• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Implications from protein uptake kinetics onto dextran-grafted Sepharose FF coupled with ion exchange and affinity ligands☆

    2017-05-29 01:39:32AiyingXueLinlingYuYanSun

    Aiying Xue,Linling Yu,Yan Sun*

    Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    1.Introduction

    Polymer-grafted adsorbent has been researched extensively in ion exchange chromatography(IEC)in recent years[1-4].For example,as the representative polymer-grafted ion-exchangers,dextran-grafted IEC resins[2,5],such as the commercial SP Sepharose XL,Streamline Q XL[2,6-8],and the customized T40-SP-X-S6B[9]were widely used for antibody purification.Besides,poly(ethylenimine)(PEI),a synthetic polyelectrolyte,was also modified on agarose gels to prepare polymergrafted IEC media[3].Compared with conventional IEC adsorbents,polymer-grafted IEC adsorbents have exhibited significant advantages,especially with respectto the enhanced uptake kinetics[5,10].The faster uptake rate has been explained mainly by the “chain delivery”effect,driven by the chemical potential of the bound proteins as well as the interactions between neighboring flexible chains mediated by the bound proteins[11,12].In dextran-grafted[12]and PEI-modified IEC adsorbents[4,11],the “chain delivery”effect has been clearly identified.

    However,protein uptake kinetics in polymer-grafted adsorbentwith affinity ligands has not been studied.It is of significance to elucidate protein uptake behavior in polymer-grafted affinity chromatography(AC)adsorbents,because AC has been playing a vital role in protein purification[13].Our group has developed a biomimetic design strategy for affinity peptide ligands of human immunoglobulin G(hIgG)based on the affinity motif of Protein A,and octapeptide FYCHWQDE was identified as a high-affinity ligand for hIgG[14,15].

    In this work,dextran-grafted Sepharose gels were prepared and FYCHWQDE was coupled at three different ligand densities.Adsorption behaviors of hIgG on the three adsorbents were determined and compared with those on the non-grafted FYCHWQDE resins,in order to investigate the effects of ligand density and grafted dextran on the affinity adsorption of hIgG.In concert with experimental evidence obtained in the dextran-grafted and non-grafted IEC adsorbents with diethylaminoethyl(DEAE)ligand,the results are expected to deepen our understanding ofthe roles ofgrafted polymer chains in the transport of bound proteins in ion-exchange and affinity adsorbents.

    2.Materials and Methods

    2.1.Materials

    Sepharose FF was purchased from GE Healthcare(Uppsala,Sweden).Dextran(Mw500000)and human immunoglobulin G(hIgG,purity>90%)were obtained from Sigma-Aldrich(St.Louis,MO,USA).Octapeptide FYCHWQDE was synthesized by the solid-phase synthesis method and provided by GL Biochem Ltd.(Shanghai,China).All other reagents were of analytical grade from local suppliers.

    2.2.Preparation of adsorbents

    The dextran-grafted adsorbent was prepared with Sepharose FF by the method described previously[10,16].The initial concentration of dextran solution was 200 mg·ml-1.The obtained product was denoted as D-FF.

    In the preparation of IEC adsorbents,the functional group DEAE was introduced as described by Shiet al.[17].DEAE was coupled onto D-FF and Sepharose FF at similar ligand densities by adjusting the concentration of diethylaminoethyl chloride(DEAE-Cl)in the reaction systems.The obtained resins were denoted as DEAE-D-FF and DEAE-FF,respectively.

    The dextran-grafted and FYCHWQDE-modified affinity gels were prepared by coupling FYCHWQDE onto D-FFviathe thiol group on the cysteine residue in the affinity ligand as described below.First,a resin named 2-pyridyl-disul fide-D-FF was prepared by introducing the functional group 2-pyridyl disul fide to D-FF by the method described by Ferrazet al.[18].Then,FYCHWQDE was coupled onto 2-pyridyldisul fide-D-FF by the method reported previously[14].Dextrangrafted affinity adsorbents with three different ligand densities(31.1,45.3 and 59.4 μmol·ml-1)were synthesized,named W-D-31,W-D-45 and W-D-59,respectively.Here,W-D is used to denote the dextran-grafted FYCHWQDE adsorbents.Besides,the ligand FYCHWQDE was also coupled directly onto Sepharose FF following the above-mentioned method.For comparisons,non-grafted affinity resins at the three similar ligand densities were prepared and denoted as W-31,W-45 and W-59,respectively.

    2.3.Measurement of dextran content and ligand density

    The quantitative determination of dextran content was carried out based on gravimetric determination as described in the literature[5,19].The results indicated a dextran content of 35 mg·ml-1.Ionexchange capacities of the DEAE-D-FF and DEAE-FF were determined by the silver chloride precipitation titration reported previously[20].The peptide ligand densities of the affinity resins were determined by the method described by Xueet al.[15].

    2.4.Adsorption isotherms and uptake kinetics

    Static adsorption experiments of hIgG on IEC and AC adsorbents were carried out in 20 mmol·L-1Tris-HCl(pH 8.0)and 20 mmol·L-1phosphate buffer(pH 6.0),respectively,as described earlier[15,21].Initial protein concentration was in the range of 0.2-4.0 mg·ml-1and the residual concentration was detected after adsorption for 24 h,which was con firmed to have achieved the adsorption equilibrium.The adsorption density of protein(q)was calculated by mass balance with the free protein concentration in equilibrium(c),and the Langmuir model was used to describe the adsorption isotherms,

    whereqmis the adsorption capacity andKdis the dissociation constant.

