nylons,also known as polyamides,are a series of engineering thermoplastics used widely in a variety of applications[1,2].They can be economically produced by melt processing,but their poor thermal properties,poor dimensional stability and high water absorption impose limitations on successful applications in some industrial and other fields,especially in the LED re flector,the shell of automobile engine and the surface mount technology(SMT)[3].For improving the thermal properties of nylons,aromatic rings are incorporated into the backbone of them,such as poly(hexamethylene terephthalamide)(Nylon 6T)copolymers[4,5],poly(nonamethylene terephthalamide)(Nylon 9T)[6,7],poly(decamethylene terephthalamide)(Nylon 10T)[8,9],poly(dodecamethylene terephthalamide)(Nylon 12T)[10,11].Nylon 10T,a condensation type polymer containing 1,10-decanediamine and terephthalic acid,is a good engineering plastic with good thermal durability and low water absorption.However,Nylon 10T has a high melting point,as high as 315°C[12],which is close to the decomposition temperature,and hence the melt processing window is narrow so as to limit its industrial processing and application.Sebacic acid comonomer can be used to reduce melting temperature of Nylon 10T and meanwhile mechanical properties of poly(decamethylene terephthalamide/decamethylene decanediamide)(Nylon 10T/1010)are maintained.Furthermore,1,10-decanediamine and sebacic acid are two types of important raw material to synthesize Nylon 10T/1010 and can be obtained from the product of castor oil,which can be prepared by castor seeds[13].Therefore Nylon 10T/1010 is a type of biological source material[14].

    It is well known that the properties of semi-crystalline polymers,such as nylons,are strongly depending on their crystalline structure,degree of crystallization and morphologies,which are significantly controlled by the crystallization process during the polymer molding process[15].Furthermore,practical process such as extrusion molding and injection molding usually is performed under dynamic and nonisothermal crystallization conditions[16-20].In this study,sebacic acid was evaluated as a third comonomer for Nylon 10T/1010.Nylon 10T and Nylon 10T/1010 samples were synthesized by direct melt polymerization.In order to optimize processing conditions of Nylon 10T/1010 in industrial applications and achieve better properties,it is necessary to study the non-isothermal crystallization process quantitatively.Although some studies have synthesized a series of semiaromatic polyamides,few of these studies involve the crystallization kinetics of Nylon 10T and Nylon 10T/1010[2,3,8,9].For this reason,non-isothermal crystallization kinetics study,from differentialscanning calorimetric measurements,was performed.

    In this work,Jeziorny and Mo equations were applied to obtain the non-isothermal crystallization kinetics of the Nylon 10T and the Nylon 10T/1010.Moreover,the activation energies for non-isothermal crystallization were calculated as a function of the temperature or the relative crystallinity degree by using Vyazovkin's method or Friedman's method.Finally,the crystal morphology was observed by means of polarized optical microscope(POM)and X-ray diffraction(XRD).

    2.Experimental Section

    2.1.Materials

    Terephthalic acid and benzoic acid were purchased from Beijing Yanshan Lithification Chemical Co.Ltd.(China).1,10-decanediamine and sebacic acid were provided commercially by Wuxi Xinda Nylons Co.Ltd.(China).

    2.2.Synthesis

    Nylon 10T/1010 was synthesizedviadirect melt polymerization which included three reaction processes of prepolymerization, final polycondensation and viscosity increasing reaction,as shown in Fig.1.

    1,10-Decanediamine(172.3 g,1 mol),terephthalic acid(149.5 g,0.9 mol),sebacic acid(20.2 g,0.1 mol)and benzoic acid(6.1 g,0.05 mol)were added into a polymerization kettle and distilled water(150 g)was added to reduce volatilization of diamine during the polymerization.Benzoic acid was as inhibitor in order to control the molecularweightofNylon 10T/1010.The polymerization kettle was filled with nitrogen at room temperature and then heated 275°C in 3 h,meanwhile the pressure was up to 2.0 MPa.After 1.5 h,the pressure of the polymerization kettle was gradually decreased to atmospheric pressure in 1 h by de flating and the reaction temperature ofthe polymerization kettle was increased to 310°C.After reaction for another 0.5 h,the pressure of the polymerization kettle was evacuated to-0.099 MPa and the viscosity increasing reaction was kept for 0.3 h.Finally,the polymerization kettle was cooled to room temperature and Nylon 10T/1010 was obtained(327 g,94%).

    Nylon 10T has been prepared by the similar procedures only using 1,10-decanediamine(172.3 g,1 mol),terephthalic acid(166.1 g,1 mol)and benzoic acid(6.1 g,0.05 mol).And Nylon 10T was obtained(320 g,93%).The intrinsic viscosity values([η])ofthe Nylon 10T and the Nylon 10T/1010 were 83 and 87 ml·g-1,respectively.

    2.3.Characterization

    2.3.1.Intrinsic viscosity

    The intrinsic viscosities of the Nylon 10T and Nylon 10T/1010 were determined in concentrated sulphuric acid with an Ubbelohde viscometer at(25 ± 0.1)°C.

    2.3.2.FT-IR

    FT-IR was recorded on a Japan Shimadzu 8400S spectrometer.The samples were prepared by melting pressed-disk.

    2.3.3.Differential scanning calorimetry

    The non-isothermal crystallization was carried out by using a Switzerland Mettler Toledo 822e differential scanning calorimeter.All DSC measurements were performed under a nitrogen atmosphere.The weightofthe samples was approximately 3 mg.The thermalhistory ofthe samples waseliminated by heating the samplesat330°C fora period of 5 min.In the non-isothermal crystallization process,the cooling scans were conducting at rates of 2.5,5,10,20 and 40 °C·min-1from 330 °C to 30 °C.

    2.3.4.Polarized optical microscopy

    Polarized optical microscopy(POM)images were obtained by using a Shanghai optical instruments factory XPT-7 microscope.Nylon 10T and Nylon 10T/1010 samples were observed in thin films prepared between microscope coverslips by melting the polymerat315°Cfor 2 min and then rapidly cooling to the crystallization temperature in a automatic hot stage.The Nylon 10T and the Nylon 10T/1010 isothermally crystallized for 0.5 h at the temperature of 269 and 260°C,respectively.The images were recorded after complete crystallization.

    2.3.5.X-ray diffraction

    The crystalstructures ofthe Nylon 10T and the Nylon 10T/1010 were examined by a Japan Rigaku Industrial Corporation D/max-RB X-ray diffractometer using X-ray tube(40 kV,at100 mA)and Cu Kα radiation at ambient temperature.The scanning rate was set as 5°min-1in the range from 5°to 50°.The XRD data can be analyzed by using MDI Jade 5.0 software from American Materials Data Corporation.

