• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Suppression of gold nanoparticle agglomeration and its separation via nylon membranes☆

    2017-05-29 01:39:48AyyavooJayalakshmiInChulKimYoungNamKwon

    Ayyavoo Jayalakshmi,In-Chul Kim ,Young-Nam Kwon ,2,*

    1 School of Urban and Environmental Engineering,Ulsan National Institute of Science and Technology,Ulsan 689-798,Korea

    2 KIST-UNIST Ulsan Center for Convergent Materials,UNIST(Ulsan National Institute of Science and Technology),Korea

    3 Environment and Resources Research Center,Korea Research Institute Chemical Technology,Daejeon 305-606,Korea

    1.Introduction

    Particle contamination in the semiconductor manufacturing can cause low-throughput,high defects and minified executions through micro-lithographic processes[1-4],and thus the control of the contamination has become a critical issue,especially,in integrated circuits and lab on chips[5,6].Various micro-lithographic stages have higher complications to accomplish several layer circuits in the fabrication of compact semiconductor chips[7,8].Generally,the contamination in micro-lithographic process by soft nanoparticles on the wafer surface leads to the microbridge defects of integrated circuits[9,10],and this has been addressed by preventing the deleterious particulate contamination with application of polymeric membranes[11-13].

    For evaluation of polymer membranes use of gold nanoparticles has several bene fits due to their highly detectable characteristics using optical method, fine particle size distribution,high stability,and innocuous property[14,15].Virtually,all nanoparticles can agglomerate or precipitate and the degree of agglomeration or precipitation is determined by several factors such as pH,concentration and temperature[16,17].According to the DLVO(Derjaguin-Landau-Verwey-Overbeek)theory,the agglomeration of nanosized colloidal particles occurs due to the decrease of surface potentials[18].In this scenario,the electric double layer plays a fundamental role in the stabilization of colloidal particles,where the higher ionic strength of the solution compresses the double layer and shrinks the electrostatic repulsion,extending an irreversible cluster of nanoparticles[19,20].Nylon membranes have the remarkable property being more solvent permeable and selective to the nanoparticles.However,the gold nanoparticles,which have been used for the evaluation of the membranes,can easily aggregate atthe nylon membrane surface and making itdifficultto make a precise evaluation.Using a preventive ligand,the gold colloid aggregation can be reduced[19,21].These ligands such as thiomalic acid,thioglycolic acid,thiosalicylic acid,1-thioglycerol,2-sulfanylethanol,1-sulfanyl-2-propanol,isobutanol-2-amine,and serinol can be used[22,23].Burgesset al.also showed that citric acid acted as a reductant and stabilizer for gold colloids[19].They demonstrated thatthe thermodynamic description required for single gold crystals(two-dimensional gold surface)could be extended to nanosized three-dimensional gold sols.Kimmuraet al.proposed mercaptosuccinic acid(MSA)to disperse gold nanoparticles[24].The function of ligand was shown to modify the surface of gold colloid(change of zeta potential and ionic strength)and to reduce the interaction between the particle and surface medium.

    The aim of this research is to understand the fundamental behavior of 2-amino-2-hydroxymethyl-1,3-propanediol(ADP)ligand in gold nanoparticle solution for a better evaluation of the nylon membranes and to utilize the ligand to prevent gold colloid clusters(i.e.between two particles and among the gold colloid and membrane surface).For the study,the nylon ultra filtration membranes were fabricated by the non-solvent induced phase separation(NIPS)method.The surface characteristics were investigated using various analytical tools,and the prepared nylon membrane was used to separate gold nanoparticles(20 and 50 nm).The effectofADP and pHvalues on the rejection ofgold colloid was investigated,and the interparticle interaction energy was also calculated.The manipulation of gold colloids accumulating on the membrane surface was correlated with a microscopic study using scanning electron microscopy(SEM),transmission electron microscopy(TEM),and confocal laser scanning microscopy(CLSM).The impedance study of the prepared membrane,particle size and zeta potential of the gold colloids was also demonstrated.

    2.Experimental

    2.1.Materials

    Nylon 6,6 polymer was purchased from BASF and used without any pretreatment.Formic acid,lithium chloride(LiCl),and ethanol were purchased from Sigma-Aldrich(MO,USA)and were allused as received.Gold nanoparticle(~20 nm and~50 nm)solutions were procured from PBI solution.2-Amino-2-hydroxymethyl-1,3-propanediol(ADP)was purchased from Sigma-Aldrich,Korea and used as ligand for the gold nanoparticle.Deionized water(DI water)(Milli-Q Advantage A10,Millipore Corporation)was used to prepare all the aqueous solutions.

    2.2.Membrane preparation

    The dope solution formembrane preparation was formulated by dissolving(28 wt%)nylon 6,6 polymer in the solvent mixture containing formic acid(61 wt%),LiCl(3 wt%)and ethanol(8 wt%).The nylon membrane was prepared by non-solvent induced phase separation(NIPS)method(80%of relative humidity)and named Nylon A(NA).After solvent evaporation,the membrane was immersed in distilled water.

