• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of clay-supported nanoscale zero-valent iron using green tea extract for the removal of phosphorus from aqueous solutions

    2017-05-29 01:39:44AkbarSoliemanzadehMajidFekri

    Akbar Soliemanzadeh*,Majid Fekri

    Department of Soil Science,College of Agriculture,Shahid Bahonar University of Kerman,Kerman,Iran

    1.Introduction

    Although phosphorus is an essential element to all forms of life on Earth,its excessive amounts lead to eutrophication in natural environments such as reservoirs,lakes,and coastal areas[1].Eutrophication is the over enrichment of natural waters with mineral nutrients,particularly phosphorus and nitrogen[2].Phosphorus is introduced to natural waters by severalexogenous sources such as fertilizers,industry,household detergents,and weathering rock[2].Xuet al.[3]reported that eutrophication threshold of total phosphorus(TP)for freshwaters was from 0.02 to 0.10 mg·L-1.Therefore,it is necessary to isolate phosphorus from natural waters to avoid possible hazardous exposure.

    In recent years,because of the growing importance of nanotechnologies,nanoscale zero-valent iron(nZVI)has been investigated and used in the removal of phosphorus from aqueous systems due to its large active surface area and high phosphorus sorption capacities[4-6].Chemicaland physicalmethods have been used to synthesize ofnZVI,including top-down and bottom-up methods[7].However,the limitations of these methods are that they are usually expensive,require specific and costly equipment,consume high amount of energy,produce flammable hydrogen gas,and use toxic chemical materials such as sodium borohydride(NaBH4),organic solvents,and stabilizing and dispersing agents[7,8].Therefore,the development of nonhazardous,bio-based,low-cost,simple,and eco-friendly synthesized methods for nZVI is needed.In this approach,the green synthesis of nZVI using extracts of plant products such as green tea leaves[9-11],eucalyptus leaves[12,13],and mintleaves[14],has been developed.The plantextracts are used as reducing and capping agents due to their antioxidantcontents such as polyphenols,reducing sugars,nitrogenous bases,and amino acids[15,16].

    In this work,a non-toxic biodegradable,and watersoluble polyphenol extracted from commercial green tea was selected as the reducing and stabilizing agent for nZVI production.Previous studies have reported that green synthesized nZVI was non-toxic and used for the removal of arsenic[17,18],chromium[19],and nitrate[13]from aqueous solutions.

    Clay minerals such as zeolite,sepiolite,and bentonite are basically hydrous aluminum silicates having smallparticle sizes(<2μm).Bentonite is a member of smectite family and has unique characteristics such as large specific surface area,high cation exchange capacity(CEC),low-cost,and wide-spread availability,which makes it suitable for hosting nZVI.In addition,previous studies reported that the synthesis of nZVI in the presence of clay minerals(montmorillonite and bentonite)decreases their aggregation by partial dispersion/adsorption onto the clay surface[18,20].

    The main objectives of the present work were to investigate(1)the synthesis of green nZVI using commercial green tea leaves in the presence of natural bentonite,(2)characterization of natural bentonite and B-nZVI by infrared spectroscopy(FTIR),scanning electron microscope(SEM),and X-ray diffraction(XRD),and(3)evaluation of the sorption characteristics of phosphorus on natural bentonite and B-nZVI.

    2.Materials and Methods

    2.1.Materials

    All the chemicals used in the present study,including ferrous sulfate heptahydrate(FeSO4·7H2O),sodium hydroxide(NaOH),potassium dihydrogen phosphate(KH2PO4),sulfuric acid(H2SO4),ammonium molybdate(NH4)6Mo7O24),antimony potassium tartrate(K(SbO)·C4H4O6·0.5H2O),and ascorbic acid were of analytical grade(chemical purity>99%,Merck).The commercial leaves of green tea were used as sources of polyphenols.Natural bentonite used in the present study was obtained from Yazd Province,Iran.Based on an XRF analysis,the chemical composition of the natural bentonite sample(%)was:SiO2,66.37;Al2O3,13.24;Fe2O3,2.04;MgO,2.37;CaO,1.79;and Na2O,1.69.

    2.2.Preparation of B-nZVI

    For the synthesis of B-nZVI,4 g of natural bentonite was added to 50 ml of 0.1 mol·L-1FeSO4·7H2O and the mixture was mixed for 30 min using a magnetic stirrer.Meanwhile,green tea extract was prepared by adding 20 g of leaves of green tea to 1 L of distilled water,and heating at 80°C for 1 h.Then,the extract was filtered and added drop-wise to 0.1 mol·L-1ofFeSO4·7H2Oand naturalbentonite mixture at the volume ratio of 1:1 at room temperature with constant stirring.The immediate color change of the mixture to black indicated the formation of iron nanoparticles.The suspension was centrifuged and washed with ethylene to remove the residual ferrous sulfate heptahydrate.The wet paste was then left to dry overnight.

    2.3.Characterization of natural bentonite and B-nZVI

    Surface functional groups of natural bentonite,P sorption on natural bentonite,B-nZVI,and P sorption on B-nZVI were examined using KBr pressed disk technique by FT-IR spectroscopy(Model:Bruker,TENSOR 27,Germany).The spectra obtained in the range of 500-4000 cm-1were analyzed.

    A KYKY EM-3200 scanning electron microscope(SEM)was used for surface morphological and structural studies of natural bentonite and B-nZVI.

    The XRD patterns of natural bentonite and B-nZVI were recorded on B-nZVI were recorded on a Philips X'pert Pro MPD model X-ray diffractometer(Netherlands)using CuKαradiation as the X-ray source.

    2.4.Batch experiment

    The stock solution containing 1000 mg·L-1phosphorus was prepared by dissolving 4.39 g ofKH2PO4in distilled water,and the desired solutions were prepared by dilution of the stock solution.

    The phosphorus sorption isotherms were conducted based on batch equilibrium technique.0.05 g of absorbent samples(natural bentonite or B-nZVI)was added into conical centrifuge tubes with 10 ml of aqueous solution containing various amounts of phosphorus concentrations(10,50,100,200,300,400 and 500 mg)in 0.01 mol·L-1NaCl in triplicate.Then,the suspensions were shaken at room temperature and at the constant agitation rate of 300 r·min-1using a shaker for 24 h.Atthe end ofequilibrium,the suspensions were centrifuged and the equilibrium phosphorus concentrations were measured using the ascorbic acid method[21]and UV-vis spectrophotometer at the wavelength of 880 nm.