    Dynamic uptake experiments for hIgG were conducted in a 100-ml three-neck round-bottom flask at 25°C as described by Zhaoet al.[22].The buffer systems used in the dynamic experiments were the same as those in static adsorption experiments.Initial protein concentration was set at 1 mg·ml-1.The effective pore diffusivity of the protein(De)was calculated by fitting the experimental uptake data to the pore diffusion modeldescribed previously[19].De,a lumped kinetic parameter describing the overall uptake rate of protein adsorption,was normalized with the free solution diffusivity of hIgG(D0)to compare the intensification of intraparticle mass transfer[10,23].TheD0value of hIgG is 4.0 × 10-11m2·s-1at 25 °C[24].In the kinetic studies,each experiment was conducted in triplicate and the average value was reported with its standard deviation.

    3.Results and Discussion

    3.1.Protein uptake to ion exchangers

    The adsorption isotherms of hIgG on the two IEC adsorbents are shown in Fig.1(a).It can be seen that all the isotherms could be well fitted by the Langmuir equation.Moreover,neither of the isotherms reached a plateau atthe concentration range tested herein,so the values of fittedqmwere not suitable to describe the adsorption abilities.However,the fittedKdwas little affected,because it is determined by the equilibriumdata atlowerconcentrations(around theKdvalue).Besides,initial hIgG concentration selected for investigating the uptake kinetics was 1 mg·ml-1,and the experimental concentration was 0-1 mg·ml-1,within concentration range tested in the adsorption isotherms.Thus,adsorption isotherms in Fig.1(a)covered the concentration range used in the uptake experiment and met the requirement of the present research.

    To have a clear view of the adsorption ability of hIgG to the IEC adsorbents and make a legible comparison,the adsorbed protein density(qc)at an equilibrium liquid-phase concentration(c)of 2 mg·ml-1,calculated from Eq.(1)using the Langmuir parameters,was used as a substitute of protein adsorption capacity[11].The calculatedqcand LangmuirparameterKdare listed in Table 1.Itis found thatthe adsorption capacities of hIgG were comparative on the DEAE-D-FF and DEAE-FF resins with similar ion-exchange capacities.Similar phenomenon was observed in dextran-grafted hydrophobic charge-induction chromatography resins with ligand densities of 60-90 μmol·g-1reported by Liuet al.[25].For DEAE-D-FF,the grafted dextran chains partially occupied the pore volume,which might lead to a decrease in the accessible pore space[26]and was then negative on hIgG adsorption.However,the grafted dextran in the resin could provide a 3-D binding volume with better accessibility for protein binding,which was bene ficial in hIgG adsorption[12,19].Interplay of the two effects would make the adsorption capacities of DEAE-FF and DEAE-D-FF comparative.

    Fig.1(b)shows the uptake curves ofhIgG on the two IEC adsorbents.The pore diffusion model provided good simulations of the uptake kinetics and the correspondingDe/D0values are given in Table 1.It can be seen that the uptake curve of DEAE-D-FF changed more quickly with the uptake time than that of DEAE-FF.The results in Table 1 show that theDe/D0value of DEAE-D-FF was 2.7 times higher than that for DEAE-FF,indicating that the uptake rate of hIgG on DEAE-D-FF was accelerated remarkably by the dextran grafting,which was coincident with the results of dextran-grafted IEC adsorbents reported previously[5,10,12,19,23].Namely,the flexible dextran layer[19]offered a“chain delivery”effect to the bound protein[3,12,27],which facilitated hIgG uptake onto DEAE-D-FF.

    Table 1Langmuir and uptake parameters of hIgG adsorption onto ion exchangers

    3.2.Af finity adsorption to FYCHWQDE-Sepharose

    The adsorption isotherms of hIgG on the dextran-grafted and non-grafted FYCHWQDE adsorbents are shown in Figs.2(a)and 3(a),respectively.Similar with the above ion exchange,qc(c=2 mg·ml-1)was used to approximate hIgG adsorption capacity and the calculated values are listed in Table 2 together with theKdvalues for comparison of the three pairs of dextran-grafted and non-grafted FYCHWQDESepharose resins.

    Fig.2.Adsorption isotherms(a)and uptake curves(b)ofhIgGin 20 mmol·L-1 phosphate buffer(pH 6.0)on dextran-grafted FYCHWQDE adsorbents.

    Fig.3.Adsorption isotherms(a)and uptake curves(b)ofhIgGin 20 mmol·L-1 phosphate buffer(pH 6.0)on non-grafted FYCHWQDE adsorbents.

    Table 2Langmuir and uptake parameters of hIgG adsorption onto FYCHWQDE-Sepharose resins

    It is found from Table 2 that,for the three pairs of FYCHWQDE adsorbents,the adsorption capacities of hIgG on the W-D resins decreased by the dextran grafting,distinctly different from the ion-exchange adsorption with dextran-grafted IEC adsorbents reported in literatures[5,10,23].However,it is similar to the dextran-grafted mixed-mode chromatography(MMC)adsorption reported by Yuet al.[19],in which the decrease of adsorption capacity was attributed to the collapse of dextran layer caused by hydrophobic interaction between the ligands(4-(1H-imidazol-1-yl)aniline).Besides,it was reported that hydrophobic interaction,generated between the hydrophobic ligands(benzoyl groups or butyl groups)immobilized on PEI chains,also led to the collapse of PEI chains grafted in MMC adsorbents at high NaCl concentrations[27,28].In this research,there are three hydrophobic residues(phenylalanine,tyrosine and tryptophane)in FYCHWQDE.Therefore,hydrophobic interactionsviathe FYCHWQDE ligands coupled on the dextran chainsmightlead to partialorcomplete collapse of the dextran layer.Thus,the grafted dextran on the W-D resins could not provide a 3-D binding volume,but the chain collapse caused a decrease in the accessible pore space,resulting in the decrease of the adsorption capacities of the W-D resins.This speculation was supported by the increase inKdvalues with dextran grafting,as given in Table 2.The dextran layer collapse in the W-D resins made the binding sites for hIgG less than those in the corresponding non-grafted resins of the same ligand densities[27].Less binding sites for hIgG weakened the binding strength for hIgG[4],resulting in the increase ofKd,the apparent value of dissociation constant.