    3.Results and Discussion

    3.1.Fourier transform infrared spectra

    FT-IR spectra ofthe Nylon 10T/1010 saltand the Nylon 10T/1010 are shown in Fig.2.The characteristic peaks of the Nylon 10T/1010 salt are listed as follows:3392 cm-1(NH3+,N-H stretching vibration),2143 cm-1(NH3+,the absorption peaks of frequency doubling and combination band).The characteristic peaks of amide groups of the Nylon 10T/1010 are listed as follows:3129 cm-1(hydrogen-bonded and N-H stretching vibration),1643 cm-1(C═O stretching vibration),1400 cm-1(C-N stretching and CO-N-H bending vibration).Comparing with the FT-IR spectra of the Nylon 10T/1010 salt,the characteristic absorption peaks of the Nylon 10T/1010 around 2143 cm-1(NH3+)have disappeared.The results indicate that Nylon 10T/1010 can be synthesizedviadirect melt polymerization,which are in accordance with the description offig.1.

    Fig.2.FT-IR spectra of the Nylon 10T/1010 salt and the Nylon 10T/1010.

    3.2.Non-isothermal crystallization behaviors

    The non-isothermal crystallization curves of the Nylon 10T and the Nylon 10T/1010 at various cooling rates are shown in Fig.3.From Fig.3,it is evident that by increasing cooling rate the crystallization peak temperature is decreased and the peak becomes broader.The result indicates that at lower cooling rate the polymer chains have sufficient time to move from polymer melt to crystallization,and meanwhile the crystallization can occur at higher temperature[21].The motion of polymer chains cannot follow the cooling rate,when the cooling rate becomes high.Thus,more super-cooling degree is needed in order to crystallize and the crystallization peak becomes broader at higher cooling rate[22].

    At various cooling rates,the values of the relative crystallinity can be calculated on the basis of the DSC curves.The relative crystallinity as a function of temperature can be de fined as[23]:

    where dHcdenotes measured enthalpy of crystallization,T0is the initial crystallization temperature andT∞is the end crystallization temperature.The instantaneous crystallization temperatureTcan be converted to crystallization timetby using the relationship for non-isothermal crystallization process at a constant cooling rate[24],as below:

    whereΦis the cooling rate.The relative crystallinityX(t)ofthe Nylon 10T and the Nylon 10T/1010 is plotted in Fig.4 with respect to crystallization timetat different cooling rates,and the curves of plots have similar sigmoidal shapes.The curvatures of the lower and upper parts of the curves are caused by the formation of nuclei and the spherulitic impingement in the later stages of crystallization,respectively.Meanwhile,through Fig.4,we can get the half-time of non-isothermal crystallizationt1/2,when theX(t)is equal to 50%.The crystallization peak temperatureTp,the crystallization enthalpies ΔHand the half-time of crystallizationt1/2at different cooling rates are shown in Table 1.Thet1/2suggests that the higher the cooling rate,the shorter the time of crystallization completion.

    3.3.Jeziorny equation

    Fig.3.Heat flow versus temperature during non-isothermal crystallization of the Nylon 10T and the Nylon 10T/1010 at different cooling rates by DSC.

    Based on the assumption that the crystallization temperature was constant,Mandelkern[25]considered that the primary stage of nonisothermal crystallization could be described by the Avrami equation.Jeziorny[26]modified the crystallization rateZtin Avrami equationviadividing by cooling rate Φ to incorporate the temperature change during the non-isothermal crystallization process,as follows:whereZtandZcare the rate constant in the non-isothermal crystallization process.According to Eq.(3),plots of lg[-ln(1-X(t))]versuslgtare shown in Fig.5.The values ofnandZtare determined from the slope and intercept of the plots,respectively,which are listed in Table 2.As shown in Fig.5,all curves are divided into the following 2 sections the primary crystallization stage and the secondary crystallization stage.At the primary crystallization stage,then1values for the Nylon 10T and the Nylon 10T/1010 range from 2.48 to 2.88 and 2.52 to 3.27,respectively,which mean the addition of the sebacic acid comonomer slightly in fluenced the mechanism of nucleation and the growth of the Nylon 10T crystallites.These results also indicate that the mode of the nucleation and growth at the primary crystallization stage of the non-isothermal crystallization for the Nylon 10T and the Nylon 10T/1010 may be two-dimensional,circular,diffusion controlled growth with thermal nucleation.At the secondary crystallization stage,then2values are in the range of 1.83-2.80 for the Nylon 10T and 2.01-2.86 for the Nylon 10T/1010.These results reveal that the nucleation and growth at the secondary crystallization stage of the nonisothermal crystallization for the Nylon 10T and the Nylon 10T/1010 may transform into a mixture mode of one-dimensional and twodimensional space extension because of the spherulitic impingement and crowding.Besides,the larger theZcvalue was,the higher the crystallization rate became.Ata given cooling rate(excepting 40°C·min-1),the higherZcof the Nylon 10T than that of the Nylon 10T/1010 indicated that the sebacic acid comonomer might hinder the crystallization of the Nylon 10T.

    Fig.4.Development of relative crystallinity with crystallization time of the Nylon 10T and the Nylon 10T/1010.

    Table 1The values of T p,ΔH and t1/2 in non-isothermal crystallization for the Nylon 10T and the Nylon 10T/1010

    Table 2The values of n1,Zt1,Z c1,n2,Zt2 and Z c2 for the Nylon 10T and the Nylon 10T/1010 during non-isothermal crystallization

    Fig.5.Plots of lg[-ln(1-X(t))]versus lg t for non-isothermal crystallization process of the Nylon 10T and the Nylon 10T/1010.

    3.4.Mo equation

    Moet al.[27,28]proposed a new method to analyze the nonisothermalcrystallization kinetics ofpolymers by combining the Avrami and Ozawa equations together,as follows[29-32]:

    where the parameterF(T)=[KT/Zt]1/mrefers to the value ofthe cooling rate,which has to be chosen at unit crystallization time when the measured system amounts to a certain degree of crystallinity[33].Andais equalto the Avramiexponentndivided by the Ozawa exponentm.The plots oflgΦversuslgtforthe Nylon 10T and the Nylon 10T/1010 are shown in Fig.6.Good linearrelationship between lgΦand lgtcan be obtained from Fig.6,indicating that the Mo equation can describe well the non-isothermalcrystallization forthe Nylon 10T and the Nylon 10T/1010.Values of α and lgF(T)are obtained from the slope and intercept of these lines,respectively,which are presented in Table 3.For each sample,theavalues changed slightly with the relative crystallinity degree,and theF(T)values increased as the relative crystallinity degree increased.The smaller the value ofF(T)was,the higher the crystallization rate became.Thus,ata given relative crystallinity degree,theF(T)values of the Nylon 10T/1010 were higher than those of the Nylon 10T,which meantthatthe sebacic acid comonomer mighthinder the crystallization of the Nylon 10T.The results were consistent with those obtained from Jeziorny equation.