    In pH studies(adsorbent dose=5 g·L-1;phosphorus initial concentration=100 and 500 mg·L-1),the pH value of reaction mixture was adjusted to the range of 2-10 with 0.1 mol·L-1NaOH or 0.1 mol·L-1HCl,and a pH-meter(Jenway,United Kingdom)was used to determine the pH value.The amount of phosphorus adsorbed per gram adsorbentq(mg·g-1)and removal efficiency(%)of phosphorus can be determined according to the following equations:

    whereCiandCe(mg·L-1)are phosphorus initialand equilibrium concentrations,respectively;V(L)is the volume of the solution;W(g)is the dose of natural bentonite or B-nZVI.

    The effectofcontacttimesin the range of0-1440 min was investigated with adsorbentdoses of5 g·L-1and phosphorus initialconcentration of500 mg·L-1.The sorption amountattime oft(min),qt(mg·g-1),was determined according to the following equation:

    whereCiandCt(mg·L-1)are phosphorus concentrations at first and the time oft,respectively.

    2.5.Phosphorus desorption experiment

    Desorption experiments were carried out using the method described by[22].Desorption of phosphorus from natural bentonite and B-nZVI was done immediately after sorption at the 500 mg·L-1initial concentration using the successive dilution method.After shaking the phosphorus-sorbent suspensions at room temperature for 24 h,the supernatants were separated by centrifugation.Then,10 ml of the supernatant was removed to measure phosphorus concentration,and replaced with 10 ml of 0.01 mol·L-1NaCl.This desorption cycle was repeated 6 and 9 times for natural bentonite and B-nZVI,respectively,and desorption isotherms were prepared by plotting the phosphorus remained on the adsorbents after each desorption cycleversusthe corresponding equilibrium phosphorus concentrations in the solution.

    3.Results and Discussion

    3.1.Characterization

    The characterization of natural bentonite(a),P sorption on bentonite(b),B-nZVI(c)and P sorption on B-nZVI(d)by FTIR is shown in Fig.1.The IR spectrum of natural bentonite demonstrates that hydrogen-bonded of water H-O-H and H-O-H deformation was at 3427.75 and 1640.96 cm-1,respectively.However,the spectral band of 3630.03 cm-1has been identified to stretching of octahedral O-H groups that attached to Al+3or Mg+2.The Si-O and Si-O-Si groups of the tetrahedral sheet stretching were at 795.04 and 1040.02 cm-1,respectively.The band at 635.33 cm-1is assigned to the out-of-plane vibrations of coupled Al-O and Si-O.Similar functional groups were also reported by other studies[23].When comparing Fig.1a and c,the shift of 1640.96 cm-1band to 1683.31 and the presence of a new band at 1384 cm-1show the loading of nZVI particles to natural bentonite.These resultsare con firmed by otherresearchers[18].The results offig.1d show that the absorption band at1384 cm-1became insignificant,and the intensity of the peak at 1683.31 cm-1was decreased.Probably,the sorption of phosphorus on the B-nZVI resulted in the weakening of the band at 1384 cm-1and decreased the intensity of the peak at 1683.31 cm-1.

    The SEM images of natural bentonite and B-nZVI are presented in Fig.2,indicating that the nZVI loaded to the natural bentonite is generally spherical in shape and has an average diameter of 40-60 nm.

    Fig.1.FTIR spectra ofnaturalbentonite(a),P sorption on naturalbentonite(b),B-nZVI(c),and P sorption on B-nZVI(d).

    The XRD patterns of natural bentonite(a)and B-nZVI(b)are shown in Fig.3.The XRD pattern of B-nZVI shows the main diffraction peaks at the 2θ value of 44.9°which are related to the dispersion of nZVI to the surface of natural bentonite.As can be seen from Fig.3b,diffraction peaks corresponding to the structure of natural bentonite existed in the XRDpattern ofthe B-nZVI,which shows thatthe bentonite structure is not destroyed after reaction with nZVI[24,25].

    3.2.Effect of initial concentration on the removal of phosphorus

    B-nZVI(97.78%)and natural bentonite(7.29%)were observed at 50 and 10 mg·L-1of phosphorus initial concentration,respectively.As initial concentrations of phosphorus increased from 50 to 500 mg·L-1,removal efficiency by B-nZVI decreased from 97.78%to 29.25%,while removal by natural bentonite decreased from 7.18%to 2.91%.

    It is a well-known fact that the removal efficiency of a sorption phenomenon depends upon the ratio of the number of adsorbate moieties to the available active sites of adsorbent.However,this ratio is related to the adsorbent surface coverage(number of active sites occupied/number of active sites available)that increases with the increase in the number of adsorbate moieties per unit volume of solution at a fixed dose of adsorbent[26].By increasing the initial concentration,the available active sites of adsorbent become saturated by phosphorus

    The results of present study showed that the increase in phosphorus initial concentration led to a decrease in the removal efficiency of phosphorus(Fig.4).The removal efficiency of B-nZVI was higher than that of natural bentonite.The maximum percentages ofphosphorus removal by ion which finally results an increase in this ratio and decrease in removal efficiency.

    Fig.3.XRD patterns of natural bentonite(a),B-nZVI(b).

    Fig.4.Effect of initial phosphorus concentration on the removal of phosphorus by natural bentonite and B-nZVI.

    Fig.2.SEM images of natural bentonite(a)and B-nZVI(b and c).

    3.3.Effect of pH on the removal of phosphorus

    Experiments were conducted atdifferentranges ofpHincluding 2,4,5,6,8,and 10(Fig.5).The optimum pH for the removal of phosphorus by B-nZVI ranged from 2 to 5 for both 100 and 500 mg·L-1of phosphorus.With an increase of pH from 5 to 8,the sorption capacity decreased from 16.72 to 8.25 and 29.25 to 20.45 mg·g-1for 100 and 500 mg·L-1of phosphorus initial concentration,respectively.The results of the present study showed that the B-nZVI sorption capacity was relatively constant at an acidic solution pH(2-5),whereas B-nZVI sorption capacity decreased sharply as the solution pH approached a highly alkaline condition.

    Fig.5.Effect of pH on phosphorus removal by B-nZVI.

    The maximum phosphorus removal by B-nZVI was observed at the pH range of 2 to 5,at which interval the dominant phosphorus species is the monovalent H2PO4-1ion.This was due to the change in dominant aqueous phosphorus species as a function of pH.At the lowest range of pH,more H+ions become available on the surface of B-nZVI and the surface becomes more positively charged,leading to the higher adsorption of phosphorus.At the heightrange of pH,the activity of OH-in the solution,which competed with the phosphorus species,becomes higher[27].However,Yan etal.[28]reported thatthe optimalpH for phosphorus adsorption on Al-bentonite and Fe-Al-bentonite ranges from 3 to 5.This agreed with the report of other researchers on the effect of pH on phosphorus sorption which indicates a lower pH being favorable to phosphorus sorption[6,29-31].