    2.3.Characterization

    Hydrophilicity of the membrane was evaluated by contact angle measurements(Phoenix300 Plus,Surface and Electro Optics Co.Ltd.,Korea)using the sessile drop method.The wetting energy(We),work of adhesion(Wa)and spreading co-efficient(Sc)were calculated using measured contact angle θ values and γ is surface tension of water(Eqs.(1)-(3))

    The cross-sectionalimages ofthe membranes were observed by field emission scanning electron microscopy(FESEM Nano230,FEI,USA).To reduce image artifacts caused by the electrostatic charge,allthe samples were Pt-coated at20 mAand 0.2 Pa for 60 s using a Turbo Pumped High-Resolution Chromium Sputter Coater(K575X,EMITECH,Germany).The surface morphologies of the nylon membranes were examined using a Multimode V(Veeco,USA)atomic force microscope(AFM)capable of imaging at vertical lateral resolutions of 0.01 nm.High resolutiontransmission electron microscopy(TEM)of gold nanoparticles and goldfiltered membranes was performed in bright field mode at 80 kV using a Hitachi H-7650 TEM,and the images were acquired with an Olympus Cantega 11 megapixel digital camera.CLSM was used to analyze the surface morphology and roughness of the membrane(CLSM,OLS-2000,Olympus,Japan),and the membrane surfaces were imaged at a scan size of 10 μm × 10 μm and the surface roughness was measured.

    Particle size and zeta potentialofgold nanoparticle were measured by a sub-micron size and zeta potential measuring system(Malvern,UK).

    2.4.Gold nanoparticle separation

    The permeation experiments were performed using membrane cells with an exposed membrane area of 5.30 cm2under dead end filtration mode.An applied pressure of 0.1 MPa for the particle separation was generated by nitrogen gas,and the flow rate of feed solution was 1.0 L·min-1.The valve located at the end of the cellwas used to pressurize the feed solutions and control the feed pressure.Gold nanoparticle(20 and 50 nm)solutions were used for the separation studies.Filtration through each membrane was carried out independently,and the concentration of the feed solution was kept constant during the membrane filtration.The rejection was estimated using an inductively coupled plasma-optical emission spectrometer(ICP-OES).The percentage of the solute rejection was calculated using Eq.(4).

    For Eq.(4),MfandMpare the concentration of solute in the feed and permeate solution,respectively.

    Interparticle interaction energy of gold nanoparticles(assuming spherical shape)was calculated by using van der Waals attraction(DLVO theory)between two particles[18].

    For Eq.(5),AHis the Hamaker constant(2.5×10-19J where an average was used),a1anda2are the radii of the particles,andRis the distance between the centers of two particles.

    3.Results and Discussion

    3.1.Nylon membrane preparation

    The nylon membrane(NA)was fabricated by immersion precipitation method with~0.05 mm thickness.SEM micrographs of nylon membranes are shown in Fig.1.The dense layer was observed in the cross sectional SEM images,and the microporous support layer present in middle part of the membrane showed a partially anisotropic structure.Spongy-like structure was visible in the nylon membrane on the exterior side in lower magnification,whereas Darcy structure was observed athighermagnification.The thread-like structure and multiform of ovoid structure were noticed in the back side of the membrane.Fig.2a shows 3-D CLSM fluorescent images of NA.The homogeneity structure was exhibited on the skin layer of membrane surface in NA membrane.In AFM,two-dimensional(2-D)and three-dimensional(3-D)micrographs were included to show the membrane valley and nodules(Fig.2b and c).Surface morphology of NA membrane showed surface roughness and membrane nodules.Surface roughness calculated from AMF showed slightly higher values compared to CLSM surface roughness(Table 1).Various surface factors(wetting energy,work ofadhesion,and spreading co-efficient),determining the performance/fouling of the prepared NA membrane,were calculated by contact angle values as shown in Table 2.

    Fig.1.Scanning electron micrographs of nylon membrane(NA):(a)the cross-section images of NA with thickness(~50 μm)in the magnification of 1.0 k,(b)top surface of NA with magnification of 3.0 k,(c)the bottom structure of membrane support with magnification of 10.0 k.

    Fig.2.Confocal laser scanning micrographs and atomic force micrographs of NA membrane:(a)3-D display of CLSM images of NA membrane,(b)and(c)2-D and 3-D display of AFM images of NA membrane.All membranes were scanned at 1 μm(scan size).

    Table 1Comparison of surface roughness parameters from AFM and CLSM

    Table 2Various surface factors calculated from contact angle values

    3.2.Rejection study of gold nanoparticle

    The feed of gold nanoparticle solution was prepared by adding ADP as ligand.Incorporation of ADP in feed solution was substantial because nylon membrane had a highly positive polarity group(amide linkage)and easily absorbed several colloids dispersed in liquid with a high negative charge.The amine group present in the ligand can bind the gold surface particle and the hydroxyl groups in the ligand can form hydrogen bonds with water molecules,hindering the agglomeration and dispersing the gold nanoparticles in the solution.The behavior of ADP ligand in gold nanoparticle solution was schematically represented in Fig.3.The particle size of the gold nanoparticle solution with ADP was observed using a zeta-sizer analyzer.The particle size of the gold nanoparticles is shown in Fig.4.The addition of ADP solution slightly increased the size ofgold nanoparticles by 2.5-2.6 nmdue to the hydration of ADP bound to the nanoparticles.

    The separation of gold nanoparticle using nylon membrane was analyzed using inductively coupled plasma with optical emission spectroscopy(ICP-OES).The percentage rejection values of the gold colloid(20 and 50 nm without ADP)were 88.6%and 94.7%,respectively,for NA membrane at neutral pH(Fig.5).For the gold nanoparticles of 20 and 50 nm with 1.0 mmol·L-1ADP solution,the rejection percentages were 93.5%and 99.8%,respectively.Nylon membrane exhibited higher separation of gold nanoparticles in the presence of ADP due to higher complexation of gold nanoparticle with ADP.The ADP in gold solution had sufficient energy barrier to prevent the aggregation of gold particles.The gold colloid separation efficiency of nylon membrane showed higher capability at neutral pH.