    3.5.Non-isothermal crystallization activation energy

    Usually,the activation energy of non-isothermal crystallization could be calculated by the Kissinger equation[34].Recently,Vyazovkin[35]has demonstrated that the Kissinger equation provides invalid results when applied to the processes of non-isothermal crystallization.Another disadvantage of Kissinger equation was that it was applicable only to single-step processes,and meanwhile the non-isothermal crystallization kinetics might be adequately represented by a single value for activation energy.However,the rate of crystallization was generally determined by the rates of nucleation and crystal growth,whose activation energy was likely to be different with the change of temperature[36].That was because the temperature of non-isothermal crystallization had great in fluence on the activation energy.Based on their experimental analysis,Vyazovkinet al.[37]modified the Lauritzen-Hoffman equation,thus the activation energy of nonisothermal crystallization could be calculated using the following equation:

    Table 3The values of a and F(T)versus degree of crystallinity based on Mo equation for the Nylon 10T and the Nylon 10T/1010

    whereU*is the diffusional activation energy for the transport of segments to the crystallizable site at the liquid-solid interface taken as 6280 J·mol-1[38].T∞is the hypothetical temperature where all motion associated with viscous flow ceases,which is usually assumed to be equal to(Tg-30)K.Tm0is the equilibrium melting point.The values ofTm0for the Nylon 10T and the Nylon 10T/1010 are 589.33 and 595.48 K,respectively.Ris the universal gas constant.Kgis the nucleation parameter that re flects the regime behavior.The values ofKgfor the Nylon 10T and the Nylon 10T/1010 are 85,322 and 127,871 K2,respectively.The curves ofEa(T)versus Tfor the Nylon 10T and the Nylon 10T/1010 are presented in Fig.7.Ea(T)is the sum ofthe activation energy for the nucleation and crystal growth in the non-isothermal crystallization process.The lowerEa(T)was,the faster the crystallization rate became.Asshown in Fig.7,the rate ofcrystallization decreased with decreasing temperature.At a given temperature,the values ofEa(T)for the Nylon 10T/1010 were lower than those of the Nylon 10T,which revealed that crystallization ability of the Nylon 10T/1010 is higher,since the sebacic acid comonomer may improve the mobility of polymer chains.Such a result is different from the results of the Jeziorny and Mo equations.This also shows that the non-isothermal crystallization process of the Nylon 10T/1010 is more complicated than that of the Nylon 10T.

    Fig.6.Plots of lg Φ versus lg t from the Mo equation for non-isothermal crystallization of the Nylon 10T and the Nylon 10T/1010.

    Fig.7.Plots of Ea(T)versus T for the Nylon 10T and the Nylon 10T/1010 during nonisothermal crystallization.

    Apart from Vyazovkin's method,the differential isoconversional method of Friedman[39]is one of the most appropriate methods for evaluating the effective activation energy,which bases on the differentiation of Arrhenius equation[40].In this work,the Friedman's method was used,largely because of the simplicity and reliability of the method.The Friedman equation can be expressed as follows[41,42]:

    where dX/dtis the instantaneous crystallization rate as a function of time at a given conversionXand ΔEXis the activation energy in the non-isothermal crystallization process.Ris the gas constant.TX,iis the set of temperatures related to a given conversionXat different cooling rates Φ and the subscriptirefers to every individual cooling rate used[43].Furthermore,by selecting appropriate degrees of crystallinity(i.e.from 10%to 90%,each step increased by 20%)the values of dX/dtat a specificXare correlated to the corresponding crystallization temperature at thisX,that isTX[44].The plots of ln(dX/dt)versus1/TXare illustrated in Fig.8.ΔEXcan be calculated from the slopes of these lines offig.8,which are shown in Fig.9.Generally,the values of ΔEXfor the Nylon 10T and the Nylon 10T/1010 increased with an increase in relative crystallinity degree,which meant that as the crystallization progresses it was more difficult from polymer melt to crystallization.Also similar to the results of Vyazovkin's method,at a given relative crystallinity,the values of ΔEXfor the Nylon 10T/1010 were lowerthan those ofthe Nylon 10T,suggesting thatcrystallization ability of the Nylon 10T/1010 is higher with the addition of the sebacic acid comonomer.

    Fig.9.Non-isothermal crystallization activation energy as a function of the relative crystallinity for the Nylon 10T and the Nylon 10T/1010.

    3.6.Crystal morphology

    Polarization microscope images of the Nylon 10T and the Nylon 10T/1010 are shown in Fig.10.In order to observe and compare with the crystalmorphology ofsamplesclearly during the isothermalcrystallization process,we chose the middle temperature of the range of isothermal crystallization experiment to observe by means of POM.The Nylon 10T and the Nylon 10T/1010 isothermally crystallized for 0.5 h at the temperature of 269 and 260°C,respectively.It was found that typical spherulitic structure could hardly be observed by the Maltese cross in the images.Froma comparison ofthe two photographs,the Nylon 10T contains relatively large crystalline grains,whereas a dense granular texture of crystals is formed for the Nylon 10T/1010 and the size of crystalline grains becomes smaller.It is clear that the number of crystal nuclei is increased and the growth rate of crystalline grains is decreased by the addition of the sebacic acid comonomer,considering the results offig.10.Because the symmetry and regularity of the polymer chains are destroyed by the sebacic acid comonomer for the Nylon 10T/1010,its intracrystalline flaw is increased and crystal growth is restricted.

    Fig.8.Friedman-plots of ln(d X/d t)versus 1/TX for the Nylon 10T and the Nylon 10T/1010 at different relative degrees of crystallinity during non-isothermal crystallization.