    3.4.Sorption isotherms

    Sorption isotherms are useful tools for understanding the sorption phenomenon by different adsorbents.In the present study,Freundlich(Eq.(4)),Langmuir(Eq.(5)),and Redlich-Peterson(Eq.(6))isotherm models were used to describe the sorption capacity of naturalbentonite and B-nZVI for phosphorus.

    WhereCeandqare the equilibrium concentration of phosphorus in the aqueous solution and the amount of phosphorus ions sorbed to the adsorbent,respectively;Ksorband 1/nsorbare Freundlich constants related to sorption capacity and sorption intensity,respectively;KLandQmaxare Langmuir constants related to the affinity of binding sites and maximum sorption capacity,respectively;andA,B,andgare Redlich-Peterson constants related to sorption capacity,affinity of binding sites and sorption intensity,respectively.

    The equilibriumisotherm modelparameters are shown in Table 1.For Langmuirisotherm parameters,the values ofQmaxwere determined to be 4.61 and 27.63 mg·g-1for natural bentonite and B-nZVI,respectively.These values indicate that the loading of nZVI to natural bentonite increased the phosphorus sorption capacity by 6 times.In addition,the bonding energy coefficient value(Kl)of B-nZVI is greater than that of natural bentonite,which is related to the specifically sorbed phosphorus at high energy.

    Table 1Sorption isotherm parameters of phosphorus onto natural bentonite and B-nZVI

    The Langmuir constantKLcan be treated as an empirical equilibrium constant and used in the evaluation of the standard free energy of adsorption using the following equation[17,32]:

    where ΔG0is the Gibb's standard free energy,Ris the gas constant(=8.314 J·mol-1·K-1),Tis the temperature(K),andKLis the Langmuir constant(L·mol-1).The ΔG0values for B-nZVI and natural bentonite were-20.57 and-11.94 kJ·mol-1,respectively.These negative values show that the phosphorus sorption phenomenon was spontaneous.

    The phosphorus sorption data of natural bentonite and B-nZVI best fitted to the Freundlich model.The value of 1/nsorbin Freundlich isotherm was lower than 1,suggesting that this model is nonlinear,which is a usualbehavior for adsorbents with fixed and limited sorption capacities.For the Freundlich isotherm,theKsorbvalues for natural bentonite and B-nZVI were 0.09 and 8.31,respectively.The value ofKsorbincreased with nZVI loading to natural bentonite surface similar to the Langmuir(QmaxandKL)and Redlich-Peterson(AandB)isotherm constants indicating the increase in capacity of phosphorus sorption on the sorbents.Comparison ofR2values obtained from models shows that the Redlich-Peterson model gave a better fit result than other models.

    3.5.Desorption experiment

    Comparison of phosphorus sorption-desorption patterns on/from natural bentonite and B-nZVI is shown in Fig.6.Desorption isotherms did not fit with their corresponding sorption isotherms,and sorptiondesorption hysteresis occurred,meaning that irreversibility happened in phosphorus sorption in the time-scale of this experiments.

    Fig.6.Phosphorus sorption-desorption for the natural bentonite and B-nZVI.

    Fig.6 shows that the sorption of phosphorus on natural bentonite was more reversible than that of B-nZVI.The average percentages of the retained phosphorus released from natural bentonite(after six successive desorption steps)and B-nZVI(after nine successive desorption steps),were 80%and 9%,respectively.This can be due to the strongerinteraction between phosphorus anions and the nZVI that were loaded to the naturalbentonite surface.Itmay be concluded thatthe less irreversibility of phosphorus sorption by B-nZVI was due to the inner-sphere binding and covalent bonds of phosphorus to the nZVI surface[33].However,Moharamiand Jalali[29]reported thatmaximumphosphorus desorbed from Al2O3,Fe3O4and TiO2nanoparticles was 6.5%,5.9%and 2.8%,respectively.

    As can be seen from Fig.6,after 1 step of desorption,63%of the retained phosphorus was released from the natural bentonite that is equal to 1.85 mg·g-1.This suggests that outer-sphere complexation is the dominant mechanism of sorption reaction between phosphorus and bentonite,and that phosphorus sorption was likely reversible and less specific.These results are in agreement with those obtained by Moharami and Jalali[34]which observed that 41.9%of phosphorus was released from bentonite.

    Similar sorption isotherm,the desorption isotherm was calculated using Freundlich equations;

    whereKdesorband 1/ndesorbare Freundlich bounding constants for the desorption coefficient.

    Various studies showed that Freundlich modelwas the mostpopular one to explain metals sorption-desorption phenomenon by different adsorbents[35-37].For each sorbent,theKvalue(Freundlich constant)calculated from sorption isotherms was lower than that determined from desorption isotherms.Also,this parameter was remarkably higher for B-nZVI than the one obtained from natural bentonite,showing the occurrence of a positive hysteresis and a remarkably lower desorption of sorbed phosphorus from the B-nZVI than from natural bentonite.Dhillon and Brar[38]and Jalaliand NaderiPeikam[39]have also reported hysteresis in phosphorus sorption-desorption phenomenon in soils.

    3.6.Sorption kinetics

    The pseudo- first-order(Eq.(9)),pseudo-second-order(Eq.(10)),and intra-particle diffusion(Eq.(11))models were applied to describe the sorption kinetics of phosphorus to natural bentonite and B-nZVI(Fig.7).

    Whereqtandqmax(sorption capacity)are the amounts of phosphorus sorbed at time the oftand equilibrium,respectively;k1andk2are pseudo- first-order rate constant and pseudo-second-order rate constant,respectively;andkpandCare the intra-particle diffusion rate constant and intercept at the ordinate,respectively.

    Fig.7.Kinetic model analyses for natural bentonite(a)and B-nZVI(b).

    Table 2Kinetic model parameters for natural bentonite and B-nZVI

    The correlation coefficient(r2)of pseudo-second-order equation is higher than those of pseudo- first-order and intra-particle diffusion(Table 2),suggesting that the chemisorption process could be a ratelimiting step[27-29,40,41].In pseudo-second-ordermodelparameters,theqmaxvalue for B-nZVI was higher than that obtained from natural bentonite,indicating that loading nZVI to natural bentonite surface remarkably increased phosphorus sorption capacity.However,the values ofk2decreased with loading nZVI to natural bentonite surface,demonstrating that the time required to reach equilibrium has increased.