    3.3.Effect of pH on gold rejection

    The rejection of gold nanoparticles was observed in various pH values from 4 to 14 using the NA membranes,and the data are shown in Fig.6.At pH 4,the percentage rejection of gold nanoparticle(20 and 50 nm)with ADP was showed 98.16%,and 99.45%,respectively.For increasing pH,the rejection percentage slightly decreased at pH 6,then increased at pH 8,and slightly decreased at yet a higher pH.The prepared nylon membrane shows relatively stable rejection in all pH range.The change in rejection percentage was likely due to change in the zeta potential and ionic strength of the gold solution(Table 3).With increasing pH,the surface of gold nanoparticles became more negative and also the ionic strength of the solution changed due to the acid or base added as they reached the specific pH values.The ionic strength of gold nanoparticle solution at pH 6 was lowest and thus the decline of ionic strength might have decreased the rejection at a given pH.This con firmed that the gold nanoparticles were stably dispersed since the ADP energy barrier was highly sufficientto prevent agglomeration of gold colloids.

    Fig.3.Schematic representation ofsuppression ofgold colloids cluster using ADP during membrane filtration.Agglomeration ofgold nanoparticles adsorbed in nylon membrane surface in TEM images.The ADP amino group provides a strong electro-attractive force to the gold colloids and gold-ADP complex is repulsed by the nylon membrane.

    Fig.4.The particle size of gold nanoparticle with and without addition of ADP solution(pH 7.5).

    Fig.5.Rejection of gold nanoparticles with and without ADP for NA membrane atpH 7.5.All the membranes were compacted for 30 min before gold nanoparticle separation at 0.1 MPa with DIwater.The feed solution ofgold particle(20 and 50 nm)(concentration~50×10-6)with and without ADP at 1.0 mmol·L-1 concentration was used.

    The stabilization of gold nanoparticles and its agglomeration mainly depend on solution pH,cross linkage of ligands and the ionic strength[18].The ADP in the gold solution made the nanoparticles more stable without any clusters forming and also increased the rejection capability of the nylon membrane.The larger-sized of gold nanoparticles at50 nm showed higherrejection than smaller-sized gold nanoparticles at20 nm due to the size effect.The incorporation of ADP into the gold nanoparticle solution suppressed the agglomeration among particles and reduced the adsorption of gold particles on the membrane surface.Therefore,ADPfunctionality contributed to the properties ofboth the gold solution and the nylon membrane.The order of gold colloid rejection capability at various pH was pH 8~pH 4>pH 10>pH 12~pH 14>pH 6.

    The interaction energy values of gold nanoparticles are given in Table 4.The interaction energy of particles was reduced after adding the ADP to the gold solution.Thus the reduction of interaction energy between the gold nanoparticles con firms the depression of agglomeration of gold clusters.This interaction energy is also known as van der Waals interaction energy[25].The Hamaker constant(AH)of gold nanoparticles was used in estimating the interaction and the range ofvalues is(1-4)×10-19J was utilized[26]for the above calculation.

    Table 3Ionic strength and zeta potential of gold solution with and without ADP at different pH values

    Table 4Interparticle interaction energy of gold solution with and without ADP

    3.4.Correlated with microscopic analysis

    The gold nanoparticle agglomeration during me mbrane filtration and the suppression of gold colloid clusters with the addition of ADP were also con firmed by TEM images.The binding of gold nanoparticles was also evidenced by SEM,AFM and CLSM(explained below).TEM images of gold nanoparticle- filtered membrane in the presence of ADP during membrane filtration of nylon membrane are shown in Fig.7.Sphere-shaped nanoparticles were observed in TEM and the splitting of gold colloids deposition using ADP was verified.The particle size of gold nanoparticle was précised at20.3 nmand 50.1 nmand itresembled the monodispersity of the gold particle.The EDX mapping image also evidenced the particle size.The above data con firmed that the particle size remained the same as after the rejection study and demonstrated the reduction of interacting force between the gold nanoparticles and the nylon membrane.

    The rejected gold nanoparticles in the presence of ADP on the nylon membrane surface were analyzed with SEM as shown in Fig.8.The gold nanoparticles were randomly deposited with uniform shapes on the membrane surface,and the de-structuring of the gold colloid flocks in the prepared NA membrane was observed with both particle sizes(20 and 50 nm).Fig.9 shows the EDAX imagesof the gold nanoparticles deposited on nylon membrane surface.The deposited nylon membranes were cleaned by water without any chemicals and sonicated for 2 min.Gold nanoparticles were loosely adsorbed on membrane surface in the presence ofADP ligand and those could be easily removed by the cleaning process.The majority of the gold particles were washed off and 12%of gold particles remained and were left scattered on the membrane surface.In comparison,the clustered particles formed during the operation without ADP could not be easily removed,and the 22%of gold remaining post-wash was tightly bound to the membrane surface in the form ofgroupsofgold clusters.Thus,the ADP ligand suppressed formation of gold clusters on the nylon membrane surface.The gold colloids deposited on nylon membrane in 3-D CLSM are shown in Fig.10.In this instance,the gold nanoparticles were deposited homogeneously without colloidal clusters on the nylon membrane.The deposited particles on membrane surface of NA in CLSM images and the formation looked like quantum dots.