    XRD patterns of the Nylon 10T and the Nylon 10T/1010 are presented in Fig.11.According to the Bragg equation,the typical diffraction peaks of the Nylon 10Tand the Nylon 10T/1010 are at20.96 and 20.65°,which correspond to interplanar spacing ofabout0.423 and 0.430 nm,respectively.Comparing with the Nylon 10T,the characteristic peaks ofthe Nylon 10T/1010 are almost unchanged.This indicates that the addition of sebacic acid comonomer into the Nylon 10T does not change its crystalline form.All XRD data is listed in Table 4.The absolute crystallinity is calculated by the area of the crystalline peaks divided by total area under the diffraction curve using MDI Jade 5.0 software from American Materials Data Corporation.From Table 4,compared with the Nylon 10T,it was observed that the size of crystalline grains of the Nylon 10T/1010 decreased,which was consistent with the results of POM.Meanwhile,the absolute crystallinity of the Nylon 10T/1010 increased,that was to say that the crystallization rate increased.The results suggest that even though the crystal growth of the Nylon 10T/1010 is restricted,as shown previously,the nucleation rate is increased more fastly,increasing the overall crystallization rate.These results are in accordance with those obtained from Vyazovkin's method and Friedman's method.

    Fig.10.Crystal morphology of samples by POM:(a)the Nylon 10T,observed at 269 °C;(b)the Nylon 10T/1010,observed at 260 °C.

    Fig.11.XRD patterns of the Nylon 10T and the Nylon 10T/1010.

    Table 4The XRD data of the Nylon 10T and the Nylon 10T/1010 by the MDI Jade 5.0

    4.Conclusions

    A systematic investigation of the crystallization kinetics and morphology of the Nylon 10T and the Nylon 10T/1010 prepared by direct melt polymerization has been carried out.The intrinsic viscosity values([η])of the Nylon 10T and the Nylon 10T/1010 were 83 and 87 ml·g-1,respectively.The study of the non-isothermal crystallization kinetics of the Nylon 10T and the Nylon 10T/1010 was carried out by DSC.

    For the non-isothermal crystallization of the Nylon 10T and the Nylon 10T/1010,the crystallization peak of polymer shifted to a lower temperature and the peak became wider with the increasing cooling rate.Jeziorny equation analysis reveals that the non-isothermal crystallization can be divided into two distinct stages:primary and secondary crystallization stages.At the primary stage,then1values for the Nylon 10T and the Nylon 10T/1010 range from 2.48 to 2.88 and 2.52 to 3.27,respectively,which mean the addition of the sebacic acid comonomer slightly in fluences the mechanism of nucleation and the growth of the Nylon 10T crystallites.These results also indicate that the mode of the nucleation and growth at primary stage of the non-isothermal crystallization for the Nylon 10T and the Nylon 10T/1010 may be two-dimensional,circular,diffusion controlled growth with thermal nucleation.The Mo equation successfully describes the non-isothermal crystallization process of the Nylon 10T and the Nylon 10T/1010.The values ofEa(T)and ΔEXare calculated by Vyazovkin's method and Friedman's method,respectively.It is found that the values of theEa(T)and ΔEXfor the Nylon 10T/1010 are lower than those of the Nylon 10T at a given temperature or relative crystallinity,which reveal that crystallization ability of the Nylon 10T/1010 is higher.

    POM and XRD observation showed that the addition of the sebacic acid comonomer not only did not change the crystal form of the Nylon 10T,but also significantly decreased the size and increased the number of spherulites.Comparing with the Nylon 10T,the crystallization rate was increased with the addition of the sebacic acid comonomer.

    [1]J.Chen,B.D.Beake,G.A.Bell,Y.Tait,F.Gao,Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures,J.Exp.Nanosci.11(9)(2016)695-706.

    [2]W.Z.Wang,Y.H.Zhang,Environment-friendly synthesis of long chain semiaromatic polyamides,Express Polym Lett3(8)(2009)470-476.

    [3]W.Z.Wang,Y.H.Zhang,Synthesis of semiaromatic polyamides based on decanediamine,Chin.J.Polym.Sci.28(4)(2010)467-473.

    [4]C.L.Zhang,L.Wan,X.P.Gu,L.F.Feng,A study on a prepolymerization process of aromatic-contained polyamide copolymers pa(66-co-6T)viaone-step polycondensation,Macromol.React.Eng.9(5)(2015)512-521.

    [5]S.P.Rwei,Y.C.Tseng,K.C.Chiu,S.M.Chang,Y.M.Chen,The crystallization kinetics of nylon 6/6T and nylon 66/6T copolymers,Thermochim.Acta555(5)(2013)37-45.

    [6]A.J.Uddin,Y.Ohkoshi,Y.Gotoh,M.Nagura,T.Hara,In fluence of moisture on the viscoelastic relaxations in long aliphatic chain contained semiaromatic polyamide,(PA9-T) fiber,J.Polym.Sci.Polym.Phys.41(22)(2003)2878-2891.

    [7]A.J.Uddin,Y.Gotoh,Y.Ohkoshi,M.Nagura,R.Endo,T.Hara,Hydration in a new semiaromatic polyamide observed by humidity-controlled dynamic viscoelastometry and X-ray diffraction,J.Polym.Sci.Polym.Phys.43(13)(2005)1640-1648.

    [8]W.Z.Wang,X.W.Wang,R.X.Li,B.Y.Liu,E.G.Wang,Y.H.Zhang,Environmentfriendly synthesis of long chain semiaromatic polyamides with high heat resistance,J.Appl.Polym.Sci.114(4)(2009)2036-2042.

    [9]C.H.Zhang,X.B.Huang,X.B.Zeng,M.Cao,T.M.Cai,S.J.Jiang,Q.F.Yi,Fluidity improvement of semiaromatic polyamides:Modification with oligomers,J.Appl.Polym.Sci.131(7)(2014)5621-5633.

    [10]T.F.Novitsky,L.J.Mathias,One-pot synthesis of polyamide 12,T-polyamide-6 block copolymers,J.Polym.Sci.Polym.Chem.49(10)(2011)2271-2280.

    [11]T.F.Novitsky,L.J.Mathias,S.Osborn,R.Ayotte,S.Manning,Synthesis and thermal behavior of polyamide 12,T random and block copolymers,Macromol.Symp.313-314(1)(2012)90-99.

    [12]T.F.Novitsky,C.A.Lange,L.J.Mathias,S.Osborn,R.Ayotte,S.Manning,Eutectic melting behavior of polyamide 10,T-co-6,T and 12,T-co-6,T copolyterephthalamides,Polymer51(11)(2010)2417-2425.

    [13]D.Battegazzore,Bulkvs.surface flame retardancy of fully bio-based polyamide 10,10,RSC Adv.5(49)(2015)39424-39432.