    The initial sorption constant(h)att→0 was calculated using the following Eq.(12)[40,42]:

    The value ofhobtained from B-nZVIwas higherthan the one obtained from natural bentonite,indicating that loading of nZVI to natural bentonite increased sorption at an initial phase of the sorption process.

    According to the intra-particle diffusion model(Fig.8),a plot ofqt versus t1/2presented multi-linearity,with an initial linear phase followed by an intermediate linear phase and a plateau,showing that two or more steps govern the sorption phenomenon.

    Fig.8.Intra-particle diffusion plots for phosphorus sorption onto naturalbentonite(a)and B-nZVI(b).

    The initial sharper phase is attributed to the external surface or the instantaneous sorption,and the second linear phase is attributed to the gradual sorption stage where pore diffusion is rate-controlling[27,42-44].The third phase is attributed to the final sorption equilibrium stage where intra-particle diffusion started to slow down due to the following reasons:a)small pores for diffusion,b)high electrostatic repulsion of the natural bentonite and B-nZVI surface,and c)low concentration of phosphorus in the solution[27,45].Intra-particle diffusion is the sole rate-limiting step ifthe plotofqt versust1/2passes through the origin.In the presentstudy,the plot ofnatural bentonite and B-nZVI did not pass through the origin,indicating that three processes control the sorption rate,but only one is rate-limiting in any particular time range[42].

    The values ofkpandCwere determined from the slope ofthe second linear phase(Fig.8,Table 2).In the presentstudy,the values ofkpandCincreased from 0.07 to 0.80 and from 0.37 to 5.59,respectively,as the nZVI loading to the surface of natural bentonite.A higherCvalue shows a greater effect of boundary layer,suggesting that the internal mass transfer is favored over external mass transfer[43,44].

    4.Conclusions

    In this study,the natural bentonite and B-nZVI were applied to remove phosphorus from aqueous solutions.For both adsorbents,increasing the phosphorus initial concentration decreased removal efficiency.The sorption of phosphorus on B-nZVI was observed to be pH-dependent,with maximum phosphorus removal occurring at the pH range of 2 to 5.The sorption capacity of B-nZVI was higher than that of natural bentonite.Langmuir,Freundlich,and Redlich-Peterson models properly described the sorption isotherm data.The sorptiondesorption of phosphorus by natural bentonite and B-nZVI showed hysteresis.The results indicated that sorption of phosphorus was more reversible on natural bentonite than on B-nZVI.The pseudosecond-order model fitted well to the kinetic data,suggesting that the chemisorption process could be a rate-limiting step.The present study suggests that B-nZVIcan be used as a suitable adsorbentforthe removal of phosphorus from aqueous solutions.

    [1]M.A.Tabatabai,D.L.Sparks,L.Al-Amoodi,W.Dick,Chemical Processes in Soils,Soil Science Society of America Inc.,2005

    [2]M.Kagami,Y.Hirose,H.Ogura,Phosphorus and nitrogen limitation of phytoplankton growth in eutrophic Lake Inba,Japan,Limnology14(2013)51-58.

    [3]H.Xu,H.W.Paerl,B.Qin,G.Zhu,G.Gao,Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China,Limnol.Oceanogr.55(2010)420.

    [4]H.Liu,T.Chen,X.Zou,Q.Xie,C.Qing,D.Chen,R.L.Frost,Removal of phosphorus using NZVI derived from reducing natural goethite,Chem.Eng.J.234(2013)80-87.

    [5]F.Liu,J.Yang,J.Zuo,D.Ma,L.Gan,B.Xie,P.Wang,B.Yang,Graphene-supported nanoscale zero-valent iron:Removal of phosphorus from aqueous solution and mechanistic study,J.Environ.Sci.26(2014)1751-1762.

    [6]T.Almeelbi,A.Bezbaruah,Aqueous phosphate removal using nanoscale zero-valent iron,J.Nanopart.Res.14(2012)1-14.

    [7]S.Machado,S.Pinto,J.Grosso,H.Nouws,J.T.Albergaria,C.Delerue-Matos,Green production of zero-valent iron nanoparticles using tree leaf extracts,Sci.Total Environ.445(2013)1-8.

    [8]L.Huang,X.Weng,Z.Chen,M.Megharaj,R.Naidu,Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green,Spectrochim.Acta A Mol.Biomol.Spectrosc.117(2014)801-804.

    [9]M.N.Nadagouda,A.B.Castle,R.C.Murdock,S.M.Hussain,R.S.Varma,In vitro biocompatibility of nanoscale zerovalent iron particles(NZVI)synthesized using tea polyphenols,Green Chem.12(2010)114-122.

    [10]L.Huang,F.Luo,Z.Chen,M.Megharaj,R.Naidu,Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green,Spectrochim.Acta A Mol.Biomol.Spectrosc.137(2015)154-159.

    [11]C.Mystrioti,N.Papassiopi,A.Xenidis,D.Dermatas,M.Chrysochoou,Column study for the evaluation of the transport properties of polyphenol-coated nanoiron,J.Hazard.Mater.281(2015)64-69.

    [12]Z.Wang,Iron complex nanoparticles synthesized by eucalyptus leaves,ACS Sustain.Chem.Eng.1(2013)1551-1554.

    [13]T.Wang,X.Jin,Z.Chen,M.Megharaj,R.Naidu,Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater,Sci.Total Environ.466(2014)210-213.

    [14]K.S.Prasad,P.Gandhi,K.Selvaraj,Synthesis of green nano-iron particles(GnIP)and their application in adsorptive removal of As(III)and As(V)from aqueous solution,Appl.Surf.Sci.317(2014)1052-1059.

    [15]V.V.Makarov,S.S.Makarova,A.J.Love,O.V.Sinitsyna,A.O.Dudnik,I.V.Yaminsky,M.E.Taliansky,N.O.Kalinina,Biosynthesis of stable iron oxide nanoparticles in aqueous extracts ofHordeum vulgareandRumex acetosaplants,Langmuir30(2014)5982-5988.

    [16]S.Quideau,D.Deffieux,C.Douat-Casassus,L.Pouységu,Plant polyphenols:chemical properties,biological activities,and synthesis,Angew.Chem.Int.Ed.50(2011)586-621.

    [17]N.Horzum,M.M.Demir,M.Nairat,T.Shahwan,Chitosan fiber-supported zerovalent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic,RSC Adv.3(2013)7828-7837.