    4.Conclusions and Future Prospects

    The present investigation depicts the successful fabrication of nylon membrane using a simple phase inversion technique and utilization of ADP ligand to de-structure gold colloid flocks(both within the particles themselves and between the gold and membrane surface).The prepared membranes achieved relatively high gold nanoparticle separation efficiencies from gold colloids(20 and 50 nm)with the ADP solution at 1.0 mmol·L-1.Ultrathin dense layer,microporous Darcy-like structure and thread-like ovoid structures were seen in NA membrane with SEM.The deep depressions(membrane pores)and nodules were ascertained in AFM micrographs.In laser micrographs,smoother surface with less prominent grains was seen.The surface roughness features of NA membranes were compared with AFM and CLSM.

    Fig.7.Transmission electron micrographs of separated gold nanoparticle with 1.0 mmol·L-1 ADP during membrane filtration:(a)and(b)the separated gold nanoparticles(20 nm)with TEM images of the NA membrane,(d)and(e)the separated gold nanoparticles(50 nm)with TEM images of the NA membrane,(c)and(f)EDX mapping TEM images of separated gold nanoparticle(20 and 50 nm,respectively)for the membranes.

    Fig.8.Scanning electron micrographs of separated gold nanoparticle in the presence of ADP during membrane filtration:(a)and(b)the separated gold nanoparticle(20 and 50 nm,respectively)with SEM images of NA membrane with magnification of 70 k&100 k.

    Fig.9.EDAX(SEM)images:(a)and(c)membranes filtered with gold nanoparticles(in presence and absence ofADP),(b)and(d)after cleaning,the separated gold nanoparticle remaining on the nylon membrane.The membranes were cleaned and sonicated for 2 min.

    The separation efficiency ofthe gold nanoparticles(20 and 50 nm)in the presence of ADP with the nylon membrane was highest at pH 4 and 8.The gold colloid agglomeration was suppressed using ADP and the monodispersity of gold nanoparticles was evidenced by TEM,AFM,CLSM and SEM.The interparticle interaction energy was reduced in the gold solution with the ADP ligand.The accurate particle size of gold nanoparticles was con firmed by TEM and zeta-sizer.This study showed that the addition of ADP prevented the agglomeration of gold nanoparticles,which deviates the evaluation of precise pore size of the nylon membranes.The fabrication of nylon membrane with various pore sizes(less than 5 nm,10 nm,20 nm)for a separation study is required and the findings may translate to additional applications.

    Nomenclature

    AHHamaker constant(=2.5×10-19J)

    a1anda2Radii of the particles,nm

    MpConcentration of solute in the permeate,mg·L-1

    MfConcentration of solute in the feed,mg·L-1

    RDistance between the centers of two particles,nm

    ScSpreading co-efficient,mN·m-1

    WeWetting energy,mN·m-1

    WaWork of adhesion,mN·m-1

    θ Contact angle values,°

    γ Surface tension of water,mN·m-1

    [1]D.Gentili,M.Cavallini,Wet-lithographic processing of coordination compounds,Coord.Chem.Rev.257(2013)2456-2467.

    [2]P.M.Harrey,B.J.Ramsey,P.S.A.Evans,D.J.Harrison,Capacitive-type humidity sensors fabricated using the offset lithographic printing process,Sensors Actuators B Chem.87(2002)226-232.

    [3]J.Lauria,R.Albright,O.Vladimirsky,M.Hoeks,R.Vanneer,B.v.Drieenhuizen,L.Chen,L.Haspeslagh,A.Witvrouw,SLM device for 193 nm lithographic applications,Microelectron.Eng.86(2009)569-572.

    [4]N.S.Leyland,J.R.G.Evans,D.J.Harrison,Lithographic printing of ceramics,J.Eur.Ceram.Soc.22(2002)1-13.

    [5]K.Jiang,C.H.Lee,P.Jin,An ultrathick SU-8 UV lithographic process and sidewall characterization A2,in:Wolfgang Menz,Stefan Dimov,Bertrand Fillon(Eds.),4M 2006-Second International Conference on Multi-Material Micro Manufacture,Elsevier,Oxford 2006,pp.211-216.

    [6]W.Y.Kim,H.C.Lee,Developmentof manipulation technology of ferroelectric polymer film:Photo-lithographic patterning and multilayer formation,Microelectron.Eng.88(2011)1576-1581.

    [7]A.Singh,S.K.Kulkarni,C.Khan-Malek,Patterning of SiO2nanoparticle-PMMA polymer composite microstructures based on softlithographic techniques,Microelectron.Eng.88(2011)939-944.

    [8]T.Vandeweyer,C.Baerts,N.Horiguchi,M.Ercken,New lithographic requirements for the implant levels in scaled devices,Microelectron.Eng.88(2011)2171-2173.

    [9]J.Marques-Hueso,R.Abargues,J.Canet-Ferrer,J.L.Valdes,J.Martinez-Pastor,Resistbased silver nanocomposites synthesized by lithographic methods,Microelectron.Eng.87(2010)1147-1149.

    [10]A.P.Oost,P.L.De Boer,Tectonic and climatic setting of lithographic limestone basins,Geobios27(Suppl.1)(1994)321-330.

    [11]M.E.Anderson,C.Srinivasan,R.Jayaraman,P.S.Weiss,M.W.Horn,Utilizing self-assembled multilayers in lithographic processing for nanostructure fabrication:Initial evaluation of the electrical integrity of nanogaps,Microelectron.Eng.78-79(2005)248-252.

    [12]I.S.Chronakis,Chapter 22—Micro-and Nano- fibers by Electrospinning Technology:Processing,Properties,and Applications A2—Qin,Yi,Micromanufacturing Engineering and Technology,second ed.William Andrew Publishing,Boston,2015 513-548.

    [13]J.E.Krzanowski,Fabrication and tribological properties of composite coatings produced by lithographic and microbeading methods,Surf.Coat.Technol.204(2009)955-961.