    Only to the W-D resins,the value ofqcpresented an inverted V-shape as ligand density increased.The available binding sites for hIgG increased with ligand density.However,the severer dextran layer collapse with increasing hydrophobic ligand density[28]reduced the available binding sites.By the interplay of the two opposite factors,the adsorption capacity reached the maximum on W-D-45.Moreover,the two opposite effects on the available binding sites for hIgG on the W-D resins also led to weakened affinities for hIgG,namely an increase inKdvalue as the ligand density increased,as shown in Table 2.

    Figs.2(b)and 3(b)show the uptake curves of hIgG on the dextrangrafted and non-grafted FYCHWQDE adsorbents,respectively,and calculated valuesofDe/D0are summarized in Table 2.Itcould be observed that the uptake curves of the three W-D resins were similar,in accordance with the values of fittedDe/D0listed in Table 2,implying that the effective pore diffusivity of hIgG on the dextran-grafted AC resin was not influenced obviously by ligand density.From Table 2,it can also be seen that theDe/D0value for W-D-31 was obviously smaller than that for W-31.Namely,there was slower protein uptake to the dextran-grafted affinity resin.This indicates that the grafted dextran layer reduced the pore size[19]and then increased the hindrance for protein pore diffusion[3,20].More importantly,it is found that theDe/D0values for the W-D resins were quite similar with those for the non-grafted ion exchangers listed in Table 1.This implies the lack of chain delivery effect on the affinity adsorbent,even though the presence of polymer chains.

    Thus,it can be concluded that different from ion-exchange adsorption,chain delivery does not happen for affinity adsorption to polymer-grafted porous media.This is considered due to the specific binding of the affinity ligand to the protein.Because there is only one single binding site(the consensus inter-CH2-CH3 interaction site)on the Fc fragment of hIgG[15],it is obvious that the bound protein was not able to interact with another ligand on a neighboring polymer chain.That is,the basis for chain delivery does not exist for the affinity adsorption.In other words,chain delivery only happens for multivalent proteins(proteins with many binding sites like charged groups)bound on flexible chains of enough length.

    3.3.Further discussion on chain delivery

    From the above results,itwas clear thatthe uptake rate ofhIgGcould be enhanced by chain delivery effectin dextran-grafted IEC resin,similar with many other polymer-grafted IEC adsorbents[3,5,10-12],as illustrated in Fig.4(a).The transfer of the bound protein on a polymer chain was facilitated through the electrostatic interaction between the protein and the neighboring chain by the flexible chain swings.

    However,chain delivery effect did not happen in the AC adsorbent,as illustrated in Fig.4(b).For the protein molecule with only a single binding site,the bound protein by affinity interaction cannot interact with other affinity ligands on neighboring chains because of the lack ofextra binding sites.So the chain delivery did nothappen in the affinity adsorption.

    Besides,chain delivery effect was not yet observed in the dextrangrafted MMC adsorbent with 4-(1H-imidazol-1-yl)aniline as a hydrophobic ligand[19].The main reason was attributed to the collapse of dextran layer due to hydrophobic interaction between the MMC ligand.In PEI-modified MMC adsorbent,a collapse of PEI layer happened as well on account of hydrophobic interaction generated by the immobilized hydrophobic ligands on PEI layer,leading to that the grafted PEI chains could not play a role in accelerating mass transfer of protein,unlike in PEI-modified IEC adsorbents[19,28].

    Fig.4.Schematic illustrations of mass transfer in(a)dextran-grafted IEC pore surface and(b)dextran-grafted affinity resin pore surface.The dashed blue curves represent the grafted polymer chains with adsorbed proteins after swing,and the dashed black box with a lightened Y-type pattern in(a)highlights the sites for the delivery of bound protein(hIgG herein).The quantities of the dextran chains and the ligands in this figure do not represent their real densities on the pore surface.The quantity of binding sites on hIgG in(a)does not represent its real density while in(b)indeed does(single binding site).In(a)it shows chain delivery occurs for the bound hIgG via dextran chain swings while in(b)chain delivery does not occur due to the lack of extra affinity binding sites on the protein.

    In comparison of the kinetic results in IEC[5,10-12],AC and MMC[19,27,28],three necessary elements for chain delivery in polymergrafted adsorbents have been revealed.First,the polymer should be long enough and of a certain flexibility to guarantee that adsorbed protein on a polymer chain can be transferred to the adjacent polymer chains by the swing of the long and flexible chains.Second,the coupled ligands should be of low hydrophobicity,which does not compromise the chain delivery by causing chain collapses by hydrophobic interactions.Third,the bound protein should be multivalent,making extra binding sites available for interacting with neighboring chains once it is bound to a chain.Thus,only protein adsorption onto flexible polymer-grafted ion exchangers meets all the three requirements.By contract,affinity or hydrophobic adsorption does not due to the lack of binding sites on target proteins or chain collapses caused by hydrophobic interactions.