    [18]P.K.Tandon,R.C.Shukla,S.B.Singh,Removal of arsenic(III)from water with claysupported zerovalent iron nanoparticles synthesized with the help of tea liquor,Ind.Eng.Chem.Res.52(2013)10052-10058.

    [19]M.Chrysochoou,C.P.Johnston,G.Dahal,A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysul fide and green-tea nanoscale zero-valent iron,J.Hazard.Mater.201(2012)33-42.

    [20]R.Abbassi,A.K.Yadav,N.Kumar,S.Huang,P.R.Jaffe,Modeling and optimization of dye removal using “green”clay supported iron nano-particles,Ecol.Eng.61(2013)366-370.

    [21]E.W.Rice,L.Bridgewater,A.P.H.Association,Standard Methods for the Examination of Water and Wastewater,American Public Health Association Washington,DC2012.

    [22]S.Bakhtiary,M.Shirvani,H.Shariatmadari,Adsorption-desorption behavior of2,4-D on NCP-modified bentonite and zeolite:Implications for slow-release herbicide formulations,Chemosphere90(2013)699-705.

    [23]K.Bukka,J.D.Miller,J.Shabtai,FTIR study of deuterated montmorillonites;Structural features relevant to pillared clay stability,Clay Clay Miner.40(1992)92-102.

    [24]L.Chen,Y.Huang,L.Huang,B.Liu,G.Wang,S.Yu,Characterization of Co(II)removal from aqueous solution using bentonite/iron oxide magnetic composites,J.Radioanal.Nucl.Chem.290(2011)675-684.

    [25]A.Soliemanzadeh,M.Fekri,The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI):Effect of relative parameters and soil experiments,Microporous Mesoporous Mater239(2017)60-69.

    [26]P.Mondal,C.B.Majumder,B.Mohanty,Effects of adsorbent dose,its particle size and initial arsenic concentration on the removal of arsenic,iron and manganese from simulated ground water by Fe3+impregnated activated carbon,J.Hazard.Mater.150(2008)695-702.

    [27]Z.Wang,E.Nie,J.Li,M.Yang,Y.Zhao,X.Luo,Z.Zheng,Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon,Environ.Sci.Pollut.Res.19(2012)2908-2917.

    [28]L.G.Yan,Y.Y.Xu,H.Q.Yu,X.D.Xin,Q.Wei,B.Du,Adsorption of phosphate from aqueous solution by hydroxy-aluminum,hydroxy-iron and hydroxy-iron-aluminum pillared bentonites,J.Hazard.Mater.179(2010)244-250.

    [29]S.Moharami,M.Jalali,Effect of TiO2,Al2O3,and Fe3O4nanoparticles on phosphorus removal from aqueous solution,Environ.Prog.Sustain.Energy33(2014)1209-1219.

    [30]D.Wu,Y.Shen,A.Ding,M.Qiu,Q.Yang,S.Zheng,Phosphate removal from aqueous solutions by nanoscale zero-valent iron,Environ.Technol.34(2013)2663-2669.

    [31]A.Soliemanzadeh,M.Fekri,S.Bakhtiary,M.H.Mehrizi,Biosynthesis of iron nanoparticles and their application in removing phosphorus from aqueous solutions,Chem.Ecol.32(2016)286-300.

    [32]Y.Liu,Some consideration on the Langmuir isotherm equation,Colloids Surf.A Physicochem.Eng.Asp.274(2006)34-36.

    [33]Z.Wen,Y.Zhang,C.Dai,Removal of phosphate from aqueous solution using nanoscale zerovalent iron(nZVI),Colloids Surf.A Physicochem.Eng.Asp.457(2014)433-440.

    [34]S.Moharami,M.Jalali,Removal of phosphorus from aqueous solution by Iranian natural adsorbents,Chem.Eng.J.223(2013)328-339.

    [35]M.Kragovi?,A.Dakovi?,M.Markovi?,J.Krsti?,G.D.Gatta,N.Rotiroti,Characterization of lead sorption by the natural and Fe(III)-modified zeolite,Appl.Surf.Sci.283(2013)764-774.

    [36]M.Hamidpour,M.Kalbasi,M.Afyuni,H.Shariatmadari,P.E.Holm,H.C.B.Hansen,Sorption hysteresis of Cd(II)and Pb(II)on natural zeolite and bentonite,J.Hazard.Mater.181(2010)686-691.

    [37]Y.A??i,ü.A?ikel,Y.S.A?ikel,Equilibrium,hysteresis and kinetics of cadmium desorption from sodium-feldspar using rhamnolipid biosurfactant,Environ.Technol.33(2012)1857-1868.

    [38]N.Dhillon,B.Brar,In fluence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils,Nutr.Cycl.Agroecosyst.75(2006)67-78.

    [39]M.Jalali,E.N.Peikam,Phosphorus sorption-desorption behaviour of river bed sediments in the Abshineh river,Hamedan,Iran,related to their composition,Environ.Monit.Assess.185(2013)537-552.

    [40]S.Y.Yoon,C.G.Lee,J.A.Park,J.H.Kim,S.B.Kim,S.H.Lee,J.W.Choi,Kinetic,equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles,Chem.Eng.J.236(2014)341-347.

    [41]S.Benyoucef,M.Amrani,Adsorption of phosphate ions onto low cost Aleppo pine adsorbent,Desalination275(2011)231-236.

    [42]H.K.Boparai,M.Joseph,D.M.O'Carroll,Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano-zerovalent iron particles,J.Hazard.Mater.186(2011)458-465.

    [43]W.Liu,J.Zhang,C.Zhang,Y.Wang,Y.Li,Adsorptive removal of Cr(VI)by Fe-modified activated carbon prepared fromTrapa natanshusk,Chem.Eng.J.162(2010)677-684.

    [44]R.K.Bharali,K.G.Bhattacharyya,Biosorption of fluoride on Neem(Azadirachta indica)leaf powder,J.Environ.Chem.Eng.(2015).