    [14]M.-C.Daniel,D.Astruc,Gold nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology,Chem.Rev.104(2004)293-346.

    [15]A.N.Shipway,E.Katz,I.Willner,Nanoparticle arrays on surfaces for electronic,optical,and sensor applications,ChemPhysChem1(2000)18-52.

    [16]C.S.Weisbecker,M.V.Merritt,G.M.Whitesides,Molecular self-assembly of aliphatic thiols on gold colloids,Langmuir12(1996)3763-3772.

    [17]T.Yonezawa,K.Yasui,N.Kimizuka,Controlled formation ofsmaller gold nanoparticles by the use of four-chained disul fide stabilizer,Langmuir17(2001)271-273.

    [18]T.Kim,K.Lee,M.-S.Gong,S.-W.Joo,Control of gold nanoparticle aggregates by manipulation of interparticle interaction,Langmuir21(2005)9524-9528.

    [19]J.Kunze,I.Burgess,R.Nichols,C.Buess-Herman,J.Lipkowski,Electrochemical evaluation of citrate adsorption on Au(1 1 1)and the stability of citrate-reduced gold colloids,J.Electroanal.Chem.599(2007)147-159.

    [20]J.B.Schlenoff,M.Li,H.Ly,Stability and self-exchange in alkanethiol monolayers,J.Am.Chem.Soc.117(1995)12528-12536.

    [21]A.N.Takehito Mizuna,Shuichi Tsuzuki,A novel filter rating method using less than 30-nm gold nanoparticle and protective ligand,IEEE Trans.Semicond.Manuf.22(2009).

    [22]S.I.Stoeva,A.B.Smetana,C.M.Sorensen,K.J.Klabunde,Gram-scale synthesis of aqueous gold colloids stabilized by various ligands,J.Colloid Interface Sci.309(2007)94-98.

    [23]V.J.Gandubert,R.B.Lennox,Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles,Langmuir21(2005)6532-6539.

    [24]S.Chen,K.Kimura,Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water,Langmuir15(1999)1075-1082.

    [25]E.J.W.Verwey,J.Th.G.Overbeek,Theory of the Stability of Lyophobic Colloids,Dover,Mineola,NY,1999.

    [26]S.Biggs,M.K.Chow,C.F.Zukoski,F.Grieser,The role of colloidal stability in the formation of gold sols,J.Colloid Interface Sci.160(1993)511-513.