    4.Conclusions

    In this work,dextran-grafted Sepharose gel with a dextran grafting density of35 mg·ml-1was fabricated and then ion-exchange and affinity ligands were separately immobilized on its surface to investigate the roles of grafted dextran in different adsorbents.Results of hIgG adsorption on IEC adsorbents showed that the grafted dextran could markedly enhance mass transfer of hIgG by“chain delivery”effect.For affinity adsorption,however,the adsorption capacity of the affinity resins decreased and the dissociation constant of hIgG increased by grafting dextran.Moreover,the uptake rate of hIgG onto the affinity resins was not enhanced by the grafted dextran chains,indicating that“chain delivery”effect did not happen in the dextran-grafted affinity adsorbents.Different roles of grafted dextran in IEC,MMC and AC resins for protein adsorption revealed three necessary elements for the happening of chain delivery in polymer-grafted adsorbents,namely long and flexible polymer chains for ligand coupling,low hydrophobic ligands and multivalent proteins with more than one binding sites for the ligands.

    Nomenclature

    cfree protein concentration in equilibrium,mg·ml-1

    Deeffective pore diffusivity of the protein,m2·s-1

    D0free solution diffusivity of hIgG(4.0 × 10-11m2·s-1at25 °C)

    Kddissociation constant,mg·ml-1(or μmol·L-1)

    qadsorption density of protein,mg·ml-1

    qcadsorbed protein density at an equilibrium liquid-phase concentration,mg·ml-1

    qmadsorption capacity of protein,mg·ml-1

    [1]E.J.Suda,K.E.Thomas,T.M.Pabst,P.Mensah,N.Ramasubramanyan,M.E.Gustafson,A.K.Hunter,Comparison of agarose and dextran-grafted agarose strong ion exchangers for the separation of protein aggregates,J.Chromatogr.A1216(2009)5256-5264.

    [2]Y.Tao,G.Carta,G.Ferreira,D.Robbins,Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers:I.Adsorption equilibrium,J.Chromatogr.A1218(2011)1519-1529.

    [3]L.L.Yu,S.P.Tao,X.Y.Dong,Y.Sun,Protein adsorption to poly(ethylenimine)-modified Sepharose FF:I.A critical ionic capacity for drastically enhanced capacity and uptake kinetics,J.Chromatogr.A1305(2013)76-84.

    [4]Y.Zhao,X.Dong,L.Yu,Y.Sun,Protein adsorption to poly(ethylenimine)-modified Sepharose FF:VI.Partial charge neutralization drastically increases uptake rate,J.Chromatogr.A1427(2015)102-110.

    [5]M.C.Stone,G.Carta,Protein adsorption and transport in agarose and dextrangrafted agarose media for ion exchange chromatography,J.Chromatogr.A1146(2007)202-215.

    [6]A.Ljungl?f,K.M.Lacki,J.Mueller,C.Harinarayan,R.van Reis,R.Fahrner,J.M.van Alstine,Ion exchange chromatography of antibody fragments,Biotechnol.Bioeng.96(3)(2007)515-524.

    [7]A.Ljungl?f,J.Th?mmes,Visualising intraparticle protein transport in porous adsorbents by confocal microscopy,J.Chromatogr.A813(2)(1998)387-395.

    [8]R.Wongchuphan,B.T.Tey,W.S.Tan,S.K.Subramanian,F.S.Taip,T.C.Ling,Purification of rabbit polyclonal immunoglobulin G using anion exchangers,Process Biochem.46(1)(2011)101-107.

    [9]Y.Tao,G.Carta,Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography,J.Chromatogr.A1211(1)(2008)70-79.

    [10]Q.H.Shi,G.D.Jia,Y.Sun,Dextran-grafted cation exchanger based on superporous agarose gel:Adsorption isotherms,uptake kinetics and dynamic protein adsorption performance,J.Chromatogr.A1217(2010)5084-5091.

    [11]Y.Hong,N.Liu,W.Wei,L.L.Yu,G.Ma,Y.Sun,Protein adsorption to poly(ethylenimine)-modified Sepharose FF:III.Comparison between different proteins,J.Chromatogr.A1342(2014)30-36.

    [12]L.Yu,L.Gong,S.Bai,Y.Sun,Surface DEAE groups facilitate protein transport on polymer chains in DEAE-modified-and-DEAE-dextran-grafted resins,AIChE J62(10)(2016)3812-3819.

    [13]Y.D.Clonis,Affinity chromatography matures as bioinformatic and combinatorial tools develop,J.Chromatogr.A1101(2006)1-24.

    [14]W.W.Zhao,F.F.Liu,Q.H.Shi,X.Y.Dong,Y.Sun,Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex,Biochem.Eng.J.88(2014)1-11.

    [15]A.Xue,W.W.Zhao,X.Liu,Y.Sun,Affinity chromatography of human IgG with octapeptide ligands identified from eleven peptide-ligand candidates,Biochem.Eng.J.107(2016)18-25.

    [16]J.Zhao,S.Yao,D.Lin,Adsorbents for expanded bed adsorption:Preparation and functionalization,Chin.J.Chem.Eng.17(2009)678-687.

    [17]Q.H.Shi,X.Zhou,Y.Sun,A novel superporous agarose medium for high-speed protein chromatography,Biotechnol.Bioeng.92(2006)643-651.