    [14]J.X.Dong,J.H.Qu,X.Y.Feng,X.Y.Guo,X.P.Zhang,X.Q.Li,J.F.Li,Development status and prospects of world bio-based polyamides,China Synth.Fiber Ind.38(5)(2015)51-56(in Chinese).

    [15]X.K.Zhang,T.X.Xie,G.S.Yang,Isothermal crystallization and melting behaviors of nylon 11/nylon 66 alloys byin situpolymerization,Polymer47(6)(2006)2116-2126.

    [16]C.I.Ferreira,C.D.Castel,M.A.S.Oviedo,R.S.Mauler,Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites,Thermochim.Acta553(3)(2013)40-48.

    [17]S.P.Lonkar,S.Morlat-Therias,N.Caperaa,F.Leroux,J.L.Gardette,R.P.Singh,Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites,Polymer50(6)(2009)1505-1515.

    [18]Q.C.Fan,F.H.Duan,H.B.Guo,T.Wu,Non-isothermal crystallization kinetics of polypropylene and hyperbranched polyester blends,Chin.J.Chem.Eng.23(2)(2015)441-445.

    [19]A.Layachi,D.Frihi,H.Satha,R.Seguela,S.Gherib,Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites,J.Therm.Anal.Calorim.124(3)(2016)1319-1329.

    [20]M.He,S.Q.Zong,Y.H.Zhou,H.B.Guo,Q.C.Fan,Non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends,Chin.J.Chem.Eng.23(8)(2015)1403-1407.

    [21]Y.H.Shi,Q.Dou,Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene,J.Therm.Anal.Calorim.112(2)(2012)901-911.

    [22]R.M.Patel,Crystallization kinetics modeling of high density and linear low density polyethylene resins,J.Appl.Polym.Sci.124(2)(2012)1542-1552.

    [23]Y.Márquez,L.Franco,P.Turon,J.Puiggalí,Isothermal and non-isothermal crystallization kinetics of a polyglycolide copolymer having a tricomponent middle soft segment,Thermochim.Acta585(2)(2014)71-80.

    [24]L.Garnier,S.Duquesne,S.Bourbigot,R.Delobel,Non-isothermal crystallization kinetics of iPP/sPP blends,Thermochim.Acta481(1-2)(2009)32-45.

    [25]L.Mandelkern,Crystallization of polymers,Mc Graw-Hill Press,New York,1964 254-271.

    [26]A.Jeziorny,Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate)determined by d.s.c.Polymer19(10)(1978)1142-1144.

    [27]S.Y.Liu,Y.N.Yu,C.Yi,H.F.Zhang,Z.S.Mo,Isothermal and nonisothermal crystallization kinetics of nylon-11,J.Appl.Polym.Sci.70(12)(1998)2371-2380.

    [28]T.X.Liu,Z.S.Mo,S.E.Wang,H.F.Zhang,Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)(PEEKK),Eur.Polym.J.33(9)(1997)1405-1414.

    [29]Q.X.Zhang,Z.H.Zhang,H.F.Zhang,Z.S.Mo,Isothermal and nonisothermal crystallization kinetics of nylon-46,J.Polym.Sci.Polym.Phys.40(16)(2002)1784-1793.

    [30]W.T.Hao,W.Yang,H.Cai,Y.P.Huang,Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites,Polym.Test.29(4)(2010)527-533.

    [31]J.S.Shi,X.J.Yang,X.Wang,L.D.Lu,Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites,Polym.Test.29(5)(2010)596-602.

    [32]Q.X.Zhang,Z.S.Mo,Melting crystallization behavior of nylon 66,Chin.J.Polym.Sci.19(3)(2001)237-246.

    [33]M.Y.Liu,Q.X.Zhao,Y.D.Wang,C.G.Zhang,Z.S.Mo,S.K.Cao,Melting behaviors,isothermal and non-isothermal crystallization kinetics of nylon 1212,Polymer44(8)(2003)2537-2545.

    [34]H.E.Kissinger,Variation of peak temperature with heating rate in differential thermal analysis,J.Res.Natl.Bur.Stand.57(4)(1956)217-221.

    [35]S.Vyazovkin,I.Dranca,Isoconversional analysis of combined melt and glass crystallization data,Macromol.Chem.Phys.207(1)(2006)20-25.

    [36]Y.L.Ma,G.S.Hu,X.L.Ren,B.B.Wang,Non-isothermal crystallization kinetics and melting behaviors of nylon 11/tetrapod-shaped ZnO whisker(T-ZnOw)composites,Mater.Sci.Eng.A-Struct.s460-461(1)(2007)611-618.

    [37]S.Vyazovkin,N.Sbirrazzuoli,Isoconversional approach to evaluating the Hoffman-Lauritzen parameters(U*and kg)from the overall rates of nonisothermal crystallization,Macromol.Rapid Commun.25(6)(2004)733-738.

    [38]J.Cai,M.Liu,L.Wang,K.H.Yao,S.Li,H.G.Xiong,Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid)composites,Carbohydr.Polym.86(2)(2011)941-947.

    [39]H.L.Friedman,Kinetics of thermal degradation of char-forming plastics from thermogravimetry.Application to a phenolic plastic,J.Polym.Sci.Part C-Polym.Symp.6(1)(2007)183-195.

    [40]S.Vyazovkin,N.Sbirrazzuoli,Isoconversional analysis of the nonisothermal crystallization of a polymer melt,Minerva Anestesiol.23(13)(2002)766-770.

    [41]P.Supaphol,N.Dangseeyun,P.Srimoaon,Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene terephthalate)blends,Polym.Test.23(2)(2004)175-185.

    [42]P.Supaphol,N.Dangseeyun,P.Srimoaon,M.Nithitanakul,Nonisothermal meltcrystallization kinetics for three linear aromatic polyesters,Thermochim.Acta406(1-2)(2003)207-220.

    [43]C.L.Li,Q.Dou,C.L.Li,Q.Dou,Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid):Effect of dilithium hexahydrophthalate as a novel nucleating agent,Thermochim.Acta594(2014)31-38.

    [44]Y.Liu,G.S.Yang,Non-isothermal crystallization kinetics of polyamide-6/graphite oxide nanocomposites,Thermochim.Acta500(1-2)(2010)13-20.