    美女cb高潮喷水在线观看 | av中文乱码字幕在线| 日韩人妻高清精品专区| 在线永久观看黄色视频| 欧美性猛交╳xxx乱大交人| 又大又爽又粗| 99久久国产精品久久久| 亚洲av成人精品一区久久| 天天一区二区日本电影三级| 日韩成人在线观看一区二区三区| 噜噜噜噜噜久久久久久91| 免费观看的影片在线观看| 色综合欧美亚洲国产小说| 啦啦啦韩国在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一区av在线观看| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久人妻精品电影| 99久久国产精品久久久| 免费一级毛片在线播放高清视频| 日韩人妻高清精品专区| 色综合站精品国产| 国产美女午夜福利| 天堂av国产一区二区熟女人妻| 日本成人三级电影网站| 男人舔女人下体高潮全视频| 亚洲aⅴ乱码一区二区在线播放| 久久久久性生活片| 少妇的逼水好多| 999久久久精品免费观看国产| 精华霜和精华液先用哪个| 国产成人福利小说| 一级作爱视频免费观看| 国产又黄又爽又无遮挡在线| 精品国产亚洲在线| 岛国视频午夜一区免费看| 久久精品91无色码中文字幕| 伦理电影免费视频| 白带黄色成豆腐渣| 国产欧美日韩一区二区三| 精品免费久久久久久久清纯| 欧美一级毛片孕妇| 一个人看的www免费观看视频| 久久国产乱子伦精品免费另类| 露出奶头的视频| av女优亚洲男人天堂 | 亚洲中文av在线| 国产成人影院久久av| 亚洲男人的天堂狠狠| 国产精品亚洲美女久久久| 91字幕亚洲| 男女床上黄色一级片免费看| 18禁裸乳无遮挡免费网站照片| 精品午夜福利视频在线观看一区| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品一区二区| 亚洲中文日韩欧美视频| 亚洲中文日韩欧美视频| 国产精品一区二区三区四区免费观看 | 波多野结衣巨乳人妻| 色尼玛亚洲综合影院| 日韩欧美在线二视频| 日本一本二区三区精品| 伦理电影免费视频| 成人欧美大片| 一卡2卡三卡四卡精品乱码亚洲| 很黄的视频免费| 亚洲中文av在线| 久久中文字幕人妻熟女| 国产成人精品久久二区二区91| 给我免费播放毛片高清在线观看| 可以在线观看的亚洲视频| 少妇的丰满在线观看| 国产v大片淫在线免费观看| 中文字幕高清在线视频| 日本五十路高清| 九九热线精品视视频播放| 一级作爱视频免费观看| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 哪里可以看免费的av片| 日本撒尿小便嘘嘘汇集6| 成人精品一区二区免费| 国产精品影院久久| 亚洲精品美女久久久久99蜜臀| 日日干狠狠操夜夜爽| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| 国内精品久久久久久久电影| av片东京热男人的天堂| 校园春色视频在线观看| 99热这里只有是精品50| 久久伊人香网站| 欧美一级a爱片免费观看看| 特大巨黑吊av在线直播| 久久草成人影院| 狂野欧美激情性xxxx| svipshipincom国产片| 国产伦精品一区二区三区四那| 国产精品98久久久久久宅男小说| 波多野结衣高清无吗| 欧美在线黄色| 99精品欧美一区二区三区四区| 亚洲欧美一区二区三区黑人| 国产淫片久久久久久久久 | 国产高清三级在线| 久久久久久久久中文| 麻豆成人av在线观看| 久久精品人妻少妇| 欧美午夜高清在线| a级毛片a级免费在线| 在线观看美女被高潮喷水网站 | 日韩欧美国产在线观看| 99久久99久久久精品蜜桃| 三级国产精品欧美在线观看 | 免费看十八禁软件| 成年人黄色毛片网站| 国产视频内射| 国产欧美日韩一区二区精品| 欧美中文日本在线观看视频| 午夜久久久久精精品| 看黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看| 日本成人三级电影网站| 日本免费一区二区三区高清不卡| 2021天堂中文幕一二区在线观| 草草在线视频免费看| 亚洲av免费在线观看| 日日干狠狠操夜夜爽| 99在线视频只有这里精品首页| 中出人妻视频一区二区| 美女被艹到高潮喷水动态| 一二三四在线观看免费中文在| 日韩欧美 国产精品| 亚洲av成人不卡在线观看播放网| 国产伦精品一区二区三区视频9 | 亚洲午夜精品一区,二区,三区| 午夜两性在线视频| 久久久国产欧美日韩av| 一级a爱片免费观看的视频| 国产成年人精品一区二区| 俄罗斯特黄特色一大片| 99riav亚洲国产免费| 女人被狂操c到高潮| 久久这里只有精品19| 国产麻豆成人av免费视频| 婷婷丁香在线五月| 国内精品久久久久精免费| 亚洲欧美日韩东京热| 在线观看免费视频日本深夜| 国产一级毛片七仙女欲春2| 男人舔女人下体高潮全视频| 真人一进一出gif抽搐免费| 脱女人内裤的视频| 午夜福利欧美成人| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 午夜福利欧美成人| 成年人黄色毛片网站| 天堂av国产一区二区熟女人妻| 国产男靠女视频免费网站| 日日干狠狠操夜夜爽| 久久伊人香网站| 成人特级黄色片久久久久久久| 床上黄色一级片| 两人在一起打扑克的视频| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 国产精品久久久久久人妻精品电影| 亚洲男人的天堂狠狠| 成人特级黄色片久久久久久久| 变态另类丝袜制服| 免费在线观看成人毛片| 国产精品一区二区精品视频观看| 国产一区二区在线av高清观看| 很黄的视频免费| 老司机深夜福利视频在线观看| 少妇丰满av| 久久久久九九精品影院| 成人18禁在线播放| 97碰自拍视频| 久久精品91无色码中文字幕| 国产成人精品久久二区二区免费| 在线观看一区二区三区| 午夜激情欧美在线| 欧美日韩瑟瑟在线播放| 一二三四社区在线视频社区8| 成人av在线播放网站| 欧美日本视频| 国产精品一及| 国产亚洲欧美98| 国产精品98久久久久久宅男小说| 亚洲国产欧洲综合997久久,| 精品久久蜜臀av无| 亚洲 欧美 日韩 在线 免费| 男女床上黄色一级片免费看| 亚洲成a人片在线一区二区| 亚洲午夜精品一区,二区,三区| 