    [45]H.Koyuncu,A.R.Kul,An investigation of Cu(II)adsorption by native and activated bentonite:Kinetic,equilibrium and thermodynamic study,J.Environ.Chem.Eng.2(2014)1722-1730.

    www.999成人在线观看| 国内久久婷婷六月综合欲色啪| 一本久久中文字幕| 国产成人精品久久二区二区91| av超薄肉色丝袜交足视频| 最近最新免费中文字幕在线| 久久精品成人免费网站| 91国产中文字幕| a在线观看视频网站| 可以在线观看的亚洲视频| 久久久久久亚洲精品国产蜜桃av| 一卡2卡三卡四卡精品乱码亚洲| 国产aⅴ精品一区二区三区波| 精品国产乱子伦一区二区三区| 黄色毛片三级朝国网站| netflix在线观看网站| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区三区| 欧美精品啪啪一区二区三区| 久久香蕉精品热| 悠悠久久av| av天堂在线播放| 久久精品aⅴ一区二区三区四区| 国产午夜精品久久久久久| 日韩欧美一区二区三区在线观看| 丰满的人妻完整版| 18禁国产床啪视频网站| 亚洲精品美女久久久久99蜜臀| videosex国产| 黄频高清免费视频| 国产高清有码在线观看视频 | 日韩大码丰满熟妇| 在线观看日韩欧美| 午夜福利在线观看吧| 欧美人与性动交α欧美精品济南到| x7x7x7水蜜桃| 亚洲国产中文字幕在线视频| 人人澡人人妻人| 久久久久久久久中文| 欧美激情久久久久久爽电影 | 亚洲七黄色美女视频| 十八禁人妻一区二区| 国产精品秋霞免费鲁丝片| 人妻久久中文字幕网| 91老司机精品| 一本大道久久a久久精品| 欧美性长视频在线观看| 国产视频一区二区在线看| 男人舔女人的私密视频| 日韩欧美一区视频在线观看| 国产一区二区三区综合在线观看| 叶爱在线成人免费视频播放| 18美女黄网站色大片免费观看| 99久久国产精品久久久| 色av中文字幕| 久久久久久久久免费视频了| 看黄色毛片网站| 少妇 在线观看| ponron亚洲| 在线观看免费视频网站a站| 最好的美女福利视频网| 男女做爰动态图高潮gif福利片 | 中文字幕色久视频| 99久久综合精品五月天人人| 久久国产精品人妻蜜桃| 国产亚洲精品一区二区www| 亚洲国产高清在线一区二区三 | 黑人巨大精品欧美一区二区mp4| 老熟妇仑乱视频hdxx| 亚洲片人在线观看| АⅤ资源中文在线天堂| 久久亚洲真实| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 高潮久久久久久久久久久不卡| 午夜福利影视在线免费观看| 亚洲欧美日韩另类电影网站| 日韩免费av在线播放| 欧美激情 高清一区二区三区| 黑丝袜美女国产一区| 免费看十八禁软件| 热99re8久久精品国产| 成人18禁在线播放| 国产1区2区3区精品| 国产亚洲精品久久久久久毛片| 91成人精品电影| 成人免费观看视频高清| 色播亚洲综合网| 免费在线观看黄色视频的| 久久精品国产99精品国产亚洲性色 | av有码第一页| 人成视频在线观看免费观看| 在线观看免费午夜福利视频| 精品日产1卡2卡| 国产99久久九九免费精品| 国产精品国产高清国产av| 色哟哟哟哟哟哟| 大型黄色视频在线免费观看| 日韩 欧美 亚洲 中文字幕| 免费在线观看完整版高清| 精品国产乱码久久久久久男人| 欧美色视频一区免费| 国产精品久久电影中文字幕| 久久精品国产综合久久久| 亚洲熟女毛片儿| 精品国产一区二区三区四区第35| 免费高清视频大片| 免费观看人在逋| 制服诱惑二区| 91麻豆av在线| 国产精品野战在线观看| 天天一区二区日本电影三级 | 99精品久久久久人妻精品| 精品熟女少妇八av免费久了| 亚洲人成77777在线视频| 十八禁人妻一区二区| 色av中文字幕| 国产亚洲精品综合一区在线观看 | 久久精品成人免费网站| 亚洲第一电影网av| 国语自产精品视频在线第100页| 一区福利在线观看| 叶爱在线成人免费视频播放| 亚洲色图 男人天堂 中文字幕| 欧美中文日本在线观看视频| 欧美丝袜亚洲另类 | 91精品国产国语对白视频| 久久国产亚洲av麻豆专区| 激情在线观看视频在线高清| 亚洲成人久久性| 色综合亚洲欧美另类图片| 一夜夜www| 一级作爱视频免费观看| 亚洲国产中文字幕在线视频| netflix在线观看网站| 亚洲五月色婷婷综合| 男女午夜视频在线观看| 免费高清视频大片| 亚洲国产欧美一区二区综合| 老司机午夜十八禁免费视频| 怎么达到女性高潮| 又黄又爽又免费观看的视频| 精品国产超薄肉色丝袜足j| 日韩欧美国产一区二区入口| 色综合亚洲欧美另类图片| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品在线福利| 免费久久久久久久精品成人欧美视频| 久久精品国产综合久久久| 欧美日韩黄片免| 精品国产美女av久久久久小说| 久久久久久大精品| 如日韩欧美国产精品一区二区三区| 99久久综合精品五月天人人| 国产亚洲精品一区二区www| 麻豆久久精品国产亚洲av| 亚洲片人在线观看| 国产精品av久久久久免费| 禁无遮挡网站| 久久久久精品国产欧美久久久| 国产成+人综合+亚洲专区| 日本免费一区二区三区高清不卡 | 日本三级黄在线观看| 美国免费a级毛片| 久久欧美精品欧美久久欧美| 在线免费观看的www视频| 母亲3免费完整高清在线观看| 国产精品秋霞免费鲁丝片| 首页视频小说图片口味搜索| 怎么达到女性高潮| 日本黄色视频三级网站网址| 美女大奶头视频| 日韩三级视频一区二区三区| 1024视频免费在线观看| 色综合欧美亚洲国产小说| 精品卡一卡二卡四卡免费| 妹子高潮喷水视频| 久久精品aⅴ一区二区三区四区| 一夜夜www| 日本撒尿小便嘘嘘汇集6| 精品国产乱子伦一区二区三区| 久久国产精品影院| 精品人妻1区二区| av有码第一页| 波多野结衣一区麻豆| 欧美久久黑人一区二区| 一区二区三区激情视频| 久久婷婷人人爽人人干人人爱 | 日韩精品中文字幕看吧| 欧美+亚洲+日韩+国产| 亚洲精品粉嫩美女一区| 这个男人来自地球电影免费观看| 欧美一级毛片孕妇| 窝窝影院91人妻| 麻豆久久精品国产亚洲av| 国产私拍福利视频在线观看| 国产成人精品久久二区二区91| 