    韩国av一区二区三区四区| 久久久久国产一级毛片高清牌| 两个人视频免费观看高清| 久久这里只有精品中国| ponron亚洲| 老熟妇乱子伦视频在线观看| 国产99久久九九免费精品| 首页视频小说图片口味搜索| 给我免费播放毛片高清在线观看| 俄罗斯特黄特色一大片| 亚洲男人天堂网一区| 国产一区在线观看成人免费| 日韩欧美国产一区二区入口| 一级黄色大片毛片| 熟妇人妻久久中文字幕3abv| 看免费av毛片| 国产高清videossex| 亚洲一区高清亚洲精品| 香蕉国产在线看| a级毛片在线看网站| 日本a在线网址| 亚洲人成77777在线视频| 亚洲男人天堂网一区| 国产91精品成人一区二区三区| 国产高清激情床上av| 在线视频色国产色| 国产一级毛片七仙女欲春2| 色老头精品视频在线观看| 亚洲专区字幕在线| 国产亚洲精品av在线| 99久久99久久久精品蜜桃| 看免费av毛片| 中文字幕久久专区| 夜夜躁狠狠躁天天躁| 久久国产精品人妻蜜桃| 国产精品永久免费网站| 久久伊人香网站| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看亚洲国产| 精品无人区乱码1区二区| 亚洲人成电影免费在线| 香蕉国产在线看| 最近最新免费中文字幕在线| 香蕉丝袜av| 欧美日韩亚洲综合一区二区三区_| 亚洲精品美女久久久久99蜜臀| 久久精品国产亚洲av香蕉五月| 伊人久久大香线蕉亚洲五| 婷婷亚洲欧美| 亚洲国产欧美网| 午夜日韩欧美国产| 国产又黄又爽又无遮挡在线| 亚洲国产精品久久男人天堂| 欧美成人免费av一区二区三区| 1024手机看黄色片| 变态另类丝袜制服| 天天躁狠狠躁夜夜躁狠狠躁| 超碰成人久久| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利免费观看在线| 99热只有精品国产| 国产蜜桃级精品一区二区三区| 成人三级黄色视频| 日本免费一区二区三区高清不卡| 婷婷亚洲欧美| 亚洲国产日韩欧美精品在线观看 | 无限看片的www在线观看| 成人18禁高潮啪啪吃奶动态图| 国产区一区二久久| 在线观看免费午夜福利视频| 成人手机av| 国产精品久久久久久人妻精品电影| 亚洲国产欧美人成| 国产精品一及| 在线视频色国产色| 日本一区二区免费在线视频| 久久久久久国产a免费观看| 日韩欧美三级三区| 国产不卡一卡二| 一进一出抽搐gif免费好疼| 777久久人妻少妇嫩草av网站| 亚洲中文日韩欧美视频| 免费在线观看日本一区| 亚洲精品国产一区二区精华液| 国产成人aa在线观看| 十八禁人妻一区二区| 国产成人精品无人区| 黄色视频,在线免费观看| 国产av不卡久久| 国产欧美日韩一区二区三| 国产成人系列免费观看| 伊人久久大香线蕉亚洲五| 日韩欧美国产一区二区入口| 不卡一级毛片| 日韩精品青青久久久久久| 在线永久观看黄色视频| 变态另类丝袜制服| 成人午夜高清在线视频| 麻豆国产av国片精品| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品成人综合色| 成人手机av| 麻豆av在线久日| 亚洲欧美一区二区三区黑人| 69av精品久久久久久| 国产成人精品久久二区二区91| 久久久久国内视频| 岛国在线免费视频观看| 亚洲一码二码三码区别大吗| 老鸭窝网址在线观看| 亚洲中文av在线| 国产成年人精品一区二区| 91麻豆精品激情在线观看国产| 一a级毛片在线观看| 午夜福利在线在线| 老司机靠b影院| 久久精品91蜜桃| 免费在线观看影片大全网站| 亚洲熟女毛片儿| 色哟哟哟哟哟哟| 精品国产超薄肉色丝袜足j| 日本黄色视频三级网站网址| 国产亚洲av高清不卡| 一本大道久久a久久精品| 亚洲av片天天在线观看| 观看免费一级毛片| 午夜精品一区二区三区免费看| 成人18禁在线播放| 国产精品永久免费网站| 蜜桃久久精品国产亚洲av| 成人18禁在线播放| 久久午夜综合久久蜜桃| 正在播放国产对白刺激| 男女那种视频在线观看| 免费在线观看日本一区| 精品久久久久久久久久免费视频| 啦啦啦观看免费观看视频高清| 一区二区三区国产精品乱码| 午夜日韩欧美国产| 久久久久国产精品人妻aⅴ院| 熟妇人妻久久中文字幕3abv| 777久久人妻少妇嫩草av网站| av福利片在线观看| 成人国产综合亚洲| 天天一区二区日本电影三级| 国产精品亚洲一级av第二区| 一区二区三区高清视频在线| 日本免费一区二区三区高清不卡| 老汉色∧v一级毛片| 欧美一区二区精品小视频在线| 久久久久久九九精品二区国产 | 麻豆国产97在线/欧美 | 亚洲精品中文字幕一二三四区| 欧美zozozo另类| 免费搜索国产男女视频| 欧美黑人巨大hd| 亚洲五月婷婷丁香| 在线观看免费午夜福利视频| 成熟少妇高潮喷水视频| www.熟女人妻精品国产| 午夜福利成人在线免费观看| 欧美久久黑人一区二区| 伦理电影免费视频| 观看免费一级毛片| 久久久久久久久中文| 韩国av一区二区三区四区| 国产av麻豆久久久久久久| 黄色丝袜av网址大全| 久久国产精品人妻蜜桃| 国产成人av激情在线播放| 亚洲精品av麻豆狂野| 中文字幕av在线有码专区| 午夜激情av网站| 日韩高清综合在线| a级毛片在线看网站| 18禁裸乳无遮挡免费网站照片| 一边摸一边抽搐一进一小说| 久久性视频一级片| 两人在一起打扑克的视频| 亚洲欧美精品综合久久99| 日韩欧美在线二视频| 中文在线观看免费www的网站 | 国产av在哪里看| 久久精品国产亚洲av香蕉五月| 波多野结衣高清作品| 国产黄色小视频在线观看| 嫁个100分男人电影在线观看| 一级作爱视频免费观看| 久久久久精品国产欧美久久久| 色综合欧美亚洲国产小说| 国产单亲对白刺激| 国产成人啪精品午夜网站| 亚洲男人的天堂狠狠| 亚洲第一欧美日韩一区二区三区| 婷婷丁香在线五月| 正在播放国产对白刺激| 国产精品野战在线观看| 天天一区二区日本电影三级| 两个人的视频大全免费| 国产蜜桃级精品一区二区三区| 叶爱在线成人免费视频播放| 亚洲欧美一区二区三区黑人| 久久亚洲真实| 制服诱惑二区| 桃色一区二区三区在线观看| 人成视频在线观看免费观看| 午夜亚洲福利在线播放| 亚洲av成人av| 国产成人精品久久二区二区91| 男插女下体视频免费在线播放| 99在线视频只有这里精品首页| 