欧美黄色片欧美黄色片| 性欧美人与动物交配| 又紧又爽又黄一区二区| 偷拍熟女少妇极品色| 精品久久久久久成人av| 欧美一区二区精品小视频在线| 91av网站免费观看| 啦啦啦观看免费观看视频高清| 久久人人精品亚洲av| 99久久无色码亚洲精品果冻| 日韩欧美在线乱码| 在线永久观看黄色视频| 久久精品国产99精品国产亚洲性色| 久久香蕉精品热| 成人特级av手机在线观看| 老司机午夜福利在线观看视频| 在线a可以看的网站| 国产三级黄色录像| 法律面前人人平等表现在哪些方面| 国产午夜福利久久久久久| 久久中文字幕一级| 欧美一级a爱片免费观看看| 午夜福利18| 国产精华一区二区三区| 国产熟女xx| 婷婷六月久久综合丁香| 国产成人av教育| 成年版毛片免费区| 噜噜噜噜噜久久久久久91| 国产成人啪精品午夜网站| 国产精品综合久久久久久久免费| 国产精品 国内视频| 波多野结衣巨乳人妻| 少妇丰满av| 1024手机看黄色片| 国产精品国产高清国产av| 男女床上黄色一级片免费看| 色综合欧美亚洲国产小说| 欧美日韩黄片免| 国产精品精品国产色婷婷| 欧美国产日韩亚洲一区| 亚洲精品一区av在线观看| 嫁个100分男人电影在线观看| 中文字幕av在线有码专区| av国产免费在线观看| 久久午夜亚洲精品久久| www日本在线高清视频| 亚洲av美国av| 亚洲国产中文字幕在线视频| 身体一侧抽搐| 嫩草影院入口| 国产精品99久久久久久久久| 国产亚洲欧美在线一区二区| 国产又黄又爽又无遮挡在线| 97人妻精品一区二区三区麻豆| 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 十八禁网站免费在线| 最新在线观看一区二区三区| 免费在线观看影片大全网站| 18美女黄网站色大片免费观看| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 久久人人精品亚洲av| 黄片大片在线免费观看| 亚洲午夜精品一区,二区,三区| 19禁男女啪啪无遮挡网站| 校园春色视频在线观看| 神马国产精品三级电影在线观看| 午夜免费激情av| 搞女人的毛片| 色综合站精品国产| 老司机深夜福利视频在线观看| 2021天堂中文幕一二区在线观| 丝袜人妻中文字幕| 亚洲 欧美一区二区三区| 国产一级毛片七仙女欲春2| 18禁美女被吸乳视频| 亚洲精品456在线播放app | 99精品欧美一区二区三区四区| 免费看日本二区| 国产精品亚洲一级av第二区| 岛国在线免费视频观看| 国产精品99久久久久久久久| 色综合站精品国产| 高潮久久久久久久久久久不卡| 一a级毛片在线观看| 国产精品美女特级片免费视频播放器 | 一进一出好大好爽视频| 美女高潮的动态| 国产午夜福利久久久久久| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 午夜a级毛片| 女警被强在线播放| 国产极品精品免费视频能看的| 最近最新中文字幕大全免费视频| 国产午夜精品论理片| www.999成人在线观看| 精品午夜福利视频在线观看一区| 神马国产精品三级电影在线观看| 最近在线观看免费完整版| 757午夜福利合集在线观看| 欧美一区二区国产精品久久精品| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 久久精品国产99精品国产亚洲性色| 两个人的视频大全免费| 18美女黄网站色大片免费观看| 国产午夜精品论理片| 十八禁网站免费在线| 欧美另类亚洲清纯唯美| www.自偷自拍.com| 欧美成狂野欧美在线观看| 日韩精品中文字幕看吧| 天天添夜夜摸| 国产av麻豆久久久久久久| 在线永久观看黄色视频| 欧美3d第一页| 久久欧美精品欧美久久欧美| av女优亚洲男人天堂 | 国产成人av教育| 熟女电影av网| 嫩草影院入口| 老司机深夜福利视频在线观看| 麻豆国产97在线/欧美| 亚洲国产精品久久男人天堂| 国产精品影院久久| 欧美色视频一区免费| 国产亚洲av高清不卡| 欧美成人性av电影在线观看| 国产伦一二天堂av在线观看| 中文字幕熟女人妻在线| 制服人妻中文乱码| 男女做爰动态图高潮gif福利片| x7x7x7水蜜桃| 精品国产亚洲在线| 一本久久中文字幕| 国产精品99久久99久久久不卡| 免费观看人在逋| 三级男女做爰猛烈吃奶摸视频| 亚洲中文av在线| 国产精品一区二区免费欧美| av欧美777| 国产亚洲欧美98| 18禁观看日本| 美女 人体艺术 gogo| 动漫黄色视频在线观看| 午夜免费激情av| 国语自产精品视频在线第100页| 久久久久久久精品吃奶| 国产乱人伦免费视频| 久久久久久久精品吃奶| 欧美不卡视频在线免费观看| 69av精品久久久久久| 天天一区二区日本电影三级| 狠狠狠狠99中文字幕| 免费看光身美女| 国产黄色小视频在线观看| 国产精品99久久久久久久久| 欧美成人性av电影在线观看| 网址你懂的国产日韩在线| 国产精品久久久久久人妻精品电影| 岛国在线观看网站| 中亚洲国语对白在线视频| 老司机在亚洲福利影院| 中国美女看黄片| 免费av不卡在线播放| 日本 欧美在线| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 不卡一级毛片| 操出白浆在线播放| 国产av在哪里看| 国产视频内射| 五月伊人婷婷丁香| 欧美中文综合在线视频| 香蕉av资源在线| 中文在线观看免费www的网站| 欧美午夜高清在线| 国产成人av激情在线播放| 99精品欧美一区二区三区四区| 精品一区二区三区av网在线观看| 亚洲熟妇熟女久久| 9191精品国产免费久久| 国产黄色小视频在线观看| 日本熟妇午夜| 国产精品 国内视频| 三级男女做爰猛烈吃奶摸视频| 日韩高清综合在线| 身体一侧抽搐| 中文字幕精品亚洲无线码一区| 国产精品久久久久久亚洲av鲁大| www国产在线视频色| 国产真人三级小视频在线观看| 人妻久久中文字幕网| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 亚洲精品美女久久av网站| 亚洲 欧美一区二区三区| 亚洲国产欧美人成| 国产伦在线观看视频一区| 51午夜福利影视在线观看| 欧美激情久久久久久爽电影| 欧美成人一区二区免费高清观看 | 国产成人av教育| 