免费在线观看亚洲国产| 免费在线观看日本一区| 精品国产亚洲在线| 国产精品久久久人人做人人爽| 国产精品久久视频播放| 大码成人一级视频| 日日爽夜夜爽网站| 精品一区二区三区视频在线观看免费| 午夜福利欧美成人| 国产精品av久久久久免费| 无人区码免费观看不卡| 亚洲欧美日韩高清在线视频| 一区二区三区激情视频| 美女高潮喷水抽搐中文字幕| 久久久久九九精品影院| 成熟少妇高潮喷水视频| 老熟妇乱子伦视频在线观看| 中文字幕人成人乱码亚洲影| 搡老妇女老女人老熟妇| 久久草成人影院| 美女国产高潮福利片在线看| 欧美黑人精品巨大| 免费看十八禁软件| 亚洲欧洲精品一区二区精品久久久| 国产视频一区二区在线看| 男女下面进入的视频免费午夜 | 亚洲精品美女久久av网站| 波多野结衣一区麻豆| 中文字幕久久专区| 亚洲精品国产区一区二| 十八禁网站免费在线| 欧美色视频一区免费| 亚洲精品av麻豆狂野| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区 | 18美女黄网站色大片免费观看| 日本在线视频免费播放| 成年版毛片免费区| avwww免费| 一级片免费观看大全| 午夜久久久在线观看| 精品福利观看| 国产精品香港三级国产av潘金莲| 久久久久久久精品吃奶| 午夜老司机福利片| 久久 成人 亚洲| 欧美一区二区精品小视频在线| 久久香蕉国产精品| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品一区二区www| 日本五十路高清| 亚洲精品中文字幕一二三四区| 精品欧美一区二区三区在线| 美女国产高潮福利片在线看| 婷婷六月久久综合丁香| 日韩大码丰满熟妇| 亚洲欧美日韩高清在线视频| 97碰自拍视频| 国产精品av久久久久免费| 成人亚洲精品av一区二区| 变态另类成人亚洲欧美熟女 | 成人18禁高潮啪啪吃奶动态图| 国产午夜福利久久久久久| 色综合站精品国产| 亚洲欧美激情综合另类| 超碰成人久久| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 精品第一国产精品| 亚洲一区二区三区色噜噜| 成人免费观看视频高清| 国产亚洲欧美98| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 欧美大码av| 亚洲熟女毛片儿| 天堂动漫精品| 精品熟女少妇八av免费久了| 精品国产国语对白av| 国产在线观看jvid| 一级,二级,三级黄色视频| 免费久久久久久久精品成人欧美视频| 欧美精品亚洲一区二区| 亚洲av成人av| 热99re8久久精品国产| 午夜福利影视在线免费观看| 国产一区在线观看成人免费| 午夜福利在线观看吧| 成人18禁高潮啪啪吃奶动态图| 色哟哟哟哟哟哟| 淫秽高清视频在线观看| 欧美色欧美亚洲另类二区 | 国产亚洲精品久久久久5区| 99久久精品国产亚洲精品| 一边摸一边抽搐一进一出视频| 丰满的人妻完整版| 亚洲国产欧美一区二区综合| 午夜久久久在线观看| 亚洲电影在线观看av| videosex国产| 婷婷丁香在线五月| 亚洲五月色婷婷综合| 日韩三级视频一区二区三区| 免费在线观看亚洲国产| 国产精品乱码一区二三区的特点 | 婷婷丁香在线五月| 女同久久另类99精品国产91| 亚洲中文av在线| 在线av久久热| 曰老女人黄片| 99国产精品免费福利视频| 国产麻豆69| 老司机在亚洲福利影院| 亚洲成人国产一区在线观看| 日韩有码中文字幕| 精品高清国产在线一区| 久久人人精品亚洲av| 一个人观看的视频www高清免费观看 | 免费女性裸体啪啪无遮挡网站| 精品久久久久久成人av| 久久香蕉精品热| 女生性感内裤真人,穿戴方法视频| 国产成人av教育| 亚洲专区字幕在线| 欧美老熟妇乱子伦牲交| 在线观看日韩欧美| 无限看片的www在线观看| 亚洲美女黄片视频| 麻豆av在线久日| 啦啦啦韩国在线观看视频| 国产男靠女视频免费网站| 老鸭窝网址在线观看| 欧美最黄视频在线播放免费| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 热re99久久国产66热| 日韩欧美一区二区三区在线观看| av福利片在线| 亚洲最大成人中文| 国产一区二区三区综合在线观看| 人妻久久中文字幕网| 12—13女人毛片做爰片一| 国产成人精品在线电影| 成熟少妇高潮喷水视频| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 神马国产精品三级电影在线观看 | 国产99白浆流出| 香蕉丝袜av| www.熟女人妻精品国产| 国产精品综合久久久久久久免费 | 亚洲国产中文字幕在线视频| 妹子高潮喷水视频| 午夜福利免费观看在线| 人妻久久中文字幕网| 欧美日韩黄片免| 亚洲九九香蕉| 日韩欧美国产在线观看| 波多野结衣高清无吗| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 精品国产一区二区三区四区第35| av福利片在线| 亚洲专区字幕在线| 国产一卡二卡三卡精品| 国产麻豆成人av免费视频| 美女国产高潮福利片在线看| 亚洲熟妇熟女久久| 婷婷丁香在线五月| 国产一区二区三区视频了| 亚洲九九香蕉| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av | 午夜福利在线观看吧| 9191精品国产免费久久| 精品国产美女av久久久久小说| 日本撒尿小便嘘嘘汇集6| 欧美激情久久久久久爽电影 | 91麻豆av在线| 国产99白浆流出| 亚洲七黄色美女视频| 脱女人内裤的视频| 日韩 欧美 亚洲 中文字幕| 99精品久久久久人妻精品| 精品少妇一区二区三区视频日本电影| 久久久久久大精品| www.