久久草成人影院| 夜夜躁狠狠躁天天躁| 女人爽到高潮嗷嗷叫在线视频| 在线a可以看的网站| 久久久久久免费高清国产稀缺| 99re在线观看精品视频| 久久中文字幕人妻熟女| 久久久精品国产亚洲av高清涩受| 成人欧美大片| 国产精品久久久久久久电影 | 亚洲国产精品成人综合色| 麻豆成人午夜福利视频| 老司机午夜十八禁免费视频| 欧美国产日韩亚洲一区| 国产成人av激情在线播放| 搞女人的毛片| 亚洲欧美精品综合一区二区三区| 成人av一区二区三区在线看| 日韩精品免费视频一区二区三区| 亚洲熟妇中文字幕五十中出| 香蕉国产在线看| 麻豆一二三区av精品| 亚洲精品在线美女| 国产三级在线视频| 国产免费av片在线观看野外av| 久久久久久久午夜电影| 久久精品成人免费网站| tocl精华| 97超级碰碰碰精品色视频在线观看| 色综合欧美亚洲国产小说| 国产精品电影一区二区三区| 国内精品一区二区在线观看| 三级国产精品欧美在线观看 | 午夜视频精品福利| 最好的美女福利视频网| 国产精品一及| 我要搜黄色片| 久9热在线精品视频| 久久草成人影院| 中文字幕最新亚洲高清| 久久 成人 亚洲| 在线a可以看的网站| 国产在线观看jvid| 女生性感内裤真人,穿戴方法视频| 欧美日韩乱码在线| 欧美乱妇无乱码| 可以免费在线观看a视频的电影网站| 亚洲人成网站高清观看| 又紧又爽又黄一区二区| 国产精品久久久久久久电影 | 午夜免费激情av| 99热6这里只有精品| 91大片在线观看| 午夜日韩欧美国产| 一区二区三区激情视频| 无遮挡黄片免费观看| 国产av不卡久久| 狠狠狠狠99中文字幕| 国产成人精品久久二区二区91| 51午夜福利影视在线观看| 国产高清有码在线观看视频 | 香蕉国产在线看| 国产日本99.免费观看| 亚洲精华国产精华精| 国产精品美女特级片免费视频播放器 | 国产精华一区二区三区| 久久香蕉激情| 首页视频小说图片口味搜索| 中文在线观看免费www的网站 | 啦啦啦免费观看视频1| av有码第一页| 一个人免费在线观看电影 | 亚洲精品中文字幕一二三四区| 久久亚洲真实| 在线观看免费午夜福利视频| 91老司机精品| 久久久久久人人人人人| 久久精品aⅴ一区二区三区四区| 亚洲中文av在线| 毛片女人毛片| 国产激情久久老熟女| 一级毛片高清免费大全| 黄色成人免费大全| 天天躁夜夜躁狠狠躁躁| 国产91精品成人一区二区三区| 日本免费a在线| 亚洲免费av在线视频| 真人做人爱边吃奶动态| 亚洲 欧美 日韩 在线 免费| 日韩欧美精品v在线| 欧美日韩中文字幕国产精品一区二区三区| 岛国在线免费视频观看| 成人av在线播放网站| 特大巨黑吊av在线直播| 国产激情偷乱视频一区二区| 国产视频一区二区在线看| 男女午夜视频在线观看| 国产av一区二区精品久久| 91av网站免费观看| 嫁个100分男人电影在线观看| 狂野欧美激情性xxxx| 91老司机精品| 天堂av国产一区二区熟女人妻 | ponron亚洲| 美女免费视频网站| 久久久久久久午夜电影| a级毛片在线看网站| 两人在一起打扑克的视频| 国产成人啪精品午夜网站| netflix在线观看网站| 一进一出抽搐gif免费好疼| 国产一区二区激情短视频| 1024手机看黄色片| 国产成人欧美在线观看| 亚洲精品av麻豆狂野| 激情在线观看视频在线高清| 国产真人三级小视频在线观看| 久久香蕉国产精品| 在线观看免费日韩欧美大片| 精品久久久久久成人av| 国产精品1区2区在线观看.| 亚洲欧美日韩无卡精品| 午夜免费观看网址| 18禁美女被吸乳视频| 成人av在线播放网站| 国产成人av激情在线播放| 不卡av一区二区三区| 国产亚洲精品第一综合不卡| 欧美在线黄色| 国产精品av久久久久免费| 国产欧美日韩一区二区精品| 国产高清videossex| 国内精品一区二区在线观看| 国产三级中文精品| 草草在线视频免费看| 国产伦人伦偷精品视频| xxxwww97欧美| 无限看片的www在线观看| 最好的美女福利视频网| 亚洲av电影在线进入| 色播亚洲综合网| 亚洲成a人片在线一区二区| 成人永久免费在线观看视频| 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 91av网站免费观看| 成熟少妇高潮喷水视频| 国产精品国产高清国产av| 一级a爱片免费观看的视频| 久久中文字幕一级| 亚洲免费av在线视频| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久亚洲av鲁大| 91成年电影在线观看| 亚洲人成伊人成综合网2020| 熟妇人妻久久中文字幕3abv| 欧美av亚洲av综合av国产av| 久久天躁狠狠躁夜夜2o2o| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 亚洲国产欧洲综合997久久,| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩东京热| 国产一区二区在线观看日韩 | 1024手机看黄色片| 校园春色视频在线观看| 国产一级毛片七仙女欲春2| 国产精品爽爽va在线观看网站| 国产97色在线日韩免费| 亚洲自偷自拍图片 自拍| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 国产97色在线日韩免费| 757午夜福利合集在线观看| 少妇人妻一区二区三区视频| videosex国产| 日本一区二区免费在线视频| 看黄色毛片网站| 此物有八面人人有两片| 午夜福利免费观看在线| 黄色片一级片一级黄色片| 成人欧美大片| 在线免费观看的www视频| 给我免费播放毛片高清在线观看| 99热这里只有是精品50| 国产爱豆传媒在线观看 | 亚洲人成电影免费在线| 日韩欧美在线乱码| 亚洲成人中文字幕在线播放| 精品久久久久久久末码| 一本精品99久久精品77| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品国产精品久久久不卡| 精品一区二区三区四区五区乱码| 欧美性长视频在线观看| 在线免费观看的www视频| 久久这里只有精品19| 99国产精品一区二区三区| 久久亚洲精品不卡| 最近最新免费中文字幕在线| 欧美一级a爱片免费观看看 | 亚洲精品久久国产高清桃花| 啦啦啦观看免费观看视频高清| 嫩草影视91久久| 国产一区二区三区在线臀色熟女| 国产日本99.