    [18]N.Ferraz,J.Leverrier,F.Batista-Viera,C.Manta,Thiopropyl-agarose as a solid phase reducing agent for chemical modification of IgG and F(ab′)2,Biotechnol.Prog.24(2008)1154-1159.

    [19]L.L.Yu,Q.H.Shi,Y.Sun,Effect of dextran layer on protein uptake to dextran-grafted adsorbents for ion-exchange and mixed-mode chromatography,J.Sep.Sci.34(2011)2950-2959.

    [20]L.L.Yu,Y.Sun,Protein adsorption to poly(ethylenimine)-modified Sepharose FF:II.Effect of ionic strength,J.Chromatogr.A1305(2013)85-93.

    [21]D.Xiang,Y.Wang,J.Zhao,S.Zhu,Effect of pore-size of mesoporous SBA-15 on adsorption of bovine serum albumin and lysozyme protein,Chin.J.Chem.Eng.18(2010)493-499.

    [22]W.W.Zhao,Q.H.Shi,Y.Sun,FYWHCLDE-based affinity chromatography of IgG:Effect of ligand density and purifications of human IgG and monoclonal antibody,J.Chromatogr.A1355(2014)107-114.

    [23]M.C.Stone,Y.Tao,G.Carta,Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography:Effect of ionic strength and protein characteristics,J.Chromatogr.A1216(2009)4465-4474.

    [24]A.R.?zdural,A.Alkan,P.J.A.M.Kerkhof,Modeling chromatographic columns:Non-equilibrium packed-bed adsorption with non-linear adsorption isotherms,J.Chromatogr.A1041(2004)77-85.

    [25]T.Liu,D.Q.Lin,H.L.Lu,S.J.Yao,Preparation and evaluation ofdextran-grafted agarose resin for hydrophobic charge-induction chromatography,J.Chromatogr.A1369(2014)116-124.

    [26]A.R.Ubiera,G.Carta,Radiotracer measurements of protein mass transfer:Kinetics in ion exchange media,Biotechnol.J.1(2006)665-674.

    [27]N.Liu,Z.Wang,X.Liu,L.Yu,Y.Sun,Characterization of novel mixed-mode protein adsorbents fabricated from benzoyl-modified polyethylenimine-grafted Sepharose,J.Chromatogr.A1372(2014)157-165.

    [28]L.Yu,N.Liu,Y.Hong,Y.Sun,Protein adsorption and chromatography on novel mixed-mode resins fabricated from butyl-modified poly(ethylenimine)-grafted Sepharose,Chem.Eng.Sci.135(2015)223-231.