亚洲真实伦在线观看| 少妇的丰满在线观看| 色噜噜av男人的天堂激情| 欧美国产日韩亚洲一区| 国产精品一区二区三区四区久久| 麻豆一二三区av精品| 色综合站精品国产| 国产亚洲精品一区二区www| 男女之事视频高清在线观看| 国产毛片a区久久久久| 香蕉丝袜av| 亚洲一区二区三区不卡视频| 精品电影一区二区在线| 波多野结衣高清作品| 欧美色视频一区免费| 999久久久国产精品视频| 国产精品 国内视频| 成人特级黄色片久久久久久久| 精品国产乱码久久久久久男人| 色综合欧美亚洲国产小说| 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器 | 精品不卡国产一区二区三区| 一本一本综合久久| 国产午夜福利久久久久久| 操出白浆在线播放| 一区二区三区激情视频| 操出白浆在线播放| 亚洲中文字幕一区二区三区有码在线看 | 国内毛片毛片毛片毛片毛片| 一个人看视频在线观看www免费 | x7x7x7水蜜桃| 午夜福利18| 国内精品久久久久久久电影| 国产不卡一卡二| 免费观看人在逋| 日日摸夜夜添夜夜添小说| 99久久久亚洲精品蜜臀av| 午夜激情福利司机影院| av国产免费在线观看| 99久国产av精品| 国产免费av片在线观看野外av| av黄色大香蕉| 日韩欧美一区二区三区在线观看| 亚洲国产中文字幕在线视频| 好男人电影高清在线观看| a在线观看视频网站| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 老司机福利观看| 一本精品99久久精品77| 麻豆成人av在线观看| 日韩欧美三级三区| 欧美一级毛片孕妇| 每晚都被弄得嗷嗷叫到高潮| 51午夜福利影视在线观看| 欧洲精品卡2卡3卡4卡5卡区| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 99久久成人亚洲精品观看| 欧美日韩精品网址| 天堂动漫精品| 免费观看的影片在线观看| 手机成人av网站| 19禁男女啪啪无遮挡网站| 九色国产91popny在线| 成人三级黄色视频| 亚洲人与动物交配视频| 婷婷精品国产亚洲av| 国产三级黄色录像| 色综合欧美亚洲国产小说| 人人妻人人看人人澡| 国产爱豆传媒在线观看| 亚洲av日韩精品久久久久久密| 女警被强在线播放| 婷婷亚洲欧美| 亚洲av熟女| 欧美乱色亚洲激情| 国产高清有码在线观看视频| 一个人看的www免费观看视频| 久久久色成人| 91九色精品人成在线观看| 久久中文字幕人妻熟女| 亚洲专区国产一区二区| 亚洲七黄色美女视频| 国产精品1区2区在线观看.| 亚洲欧美日韩高清专用| 麻豆久久精品国产亚洲av| aaaaa片日本免费| 国产高潮美女av| 成人性生交大片免费视频hd| 国产一区在线观看成人免费| 色综合欧美亚洲国产小说| 亚洲精品色激情综合| 色av中文字幕| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 九九热线精品视视频播放| 亚洲av五月六月丁香网| 国产精品久久久久久人妻精品电影| 三级国产精品欧美在线观看 | 又紧又爽又黄一区二区| 操出白浆在线播放| 国产精品影院久久| 久久久久精品国产欧美久久久| 国产亚洲欧美在线一区二区| 黑人操中国人逼视频| 五月伊人婷婷丁香| 在线播放国产精品三级| 亚洲中文av在线| 757午夜福利合集在线观看| 日本 欧美在线| 18禁观看日本| 亚洲人成电影免费在线| 一区福利在线观看| 国产探花在线观看一区二区| 欧美一区二区国产精品久久精品| 国产精品99久久99久久久不卡| 老鸭窝网址在线观看| 日韩人妻高清精品专区| 精品99又大又爽又粗少妇毛片 | 成人性生交大片免费视频hd| 美女免费视频网站| 久久久久久久久免费视频了| 深夜精品福利| 国产伦一二天堂av在线观看| 禁无遮挡网站| 又黄又粗又硬又大视频| 男人的好看免费观看在线视频| 国产精品久久久久久亚洲av鲁大| 欧美中文综合在线视频| 男女床上黄色一级片免费看| 99国产精品一区二区三区| 香蕉丝袜av| 国产午夜福利久久久久久| 国产单亲对白刺激| 99re在线观看精品视频| 中文字幕久久专区| 久久久久久久精品吃奶| 熟女电影av网| 又爽又黄无遮挡网站| 久久久久久久久久黄片| 一区二区三区国产精品乱码| 在线观看午夜福利视频| 麻豆成人av在线观看| 三级毛片av免费| 国产免费av片在线观看野外av| 日本在线视频免费播放| 成在线人永久免费视频| 国产免费男女视频| 亚洲国产色片| 草草在线视频免费看| 国产在线精品亚洲第一网站| 亚洲精品中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| 精品一区二区三区四区五区乱码| 男女做爰动态图高潮gif福利片| 国产人伦9x9x在线观看| 成在线人永久免费视频| 国产午夜福利久久久久久| 99在线视频只有这里精品首页| 国产精品香港三级国产av潘金莲| 麻豆一二三区av精品| 免费观看人在逋| 黄色 视频免费看| 老司机福利观看| 久久精品国产清高在天天线| 国产伦在线观看视频一区| 亚洲色图 男人天堂 中文字幕| 国产高潮美女av| 国产久久久一区二区三区| 90打野战视频偷拍视频| 亚洲最大成人中文| 亚洲人与动物交配视频| 色吧在线观看| 天堂av国产一区二区熟女人妻| 在线观看午夜福利视频| 亚洲国产精品sss在线观看| 国内久久婷婷六月综合欲色啪| 欧美性猛交╳xxx乱大交人| 韩国av一区二区三区四区| 一边摸一边抽搐一进一小说| 亚洲真实伦在线观看| xxx96com| 日本 av在线| 在线国产一区二区在线| 青草久久国产| 国内揄拍国产精品人妻在线| 在线观看舔阴道视频| 精品免费久久久久久久清纯| 999久久久国产精品视频| 一本精品99久久精品77| 91在线精品国自产拍蜜月 | 国产乱人伦免费视频| 麻豆av在线久日| 亚洲国产精品999在线| 18禁裸乳无遮挡免费网站照片| 精品电影一区二区在线| 国产综合懂色| 欧美性猛交黑人性爽| 女同久久另类99精品国产91| 国产v大片淫在线免费观看| 91麻豆精品激情在线观看国产| 国产亚洲精品av在线| 久久久久久大精品| 老司机在亚洲福利影院| 国产亚洲欧美98| 亚洲精品国产精品久久久不卡| 日日夜夜操网爽| 母亲3免费完整高清在线观看|