免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区三| 欧美一区二区国产精品久久精品 | 日本在线视频免费播放| 全区人妻精品视频| 露出奶头的视频| 特大巨黑吊av在线直播| 熟女电影av网| 老汉色av国产亚洲站长工具| 最新在线观看一区二区三区| 国产精品98久久久久久宅男小说| 男女床上黄色一级片免费看| 亚洲欧美激情综合另类| 国产精品99久久99久久久不卡| 99精品欧美一区二区三区四区| 久久久久性生活片| 婷婷亚洲欧美| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久久久电影| 久久人妻福利社区极品人妻图片| 欧美最黄视频在线播放免费| 免费电影在线观看免费观看| 久久久久久亚洲精品国产蜜桃av| 757午夜福利合集在线观看| 国产欧美日韩一区二区三| 麻豆成人午夜福利视频| 欧美乱色亚洲激情| 国产不卡一卡二| 最近最新中文字幕大全免费视频| 伦理电影免费视频| 99久久久亚洲精品蜜臀av| 九色成人免费人妻av| 高清毛片免费观看视频网站| 国产精品久久电影中文字幕| 三级男女做爰猛烈吃奶摸视频| 欧美黑人欧美精品刺激| 亚洲五月婷婷丁香| 高清在线国产一区| 国产亚洲精品一区二区www| 动漫黄色视频在线观看| 午夜福利欧美成人| 日本a在线网址| 久久久久性生活片| 中文资源天堂在线| 国产精品av久久久久免费| 日韩有码中文字幕| 国产精品野战在线观看| 久久国产精品影院| ponron亚洲| 巨乳人妻的诱惑在线观看| 亚洲熟妇熟女久久| 嫁个100分男人电影在线观看| 欧美中文综合在线视频| 又紧又爽又黄一区二区| 国产精品九九99| 成人三级做爰电影| 悠悠久久av| 99国产精品一区二区蜜桃av| 国产精品电影一区二区三区| 久久99热这里只有精品18| 日韩有码中文字幕| 曰老女人黄片| 久久香蕉国产精品| 蜜桃久久精品国产亚洲av| 老汉色∧v一级毛片| 亚洲精品中文字幕一二三四区| 99热这里只有是精品50| 午夜影院日韩av| 国产精华一区二区三区| 欧美乱色亚洲激情| 99热只有精品国产| 免费在线观看亚洲国产| 国产精品99久久99久久久不卡| 国产一区二区激情短视频| 亚洲精品国产一区二区精华液| 麻豆久久精品国产亚洲av| 18禁美女被吸乳视频| 脱女人内裤的视频| 日韩 欧美 亚洲 中文字幕| 国产av又大| 国产精品乱码一区二三区的特点| 亚洲,欧美精品.| 97超级碰碰碰精品色视频在线观看| av福利片在线观看| 亚洲性夜色夜夜综合| 精品久久久久久久久久久久久| 人妻夜夜爽99麻豆av| 亚洲欧美一区二区三区黑人| 日韩欧美国产在线观看| av天堂在线播放| 日本一二三区视频观看| 国产伦一二天堂av在线观看| 18禁国产床啪视频网站| 国产亚洲欧美98| 身体一侧抽搐| cao死你这个sao货| 人人妻人人看人人澡| 久久天堂一区二区三区四区| 最新在线观看一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 成人永久免费在线观看视频| 男女床上黄色一级片免费看| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 欧美色视频一区免费| 国产精品亚洲一级av第二区| 一夜夜www| 日日夜夜操网爽| АⅤ资源中文在线天堂| 两个人看的免费小视频| 丰满的人妻完整版| 熟女少妇亚洲综合色aaa.| av中文乱码字幕在线| 真人一进一出gif抽搐免费| 一级黄色大片毛片| 午夜亚洲福利在线播放| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 日本在线视频免费播放| 少妇人妻一区二区三区视频| 99热6这里只有精品| 悠悠久久av| 亚洲五月婷婷丁香| 亚洲色图av天堂| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| 99热只有精品国产| 在线播放国产精品三级| 在线视频色国产色| 18禁观看日本| 又黄又粗又硬又大视频| 黄色女人牲交| √禁漫天堂资源中文www| 亚洲欧美日韩无卡精品| 亚洲人成网站在线播放欧美日韩| 欧美日本视频| 国产av不卡久久| 久久国产精品人妻蜜桃| 两个人免费观看高清视频| 国产久久久一区二区三区| 国产免费av片在线观看野外av| 黄色丝袜av网址大全| 精品国产美女av久久久久小说| 欧美3d第一页| 中出人妻视频一区二区| 97人妻精品一区二区三区麻豆| 免费在线观看亚洲国产| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区精品| 在线观看www视频免费| 午夜福利在线观看吧| 午夜激情av网站| 大型av网站在线播放| 在线十欧美十亚洲十日本专区| 国产精品爽爽va在线观看网站| 一区二区三区国产精品乱码| 亚洲av日韩精品久久久久久密| 亚洲 欧美一区二区三区| 亚洲国产欧洲综合997久久,| 中文在线观看免费www的网站 | 18禁美女被吸乳视频| 在线观看舔阴道视频| АⅤ资源中文在线天堂| 午夜精品一区二区三区免费看| 国产私拍福利视频在线观看| 亚洲欧洲精品一区二区精品久久久| 免费av毛片视频| 国产成人av激情在线播放| 亚洲熟妇熟女久久| 国产精品野战在线观看| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 亚洲无线在线观看| 一区二区三区国产精品乱码| av有码第一页| 国产激情偷乱视频一区二区| 国产精品九九99| 成人一区二区视频在线观看| 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频| 亚洲av美国av| 男女那种视频在线观看| 久久中文看片网| 精品久久久久久久久久久久久| 亚洲成人中文字幕在线播放| 给我免费播放毛片高清在线观看| 特级一级黄色大片| 欧美黑人欧美精品刺激| 久久精品国产99精品国产亚洲性色| 熟女电影av网| 免费观看人在逋| 亚洲在线自拍视频| 国产在线观看jvid| 成人av在线播放网站| 国产黄片美女视频| 亚洲无线在线观看|