    成人精品一区二区免费| 男女下面进入的视频免费午夜| 日本撒尿小便嘘嘘汇集6| 久久精品影院6| 欧美3d第一页| 麻豆av在线久日| 亚洲精品粉嫩美女一区| 久久人妻福利社区极品人妻图片| 天天添夜夜摸| 久久天堂一区二区三区四区| 亚洲成人国产一区在线观看| 美女免费视频网站| 老汉色∧v一级毛片| 国产乱人伦免费视频| 免费看日本二区| 一个人观看的视频www高清免费观看 | 欧美大码av| 亚洲成av人片在线播放无| av福利片在线观看| 国产精品乱码一区二三区的特点| 午夜两性在线视频| 777久久人妻少妇嫩草av网站| 亚洲全国av大片| 巨乳人妻的诱惑在线观看| 久久久国产欧美日韩av| 欧美最黄视频在线播放免费| 国产97色在线日韩免费| 欧美大码av| 亚洲专区字幕在线| 中文亚洲av片在线观看爽| 91字幕亚洲| 国产私拍福利视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲精品色激情综合| 色综合站精品国产| 制服丝袜大香蕉在线| 精品免费久久久久久久清纯| 18禁黄网站禁片午夜丰满| 黄色丝袜av网址大全| 国产伦一二天堂av在线观看| 亚洲全国av大片| 99热只有精品国产| 性色av乱码一区二区三区2| 亚洲五月天丁香| 免费一级毛片在线播放高清视频| 黑人操中国人逼视频| 国产一区二区三区视频了| 五月伊人婷婷丁香| 美女午夜性视频免费| 国产欧美日韩一区二区三| 视频区欧美日本亚洲| 18美女黄网站色大片免费观看| 狂野欧美白嫩少妇大欣赏| 久久草成人影院| xxx96com| 国产亚洲精品一区二区www| 欧美成人午夜精品| 国产精品一区二区精品视频观看| 成人国产综合亚洲| 亚洲成人久久性| 97碰自拍视频| av国产免费在线观看| 黄色视频不卡| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩高清专用| 久久久久精品国产欧美久久久| 免费一级毛片在线播放高清视频| 三级国产精品欧美在线观看 | 99re在线观看精品视频| АⅤ资源中文在线天堂| 一级片免费观看大全| 亚洲人成电影免费在线| 亚洲精品国产一区二区精华液| 中文字幕最新亚洲高清| 免费av毛片视频| 免费在线观看影片大全网站| 色在线成人网| 国产一区二区在线av高清观看| 啪啪无遮挡十八禁网站| 国产区一区二久久| 欧美大码av| 久久精品国产综合久久久| 久久国产精品影院| 亚洲专区国产一区二区| 久久婷婷成人综合色麻豆| 亚洲男人天堂网一区| 麻豆av在线久日| 高清在线国产一区| 成人国产综合亚洲| 一级a爱片免费观看的视频| 90打野战视频偷拍视频| 又大又爽又粗| 色av中文字幕| 一级毛片高清免费大全| 老司机在亚洲福利影院| 免费在线观看影片大全网站| 天堂√8在线中文| 18禁裸乳无遮挡免费网站照片| www.精华液| 欧美乱色亚洲激情| 神马国产精品三级电影在线观看 | av片东京热男人的天堂| 国产av麻豆久久久久久久| 亚洲人成网站在线播放欧美日韩| 久久精品人妻少妇| 91麻豆精品激情在线观看国产| 99精品欧美一区二区三区四区| 中文亚洲av片在线观看爽| 国产亚洲精品一区二区www| 12—13女人毛片做爰片一| 久久中文看片网| 日日干狠狠操夜夜爽| 两性夫妻黄色片| 精品欧美国产一区二区三| 97超级碰碰碰精品色视频在线观看| 久久人人精品亚洲av| 亚洲精品av麻豆狂野| netflix在线观看网站| 欧美精品啪啪一区二区三区| 久久国产精品影院| 丁香欧美五月| 天堂动漫精品| 丝袜美腿诱惑在线| 91av网站免费观看| 女生性感内裤真人,穿戴方法视频| 国产精品自产拍在线观看55亚洲| 亚洲自拍偷在线| 国产高清videossex| 成人欧美大片| 成人高潮视频无遮挡免费网站| 久久久久久九九精品二区国产 | 毛片女人毛片| 97超级碰碰碰精品色视频在线观看| 日韩大尺度精品在线看网址| 亚洲欧洲精品一区二区精品久久久| 一进一出好大好爽视频| 久久精品综合一区二区三区| 在线永久观看黄色视频| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| 久久午夜综合久久蜜桃| 精品福利观看| 少妇人妻一区二区三区视频| 亚洲激情在线av| 最近最新免费中文字幕在线| 性欧美人与动物交配| 九色国产91popny在线| 亚洲自偷自拍图片 自拍| 日韩成人在线观看一区二区三区| 久久中文字幕一级| 久久精品国产99精品国产亚洲性色| 看片在线看免费视频| 中文字幕av在线有码专区| 亚洲色图av天堂| 美女午夜性视频免费| 亚洲国产精品成人综合色| 日韩欧美在线二视频| 日本成人三级电影网站| 宅男免费午夜| 日本一二三区视频观看| 国产精品 欧美亚洲| 久久久久国产精品人妻aⅴ院| 在线视频色国产色| 少妇被粗大的猛进出69影院| 久久久久久久午夜电影| 在线观看美女被高潮喷水网站 | 两个人看的免费小视频| 777久久人妻少妇嫩草av网站| 五月伊人婷婷丁香| 国内毛片毛片毛片毛片毛片| 三级国产精品欧美在线观看 | 999久久久国产精品视频| 99热只有精品国产| 久久久久九九精品影院| 成人18禁高潮啪啪吃奶动态图| 夜夜看夜夜爽夜夜摸| 99re在线观看精品视频| 99国产综合亚洲精品| 在线看三级毛片| 欧美乱色亚洲激情| 午夜a级毛片| 又大又爽又粗| 国产高清videossex| 亚洲人成网站在线播放欧美日韩| 国产精品免费一区二区三区在线| 男女视频在线观看网站免费 | 久久婷婷人人爽人人干人人爱| 日本免费a在线| 老司机午夜十八禁免费视频| 一区二区三区国产精品乱码| 男人舔女人的私密视频| 久久久久久国产a免费观看| 日本一区二区免费在线视频| 国产区一区二久久| 韩国av一区二区三区四区| 日本五十路高清| 最近视频中文字幕2019在线8| 精品久久蜜臀av无| 亚洲一区中文字幕在线| 国产精品综合久久久久久久免费| 99re在线观看精品视频| 老司机福利观看| 国产精品久久视频播放| 女人被狂操c到高潮| 国产精品野战在线观看| 在线观看舔阴道视频| 久久 成人 亚洲| 久久精品人妻少妇| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 日韩精品中文字幕看吧| 精品国产美女av久久久久小说| 国产精华一区二区三区| 欧美最黄视频在线播放免费| 国产精品久久久久久亚洲av鲁大| 久久香蕉国产精品| 免费在线观看亚洲国产| 91九色精品人成在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 中亚洲国语对白在线视频| 国产aⅴ精品一区二区三区波| 欧美三级亚洲精品| 亚洲,欧美精品.