熟女人妻精品国产| 亚洲少妇的诱惑av| 日韩大码丰满熟妇| 国产亚洲精品av在线| 亚洲精品美女久久久久99蜜臀| 成人三级做爰电影| 男人舔女人的私密视频| 日本a在线网址| 日韩大尺度精品在线看网址 | 色精品久久人妻99蜜桃| 一级毛片高清免费大全| 欧美黑人精品巨大| 久久久精品国产亚洲av高清涩受| 精品不卡国产一区二区三区| 黄色视频,在线免费观看| 人人澡人人妻人| 国产真人三级小视频在线观看| 久久午夜亚洲精品久久| 99国产精品一区二区三区| 亚洲精品粉嫩美女一区| 国内久久婷婷六月综合欲色啪| 人人妻人人澡欧美一区二区 | 亚洲电影在线观看av| 狠狠狠狠99中文字幕| 亚洲av片天天在线观看| 免费在线观看完整版高清| 精品午夜福利视频在线观看一区| 麻豆久久精品国产亚洲av| 免费搜索国产男女视频| 国产熟女xx| 色综合站精品国产| 最新美女视频免费是黄的| 巨乳人妻的诱惑在线观看| 免费在线观看亚洲国产| 999久久久国产精品视频| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 黄色视频不卡| 午夜久久久久精精品| 亚洲自拍偷在线| 操出白浆在线播放| 中文亚洲av片在线观看爽| 久久人妻熟女aⅴ| 麻豆一二三区av精品| 欧美激情 高清一区二区三区| 日本在线视频免费播放| 国产成人系列免费观看| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 又大又爽又粗| 日韩精品中文字幕看吧| 黄色视频,在线免费观看| 亚洲 欧美一区二区三区| 午夜免费观看网址| 国产亚洲欧美精品永久| 亚洲avbb在线观看| 日韩免费av在线播放| 成年人黄色毛片网站| 一边摸一边抽搐一进一出视频| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看.| 国产伦人伦偷精品视频| 亚洲中文日韩欧美视频| 88av欧美| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣av一区二区av| 欧美日韩福利视频一区二区| 欧美精品亚洲一区二区| 在线天堂中文资源库| 九色国产91popny在线| 日本 av在线| 精品久久蜜臀av无| 国产精品影院久久| 可以在线观看的亚洲视频| 亚洲中文字幕日韩| 亚洲五月天丁香| 欧美日韩瑟瑟在线播放| 99国产综合亚洲精品| 夜夜躁狠狠躁天天躁| 久久中文看片网| 亚洲精品国产色婷婷电影| 在线观看免费视频网站a站| 欧美日韩亚洲国产一区二区在线观看| 色在线成人网| 最新在线观看一区二区三区| 久久人人97超碰香蕉20202| av福利片在线| 丝袜在线中文字幕| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区mp4| 亚洲一码二码三码区别大吗| 99久久99久久久精品蜜桃| 国产一区二区在线av高清观看| 日韩大尺度精品在线看网址 | 91大片在线观看| 色综合亚洲欧美另类图片| 亚洲国产精品久久男人天堂| 97碰自拍视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说| 少妇 在线观看| 老鸭窝网址在线观看| 国产乱人伦免费视频| 色播亚洲综合网| 曰老女人黄片| 最近最新中文字幕大全免费视频| 亚洲自偷自拍图片 自拍| 免费观看人在逋| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 深夜精品福利| 久久影院123| 精品乱码久久久久久99久播| 久久人妻av系列| 国产精品,欧美在线| 黄色丝袜av网址大全| 欧美黑人精品巨大| √禁漫天堂资源中文www| 男女做爰动态图高潮gif福利片 | 国产亚洲精品久久久久久毛片| 视频在线观看一区二区三区| 精品福利观看| 色精品久久人妻99蜜桃| 国语自产精品视频在线第100页| 人成视频在线观看免费观看| 曰老女人黄片| av超薄肉色丝袜交足视频| 精品少妇一区二区三区视频日本电影| 亚洲国产欧美一区二区综合| 一级a爱视频在线免费观看| 中国美女看黄片| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费| 欧美乱妇无乱码| 麻豆久久精品国产亚洲av| 国产熟女午夜一区二区三区| ponron亚洲| 精品无人区乱码1区二区| 神马国产精品三级电影在线观看 | 在线天堂中文资源库| 国产精品电影一区二区三区| 国产精品二区激情视频| 最新美女视频免费是黄的| 深夜精品福利| 欧美最黄视频在线播放免费| videosex国产| 欧美乱色亚洲激情| 少妇裸体淫交视频免费看高清 | 视频区欧美日本亚洲| 亚洲av成人一区二区三| 午夜亚洲福利在线播放| 亚洲最大成人中文| 老鸭窝网址在线观看| 亚洲三区欧美一区| 波多野结衣一区麻豆| 999久久久国产精品视频| 非洲黑人性xxxx精品又粗又长| 日韩精品青青久久久久久| 欧美黄色淫秽网站| 巨乳人妻的诱惑在线观看| 亚洲avbb在线观看| 欧美激情 高清一区二区三区| 欧美一级a爱片免费观看看 | 亚洲成人免费电影在线观看| 精品欧美国产一区二区三| 亚洲专区中文字幕在线| 女人精品久久久久毛片| 日韩 欧美 亚洲 中文字幕| 日韩欧美国产在线观看| 99精品欧美一区二区三区四区| 可以在线观看毛片的网站| 国产黄a三级三级三级人| 咕卡用的链子| 人成视频在线观看免费观看| 在线观看免费视频日本深夜| 一本久久中文字幕| 精品一区二区三区视频在线观看免费| av福利片在线| 女人高潮潮喷娇喘18禁视频| 成熟少妇高潮喷水视频| 午夜免费观看网址| 一级毛片女人18水好多| 欧美日韩中文字幕国产精品一区二区三区 | 午夜日韩欧美国产| 搡老妇女老女人老熟妇| 欧美精品亚洲一区二区| 大香蕉久久成人网| 日本免费一区二区三区高清不卡 | 神马国产精品三级电影在线观看 | 嫩草影院精品99| 又黄又爽又免费观看的视频| 日韩高清综合在线| 精品不卡国产一区二区三区| 波多野结衣一区麻豆| 亚洲精品一区av在线观看| 美女扒开内裤让男人捅视频| 91麻豆精品激情在线观看国产| 淫妇啪啪啪对白视频| 亚洲人成77777在线视频| 欧美精品啪啪一区二区三区| 久久久久国内视频| 纯流量卡能插随身wifi吗| 欧美丝袜亚洲另类 | 午夜福利18| 欧美日韩亚洲国产一区二区在线观看| 午夜免费观看网址| 国产精品野战在线观看| 亚洲九九香蕉| 天天添夜夜摸| 色老头精品视频在线观看| 日韩大码丰满熟妇| 精品国产亚洲在线| 国内精品久久久久久久电影| 一区福利在线观看| 人妻丰满熟妇av一区二区三区| 亚洲av电影在线进入| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 999精品在线视频| 人人妻人人澡人人看| 丁香欧美五月| 9色porny在线观看| 亚洲人成77777在线视频| 手机成人av网站| tocl精华|