| 99国产精品一区二区蜜桃av| 老司机福利观看| 免费无遮挡裸体视频| 一a级毛片在线观看| 亚洲精品中文字幕一二三四区| 国产精品 国内视频| 亚洲va日本ⅴa欧美va伊人久久| 婷婷亚洲欧美| 男女午夜视频在线观看| 麻豆国产97在线/欧美 | 亚洲一码二码三码区别大吗| 成熟少妇高潮喷水视频| 可以在线观看毛片的网站| 在线十欧美十亚洲十日本专区| 最好的美女福利视频网| 天天添夜夜摸| 三级毛片av免费| 久久 成人 亚洲| 国产熟女xx| 国产精品 国内视频| 国产单亲对白刺激| 国产精品一区二区精品视频观看| 久久精品夜夜夜夜夜久久蜜豆 | 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 两个人的视频大全免费| 免费高清视频大片| 日本一二三区视频观看| 亚洲 欧美一区二区三区| 免费看a级黄色片| 男女之事视频高清在线观看| 日本在线视频免费播放| 小说图片视频综合网站| 一进一出好大好爽视频| 国产精品一区二区三区四区久久| 波多野结衣高清无吗| 国产一区二区激情短视频| av福利片在线| 在线国产一区二区在线| 亚洲国产精品sss在线观看| 国产精品久久久久久人妻精品电影| 欧美乱妇无乱码| 男女之事视频高清在线观看| 亚洲国产欧美网| 在线十欧美十亚洲十日本专区| 一进一出好大好爽视频| av片东京热男人的天堂| 日韩大尺度精品在线看网址| 美女大奶头视频| 亚洲黑人精品在线| 国产1区2区3区精品| 亚洲国产看品久久| 亚洲精品久久国产高清桃花| 麻豆一二三区av精品| 2021天堂中文幕一二区在线观| 精品国产乱码久久久久久男人| 99久久综合精品五月天人人| 激情在线观看视频在线高清| 精品日产1卡2卡| 欧美黄色淫秽网站| 老司机深夜福利视频在线观看| 巨乳人妻的诱惑在线观看| 啪啪无遮挡十八禁网站| 欧美日韩亚洲国产一区二区在线观看| 国产激情偷乱视频一区二区| 999久久久国产精品视频| 国产精品精品国产色婷婷| 亚洲国产中文字幕在线视频| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 最近在线观看免费完整版| 99精品在免费线老司机午夜| 国产精品亚洲一级av第二区| 欧美黑人欧美精品刺激| 一边摸一边抽搐一进一小说| 熟女少妇亚洲综合色aaa.| 欧美绝顶高潮抽搐喷水| 亚洲美女黄片视频| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 中文字幕最新亚洲高清| 99国产精品一区二区三区| 精品一区二区三区视频在线观看免费| 成在线人永久免费视频| √禁漫天堂资源中文www| 国产成人av激情在线播放| 一区二区三区激情视频| 舔av片在线| 久久这里只有精品19| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 少妇的丰满在线观看| 动漫黄色视频在线观看| 国产亚洲欧美在线一区二区| 午夜精品久久久久久毛片777| 国产伦一二天堂av在线观看| 国产精品一区二区三区四区久久| e午夜精品久久久久久久| 久久精品91蜜桃| 精品国产乱码久久久久久男人| 国产成人aa在线观看| 欧美日韩精品网址| 九色成人免费人妻av| 欧美成人免费av一区二区三区| 国产亚洲精品久久久久久毛片| 黄色丝袜av网址大全| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 亚洲黑人精品在线| 欧美一级a爱片免费观看看 | 亚洲av日韩精品久久久久久密| 日本在线视频免费播放| 日韩精品青青久久久久久| 色播亚洲综合网| 中文字幕av在线有码专区| 少妇被粗大的猛进出69影院| 久久久久性生活片| 精品国产亚洲在线| 99国产综合亚洲精品| 啦啦啦观看免费观看视频高清| 村上凉子中文字幕在线| 久9热在线精品视频| 欧美日韩精品网址| 欧美日韩乱码在线| 国产探花在线观看一区二区| 日韩精品免费视频一区二区三区| 成人av在线播放网站| 99精品在免费线老司机午夜| 国产精品一区二区精品视频观看| 国产精品日韩av在线免费观看| 亚洲avbb在线观看| 国产亚洲精品久久久久久毛片| 国产一区在线观看成人免费| 手机成人av网站| 日本在线视频免费播放| 神马国产精品三级电影在线观看 | 成人一区二区视频在线观看| 国产三级在线视频| 母亲3免费完整高清在线观看| 亚洲精品国产一区二区精华液| 一边摸一边做爽爽视频免费| a级毛片a级免费在线| 美女扒开内裤让男人捅视频| 不卡一级毛片| 国产午夜精品久久久久久| 午夜福利成人在线免费观看| 黄色 视频免费看| 久久天躁狠狠躁夜夜2o2o| 在线国产一区二区在线| 男女床上黄色一级片免费看| www.熟女人妻精品国产| 久久久久亚洲av毛片大全| а√天堂www在线а√下载| 免费一级毛片在线播放高清视频| 亚洲成人国产一区在线观看| e午夜精品久久久久久久| 国产一级毛片七仙女欲春2| 国产黄色小视频在线观看| 国产激情欧美一区二区| 1024香蕉在线观看| 久久久国产成人精品二区| ponron亚洲| 成人手机av| 国产黄片美女视频| 久久久精品欧美日韩精品| 欧美大码av| 亚洲美女视频黄频| 中出人妻视频一区二区| 波多野结衣高清无吗| 成人av在线播放网站| 久久香蕉精品热| 听说在线观看完整版免费高清| 国产人伦9x9x在线观看| 91字幕亚洲| 男人的好看免费观看在线视频 | 亚洲九九香蕉| 午夜老司机福利片| 日日干狠狠操夜夜爽| 高潮久久久久久久久久久不卡| 成人三级黄色视频| 别揉我奶头~嗯~啊~动态视频| 国产午夜精品论理片| 久久这里只有精品中国| 叶爱在线成人免费视频播放| 国产久久久一区二区三区| 日韩免费av在线播放| or卡值多少钱| 国产亚洲欧美98| 一本久久中文字幕| 国产精品美女特级片免费视频播放器 | www.www免费av| 成人国产综合亚洲| 99国产综合亚洲精品| 麻豆一二三区av精品| 亚洲av成人av| 国产精品 欧美亚洲| 日韩欧美精品v在线| 欧美成狂野欧美在线观看| 成人欧美大片| 村上凉子中文字幕在线| 国产亚洲av嫩草精品影院| 欧美精品啪啪一区二区三区| 久久精品影院6| 中文在线观看免费www的网站 | 国产成人av激情在线播放| 久久人人精品亚洲av| 欧美成人性av电影在线观看| 9191精品国产免费久久| 亚洲无线在线观看| 黄色毛片三级朝国网站| 免费高清视频大片| 午夜久久久久精精品| 午夜福利欧美成人| 亚洲一区高清亚洲精品| 久久精品91蜜桃| 91国产中文字幕| 午夜两性在线视频| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 最近在线观看免费完整版| 搞女人的毛片| 听说在线观看完整版免费高清| 久久久久久国产a免费观看| 国产亚洲精品av在线| 免费在线观看完整版高清| 国产成人一区二区三区免费视频网站| 亚洲五月婷婷丁香| 亚洲午夜理论影院| 国产精品久久久av美女十八| 日本撒尿小便嘘嘘汇集6| www.自偷自拍.com| 亚洲一卡2卡3卡4卡5卡精品中文| 久久香蕉精品热| 精品久久久久久久末码| 白带黄色成豆腐渣| 91av网站免费观看| 亚洲国产日韩欧美精品在线观看 | 成人手机av| 欧美激情久久久久久爽电影| 俄罗斯特黄特色一大片| 亚洲av片天天在线观看| 国产精品爽爽va在线观看网站| 看免费av毛片| 国产91精品成人一区二区三区| 免费看日本二区| 亚洲av成人一区二区三| 岛国视频午夜一区免费看| 色综合欧美亚洲国产小说| 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| 国产精品国产高清国产av| 色综合站精品国产| 成人一区二区视频在线观看| 黄色 视频免费看| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 成年版毛片免费区| 69av精品久久久久久| 欧美精品啪啪一区二区三区| 两个人视频免费观看高清| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 国产一区在线观看成人免费| 欧美中文日本在线观看视频| 人人妻人人澡欧美一区二区| 国产亚洲av嫩草精品影院| av福利片在线观看| 一夜夜www| 精品久久久久久久人妻蜜臀av| 亚洲熟妇熟女久久| 99国产精品99久久久久| 亚洲国产欧美人成| 国产亚洲精品综合一区在线观看 | 日韩大码丰满熟妇| 一二三四在线观看免费中文在| 久久精品91无色码中文字幕| 一级黄色大片毛片| 麻豆av在线久日| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 成年版毛片免费区| 中亚洲国语对白在线视频| 日本成人三级电影网站| 久久精品成人免费网站| 精品少妇一区二区三区视频日本电影| 这个男人来自地球电影免费观看| 曰老女人黄片| 日本免费一区二区三区高清不卡| a在线观看视频网站| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片| 日本成人三级电影网站| 午夜免费激情av| 天天一区二区日本电影三级| 最近最新中文字幕大全免费视频| 老司机在亚洲福利影院| 日韩大码丰满熟妇| 少妇粗大呻吟视频| bbb黄色大片| 久久久久久人人人人人| x7x7x7水蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美精品v在线| 国产免费av片在线观看野外av| 久久久久久久久免费视频了| 国产av不卡久久| 好看av亚洲va欧美ⅴa在| 人成视频在线观看免费观看| av免费在线观看网站| 真人一进一出gif抽搐免费| 国产精品影院久久| 亚洲欧美精品综合久久99| 一进一出好大好爽视频| 亚洲国产中文字幕在线视频| 日韩欧美三级三区| 精品高清国产在线一区| 搡老妇女老女人老熟妇| 精品少妇一区二区三区视频日本电影| 亚洲欧美日韩高清专用| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 99国产极品粉嫩在线观看| 99久久综合精品五月天人人| 久久这里只有精品中国| 免费在线观看日本一区| 国产精品日韩av在线免费观看| 亚洲自偷自拍图片 自拍| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 久久精品国产99精品国产亚洲性色| 色综合亚洲欧美另类图片| 一级毛片女人18水好多| 久久久精品欧美日韩精品| 成年版毛片免费区| 麻豆国产av国片精品| 精品人妻1区二区| 午夜成年电影在线免费观看| 久久精品影院6| 国产精品亚洲美女久久久| 中国美女看黄片| 亚洲成人久久性| aaaaa片日本免费| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清在线视频| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 嫁个100分男人电影在线观看| 久久久久久九九精品二区国产 | 亚洲成人久久性| 欧美黄色淫秽网站| 草草在线视频免费看| 九色国产91popny在线| 免费高清视频大片| 亚洲成av人片在线播放无| 男人舔女人下体高潮全视频| 午夜免费激情av| 天天躁夜夜躁狠狠躁躁| 夜夜夜夜夜久久久久| 99re在线观看精品视频| 欧美大码av| 美女免费视频网站| 日本 欧美在线| 成人一区二区视频在线观看| 搡老妇女老女人老熟妇| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片| 国产高清视频在线播放一区| 精品熟女少妇八av免费久了| 少妇人妻一区二区三区视频| 黄色丝袜av网址大全| 久久久久久国产a免费观看| 日本熟妇午夜| a级毛片在线看网站| 亚洲熟女毛片儿| 日韩大码丰满熟妇| 曰老女人黄片| av欧美777| 成人国语在线视频| 久久精品国产亚洲av香蕉五月| 黄色丝袜av网址大全| 亚洲国产欧洲综合997久久,| 精品高清国产在线一区| 亚洲黑人精品在线| 99久久久亚洲精品蜜臀av| 欧美中文日本在线观看视频| 国产亚洲精品久久久久久毛片| 美女高潮喷水抽搐中文字幕| 丁香六月欧美|